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A study is made of the quantum fluctuations in the case of photodetection of light in an 
interference experiment when the dividing device (interferometer, semitransparent mirror, 
etc.) is illuminated by two radiation fluxes possessing subBoissonian statistics. It is 
established what physical requiremedts must be satisfied by the spectral and time 
characteristics of the incident waves and the observation procedure to ensure that the natural 
(shot) fluctuations of the photodetection of the secondary waves are suppressed. A mixing of 
light beams in an interference device sAbject to an external perturbation is of interest in 
connection with laser gravitational obs and also as a method of controlling light that, 
under certain conditions, does not statistics of the primary light waves. 

1. INTRODUCTION 

In recent years, there has been great interest in obtain- 
ing coherent light fields in quantum states, i.e., states that do 
not have a classical analog (see the review of Ref. 1, and also 
Refs. 2-5), and also in the properties of such fields. Betow, 
for brevity, we shall speak of quantum fields, and, in the 
important special case of sub-Poissonian statistics of the 
photons, of sub-Poissonian fields. The interest is due not 
only to the essential novelty of physical phenomena of this 
kind but also to the possibilities opened up for reducing the 
natural noise of light in high-precision optical measure- 
ments and in optical communication. 

In this paper, we discuss the possibilities for suppress- 
ing observation noise in an interference experiment in which 
two light waves are mixed by means of an interferometer, by 
a semitransparent dividing plate, or by some other device 
and one of the secondary waves is then sent to a photodetec- 
tor with high quantum efficiency. This problem has a direct 
bearing on the problem of the noise of a laser detector of 
gravitational waves, the sensitive element of which is an in- 
terfer~meter.~.' Interference mixing is also of interest as a 
method of controlling quantum light fields without (under 
certain conditions) introducing additional fluctuations. It is 
well known that light losses due to absorption, diffraction, 
nonideality of the photodetector, etc., increase the observa- 
tion noise of the quantum light field. It can be shown that 
physical methods of influencing a light field such as, for ex- 
ample, amplitude and frequency modulation can cause 
losses of the radiation energy and therefore generate noise. 
This will occur in the case of amplitude modulation because 
of variable absorption or deflection of part of the light flux; 
in the case of frequency detection, losses are introduced by 
the detector (there is a frequency-dependent transmission). 

At the same time, it was shown recently (see Refs. 7- 
10) that in the case of interference of two quantum light 
fields in an ideal divider the separation of part of the light 
into one of the scattering channels (the one in which the 
light is not detected) influences the statistics of the light in 
the observation channel quite differently from, for example, 

absorption losses. If one mixes waves in a squeezed1' state, 
the fluctuations of the photon number in the secondary 
waves can actually be less than in the incident waves. Study 
of the phenomenon of antibunching12 leads to similar con- 
clusions. Quantum phenomena were investigated in the case 
of the interference of weak fields in Ref. 13. 

Although the studies of Refs. 7-10 were specifically de- 
voted to photodetection of quantum light fields in an inter- 
ference experiment and in the case of heterodyning, they 
adopted a description of the noise associated with photon 
detection that is fundamentally simplified in the case of sta- 
tionary (unpulsed) light fields. In particular, in the frame- 
work of the approach of these studies the important physical 
question of the part played by the spectral and time scales of 
the light fields, the interference device, and the observation 
procedure in the suppression of the natural fluctuations of 
the detection was not even posed. 

The aim of the present paper is to elucidate the physical 
conditions under which there can be an appreciable reduc- 
tion of the natural noise of observation in the case of station- 
ary interference of quantum light fields (for example, in a 
laser gravitational experiment). We discuss the case of sub- 
Poissonian light waves and use for the description of the 
photodetection Glauber's well-known and universal pho- 
ton-counter model. 

As will be seen from the results, the spectral and time 
behavior of the quantum light fields is so important for noise 
reduction that the observation procedure must be matched 
to this behavior. It follows from the discussion in Sec. 5 that 
if the radiation of two sub-Poissonian lasers is mixed under 
favorable conditions (we have in mind here the conditions of 
generation in the sources, matching of the phases of the 
waves, and a high quantum efficiency of the detector), then 
the natural fluctuations of photodetection can be suppressed 
arbitrarily far below the shot level. However, for this it is 
necessary that the characteristic time of accumulation of 
photocounts be much greater than the relaxation time of the 
amplitude fluctuations in the light sources. In other words, it 
is the noise of the low-frequency components of the photo- 
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flux that is suppressed. 
The fluctuations of the photoflux at high frequencies 

have a shot nature for any photon statistics of the mixed 
waves, including quantum statistics. 

2. FLUCTUATIONS IN THE OBSERVATION OF THE 
INTENSITY OF QUANTUM FIELDS 

As measure of the noise of stationary photodetection 
one often (see Refs. 7-10 and many other studies) uses the 
rms fluctuation (An2)'I2 of the number of photons in the 
wave incident on the photodetector. From this point of view, 
significant suppression of the natural fluctuations of obser- 
vation requires that the statistics of the photons in the inci- 
dent wave be deeply subBoissonian, i.e., the condition 
(An2) 4 (n) must hold. If waves in the squeezed state are 
mixed, this leads to the requirement of deep squeezing in at 
least one of the primary waves.'-lo 

However, it can be shown that in a typical proposed 
source of a stationary coherent quantum field (see Ref. 1 ) in 
which the resonator contains an active medium interacting 
parametrically with the light, there is escape of radiation 
from the resonator1' and relaxation in the medium, the nec- 
essary deep squeezing is not achieved, and the mean square 
of the fluctuation of the photon number is reduced compared 
with the Poisson value by not more than a factor of two. It 
would seem that in this and similar cases the natural noise of 
the photodetection must remain appreciable, i.e., compara- 
ble with the shot level. Nevertheless, in a study by Golubev 
and one of the authors of the present paper,3 it was shown 
that the low-frequency noise of photodetection can in fact 
still be suppressed in the absence of deeply sub-Poissonian 
statistics of the radiation. 

The point is that in photodetection the number of pho- 
tons observed in the light wave does not correspond to a 
stationary distribution, but is the number N(t)  of photo- 
electrons produced by the light during an accumulation time 
7,= y-'. Depending on the method of accumulation, N(t)  is 
some integral over the time of the photocurrent i(t) .  If the 
source sends light directly to the photodetector, the dimen- 
sionless field strength a(?) in the source resonator, the cur- 
rent of the detector, and its correlation function are related 
as follows: 

(i(t)  )=C,(a+(t)a(t) )=C,(n(t) ), 
'/,({i(tl), i ( t 2 ) ) + ) = 6 ( t l - t , ) < i ( t , ) >  

+ ~ , ~ { g ( t ~ ,  t2)e(tz-tl)+(tz.-.ti)), 
g(ti, t~ )= (a+( t~ )a+( t~ )a ( t , )a ( t , ) ) ,  

where the constant C, relates the mean current to the mean 
number of photons in the resonator (see Ref. 3) ,  O ( t )  is the 
step function, and {. . .)+ is the anticommutator. These re- 
lations are known from the theory of a Glauber photon 
counter (for nonfree fields, see Refs. 17 and 18). It can be 
seen that the characteristic fluctuation in the number of pho- 
tocounts depends on the value ofg(tl, t,) at arbitrary times, 
i.e., on the dynamics of the fluctuations of the light intensity 
and, ultimately, on the spectral and time properties of the 
quantum field. It is this circumstance that is not taken into 
account in the simplified description. 

3. INTERFERENCE EXPERIMENT WITH SUB-POISSONIAN 
LIGHT FIELDS 

Suppose plane waves are mixed in the case of illumina- 
tion of a twin-wave or multiwave interferometer, dividing 
plate, etc., such that the wave fronts coincide in the forrna- 
tion of the secondary waves. We assume that the interference 
device is a fast device-that the characteristic time of estab- 
lishment of the field in it is short compared with the recipro- 
cal half-width r-' of the spectrum of the amplitude fluctu- 
ations of the light (see below) and compared with the 
accumulation time rO. Then, for a convenient choice of the 
wave phases, the dimensionless strengths b ,,, in the scatter- 
ing channels are b, = ca, + sa, and b, = - sa, + ca,, 
where c and s are the real amplitude transmission coeffi- 
cients of the divider, and c2 + s2 = 1 (there is no loss in the 
divider). 

The interference mixing of fields in the squeezed state in 
an interference device disturbed by a gravitational wave has 
been considered by Caves7 but he did not take into account 
the dynamics of the field fluctuations and the fields were 
assumed to be in a given state. The measure of the observa- 
tion noise was assumed in Ref. 7 to be (An2) 'I2 (see above), 
and therefore the remarks made in the previous section ap- 
ply to the results of Ref. 7. 

In this paper, we use the physical model of a sub-Pois- 
sonian laser source proposed in kef. 3. It can be shown that 
the suppression of the shot noise of the excitation of the me-. 
dium (by the choice of the method of pumping) leads under 
optimal conditions to a subBoissonian statistics of the radi- 
ation. Smirnov and Troshin19 have recently shown that co- 
operative processes in the active medium of the laser can 
play an analogous role. 

We introduce a representation with respect to coherent 
states in which the density matrixp(t) of the incident light 
fields corresponds in the interaction representation to a 
weight function of the form a ,  a,, t)  
= (a,,a,l p ( t )  lala,) (see Refs. 20 and 21), this also being 

smooth in the case of a quantum state of the field oscillators 
(in contrast to the diagonal weight in the Glauber-Sudar- 
shan representation). By virtue of the uncertainty relation, 
this weight function, like any other weight function, is not a 
statistical distribution in the field amplitude and phase vari- 
ables or in quadrature components; however, it gives a cer- 
tain picture of the behavior of the corresponding fluctu- 
ations, and we shall use this to obtain clear explanations. 

We define the region of uncertainty for the incident 
field i ( i  = 1,2),  i.e., the region on the (Re a i ,  Im a ,  ) plane 
in which the weight function is essentially nonzero (if the 
waves are independent, the wave function factorizes). In the 
case of a large number of photons, the difference of the re- 
gion of uncertainty for a sub-Poissonian field from the case 
of a field in a coherent Glauber state consists of the lesser 
extension with respect to the radial variable and greater ex- 
tension with respect to the phase variable. Suppose for sim- 
plicity that c = s = 2-lf2, i.e., in the scattering channel 1 the 
intensities of the primary waves are added. Figure la, which 
shows the regions of uncertainty for the sub-Poissonian 
fields 1 and 2 (with corresponding indices), shows that the 
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FIG. 1. Regions of quantum uncertainty for the incident waves: a )  sub- 
Poissonian fields, b) quantum distributions for incident waves squeezed 
with respect to the phase variable. 

field amplitude in the scattering channel 1 has minimal un- 
certainty if the mean phases of the incident waves are equal 
or differ by T,  the phase uncertainty of the initial distribu- 
tions is not too large, and the total mean intensity is not 
fortuitously equal to zero. For such matching of the wave 
phases (dashed line), the intensity of the scattered light re- 
sponds to only the small change in the amplitudes of the 
contributions ca, and sa,, while the small change in their 
phases does not play any role. Therefore, the interferometer 
must be adjusted in such a way that the investigated useful 
signal influences the moduli of the transmission coefficients 
c and s. 

Suppose the frequencies of the waves are equal. After 
adjustment of the system to a low-noise measurement, i.e., 
after matching of the initial phases of the fields, conditions 
for measurement exist during a time At such that DAt( 1, 
where D is the rate of diffusion of the difference phase in the 
system of the two independent laser sources. The duration of 
the expected signal T, and the accumulation time T,, which is 
chosen to be - T, (in the language of electronics, this means 
matching of the frequency band of the signal and the detect- 
ing system), must be sufficiently small, T,, T, (D -'. 

Since the phase diffusion is a slow process, the condition 
rS (D - ' can usually be readily satisfied and in principle per- 
mits retention of the difference phase by means of a feed- 
back, the "fast" useful signal being unaffected by this. 

4. DEVELOPMENT OF THE RADIATION FIELD IN THE 
INTERFERENCE PATTERN 

It is convenient to introduce variables u, and pi such 
that a, = exp(ipi ) (u, + ui )'I2. It is here assumed that in 
the case of stationary lasing the weight function for the 
source i has a maximum with respect to the amplitude vari- 
able at la, I = (u, ) 'I2, while ui is a small deviation and inti- 
mately related to the fluctuation in the number of photons in 
the source resonator. Since from the time of establishment of 
the initial difference phase the sources generate light inde- 
pendently, the equation of motion of the total field density 
matrix has the form 

where L, , the development operator for field i, is found for a 
laser subhoissonian source in Ref. 3. After linearization 
with respect to the small deviation u, and with allowance for 
the damping of the field in the resonator, we can obtain 

The half-width r ,  of the spectrum of the amplitude fluctu- 
ations depends on the rate of damping C, of the field energy 
in the resonator and on the dimensionless intensity I , :  
l-, =C,Z,(l + I , ) .  

The statistics parameter g, is defined in Ref, 3 both for a 
source of a quantum field in which the excitation shot noise 
is eliminated and for an ordinary laser with homogeneous 
gain profile. Sub-Poissonian statistics corresponds to the in- 
terval of values - $ < g, < 0; if 6, > 0, the radiation field has 
excess amplitude noise. To be definite, we assume that the 
fields a, are generated under identical conditions, C, = C 
and r ,  = r ,  but that the statistics may be different, 6, #g,. 

Provided the initial matching of the wave phases is 
made with an uncertainty much greater than the quantum 
limit, it does not disturb the stationary (Gaussian) distribu- 
tion in the variable u, for each wave. It is convenient to as- 
sume that the distribution formed initially with respect to 
the difference phase p,, = p, - p2 is also Gaussian with 
central value p12(0) and standard deviation (p :, ) 'I2. The 
mean phase p, = ( p l  + p2)/2 is not manifested in an ex- 
periment, and with respect to it we assume equidistribution. 
To such an initial condition there corresponds the weight 
function 

where 

In ( 3 ) ,  the Gaussian distribution on the interval 
- oo <q12 < UJ of the form 

is transformed into a periodic distribution: 
m 

To be specific, we assume that the accumulation (electron 
counting) is done by means of an integrating circuit, as is 
often the case in an experiment. Then the mean number of 
photoelectrons (Ni ( t )  ) produced by the field in the scatter- 
ing channel i in the time interval ( t  - T,, t )  where t 2 T,, 
7, = y- l, and the mean square of the fluctuation, are 

t 

(N, ( t )  )-cP J att exp{-y ( t - t t ) }  ( bf+ ( t i )  b i ( t t )  ), 
-m 

r 

- ( b f+  ( t t )  b<(ta) > ( b f  (tr) bf (tz) )I- 
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By GgIm we denote the correlation function of the intensi- 
ties of the scattered fields, Gvlm 
= (b + (t ,)  b f (t,) b, (t,) b, (I,)). We denote the analo- 

gous correlation function for the intensities of the incident 
fields bygg,, , where i, j, I, m = 1,2. The shot contribution to 
the square of the fluctuation has acquired the factor 1/2, 
which is due to the accumulation method (the high frequen- 
cies are cut off in the current noise). To find the correlation 
function Giiii (t,, t,) of the photocounts in the scattering 
channel i, we must express the scattered fields in terms of the 
incident fields, and this leads to calculation of the complete 
set of correlation function gvlm (t,, t,) (this is the computa- 
tional part of the work). We express explicitly the time de- 
pendence of the Heisenberg operators of the intensities of the 
incident waves: 

gut,,, (t,, t2) =Sp {are-ia(t*-tt)ke-iHt*p (0) eiHtta,+em(tr-tt)a,+}, 

(8) 
where E -  is the evolution operator of the field, Applying 
eiHr, ... eiH" to the weight function @(a, ,  a,, 0),  weobtain the 
development from t = 0 to t = t, of the initial condition (3) 
in accordance with Eq. ( 1 ), and then the weight function is 
transformed in accordance with the rule 

a,. . . G++ (%+d/d&,') (~*+d/&i)  . . . , 
etc. The trace is taken by means of J d 'a,d 'a,. In the calcu- 
lation, the results of which are given in the Appendix, it was 
found to be convenient to expand the weight function by 
making use of the property of orthogonality with a weight 
for eigensolutions of the Fokker-Planck equation." 

5. SUPPRESSION OF PHOTO-OBSERVATION NOISE IN THE 
SCATTERED LIGHT 

Using the explicit form of the correlation functions of 
the intensities of the incident waves (see the Appendix), we 
find the mean value and the mean square of the fluctuation of 
the number of photocounts in the scattered wave 1. Under 
the condition r0 5 t (D -I, (Ap f 2  ) 'I2 < 1 the result has the 
form 

< R ,  (t) )- 2 {c2nl+s2n2+2cs (n,n2) 'I1(cos qi*),), (9)  
Y 

Here and in what follows D = Dl + D,, and by ni we denote 
the mean number of photons in the incident wave, 
ni = ui - 1. The expressions are abbreviated by the intro- 
duction of averaging, denoted by (. . .), . By this we mean 
that the quantity within the angular brackets is averaged 

with respect to the difference phase p,, with the Gaussian 
weight that arises through the angular diffusion; this weight 
is described by central value p,,(O) and mean square devi- 
ation 2Dt + (Ap :, ). The contribution to the square of the 
fluctuations in the square brackets arises from the shot noise 
and the amplitude fluctuations, while the following contri- 
bution arises from the fluctuations of the phase (we denote 
these, respectively, by (AN: ( t ) )  '"' and (AN ( t ) )  'ph' ). 

Low-noise measurement is possible, as noted above, in the 
case of matching of the wave phases, p,,(O) = 0, a ,  it being 
necessary that the mean contributions to the intensity of the 
scattered wave from the incident waves not mutually cancel 
each other. In this case, we find 

(AN,' (t) ) (ph) =o. (11) 

The importance of quantum phenomena (ordering in the 
photon flux) and the excess fluctuations relative to the shot 
fluctuations is determined by the ratio Cp / ( y  + T) .  Since 
Cp = Cq, where q is the relative loss of the light energy in 
transmission (in the absence of the interferometer) and in 
detection, and the half-width r of the spectrum of the ampli- 
tude fluctuations tends in the case of a strong field to the 
damping rate C of the field energy in the resonator, in the 
optimal case T, C, + C. 

The possiblity of low-noise measurement is then deter- 
mined by the spectral-time factors. If the counting time is 
short, r0( C - I ,  i.e., y % C, then independently of the statis- 
tics of the light the shot contribution to the fluctuation is 
dominant. The statistical properties of the radiation are im- 
portant in the opposite case, 7,) C - I ,  y (C, i.e., when the 
counting time is much greater than the characteristic corre- 
lation time of the intensity. Complete suppression of the ob- 
servation shot noise occurs if there is interference between 
sub-Poissonian fields with maximal (for our physical mod- 
el) degree of antibunching and squeezing of the photon 
number distribution, li = - 4. The statistics parameters fi  

of the primary waves occur in ( 11 ) with weights equal to the 
energy coefficients of transmission into the given scattering 
channels. Therefore, observation noise is also suppressed in 
the case of mixing of a "good" wave, gi + - 4, with one into 
which more noise has been introduced but which has been 
significantly attenuated by the divider (but this latter wave 
can still remain strong). An analogous conclusion was 
drawn earlier in the case of the simplified description of the 
photodetection fluctuations in Refs. 8-10, in which it was 
proposed to detect a quantum field by mixing it with a wave 
described by a coherent Glauber state. 

In the case of optimal phase matching, the fluctuation 
of the observable does not depend on small fluctuations of 
the phase. Let us estimate the admissible error Sp  in the 
establishment of the initial difference phase relative to the 
optimal values 0 and a .  It should be noted that the signal 
change in the observable N, ( t )  produced by external distur- 
bance of the interferometer with duration rs -r0 is masked, 
not by the total fluctuation of the observable that arises in 
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the ensemble of measurement systems from the initial time, 
but by the increment of the fluctuation SN, ( t )  = N, ( t )  
- N, ( t  - T ~ )  during the signal detection time 7,. Since the 

random motion of the phase is slow and has the nature of 
diffusion," we can assert that 

( G N , ~ ( ~ )  ) ( p h . L ( ~ ~ , 2 ( t )  ) ( p h L < ~ ~ , z ( t - ~ o ) ) ( p h )  . 
Phase diffusion does not hinder quantum ordering in the flux 
of the scattered photons, provided (AN: (8) ) (SN: ) ( p h )  ; 
this condition can be reduced to the form 

1 ' -  

Here, we have used the fact that there is no random suppres- 
sion of the waves in the scattering channel, i.e., the condition 
(b ,f b,) -nl, n, is satisifed. In the case of scattering of clas- 
sical waves without excess fluctuations, gi = 0, the restric- 
tion ( 12) on the diffusion rate D of the phase is analogous to 
the restrictions that arise in the cases of frequency and phase 
detection. Because of the phase insensitivity of the decribed 
measurement, the factor ( 1 - cos 2Sg), which is small when 
ISg ( g 1, is present. 

It is interesting to note that there does in principle exist 
(if we do not concern ourselves with the physical method of 
preparing the necessary initial state) a further possibility for 
obtaining the antibunching phenomenon and suppressing 
the photo-observation noise in the case of interference of two 
waves from laser sources. This possibility arises when waves 
that are equal in mean amplitude and almost (but not com- 
pletely) opposite in phase add up in the scattering channel, 
c2n, = s2n2, g , , (O)  = rr + Sg, ISg Ig 1, each of the waves 
having at the initial time less uncertainty with respect to the 
phase variable than a wave in a coherent state (see Fig. lb )  : 

The left-hand inequality in ( 13 ) follows from the uncertain- 
ty relation and determines the quantum limit for the uncer- 
tainty of the distribution of the phase pi in the given repre- 
sentation with respect to coherent states. The inequality is 
found in the limit ni ) 1 for a weight function Gaussian with 
respect to the energy and phase variables. The right-hand 
inequality in ( 13) means that the distribution with respect to 
the phase is narrower than in a coherent Glauber state. Obvi- 
ously, this is possible only for fields with excess fluctuations 
of the intensity. 

It  can be shown that in the given case the phase contri- 
bution to the square of the fluctuation of the observable ( 10) 
is negative at short times. An analysis, which we omit, shows 
that for such an initial condition one does indeed obtain anti- 
bunching of the photons and suppression of the photo-obser- 
vation noise, but these quantum features are rapidly (during 
a time t R C - I )  destroyed by phase diffusion. In Fig. lb, this 
corresponds to spreading of the regions of uncertainty with 
loss of the initial squeezing. 

as is well known, be explained in terms of classical wave 
notions and have an essentially quantum nature. At the same 
time, a physical picture and some quantitative conclusions 
can quite often be obtained by representing a light beam as a 
stream of photons. From this point of view, antibunching is a 
relative ordering in the photon stream due, for example, to 
repulsive statistics of the emission events in the light source. 
If a light beam is sent through a semitransparent mirror, the 
fluctuations in the photocounts in one of the secondary 
waves can be found by assuming for each incident photon 
random scattering into one or other channel. The scattering 
probability is determined by the corresponding energy trans- 
mission coefficient. The result of such arguments agrees, as 
can be shown, with the conclusions of quantum theory. 

A fundamental feature of the interference of quantum 
light fields is that the fluctuations in the scattered waves 
cannot be explained by energy-balance considerations for 
any choice of the probabilities of scattering of the photons 
incident on the dividing device. In the case of random and 
independent scattering of the photons, the fluctuations of 
the intensity could only increase. But in fact the situation is 
quite different: The secondary waves may have just as low 
(Fig. la)  or even lower (Fig. lb )  fluctuations in the case of 
photodetection as the incident waves. 

For the physical interpretation of the quantum wave 
phenomena, one must use wave notions (interference of am- ' 
plitudes) and treat the measurements in terms of reduction 
of the quantum state. Suppose that at a certain instant of 
time the field has produced a photoelectron in the observa- 
tion channel 1. The statistical description of the subsequent 
events is given by a reduced field density matrixpR such that 

It is convenient to assume that before the measurement the 
weight function has a Gaussian dependence on the coordi- 
nates a;, a;, i = 1, 2, where ai = (a; + ia;) e ~ p ( i $ ~  ). 

This state of the field is not identical to that generated by a 
system of two laser sources, but in the case of a large number 
of photons and small amplitude and phase fluctuations, and 
also for a suitable orientation of the regions of uncertainty, 
there is a fairly close physical correspondence between these 
states. 

Figure 2 shows qualitatively how the regions of uncer- 
tainty for the primary fields are changed as a result of the 
reduction (i.e., by the detection of the photon in the scatter- 
ing channel 1 ) .3' If phase-matched sub-Poissonian fields in- 
terfere, absorption of a photon by the detector weakens ener- 
getically both incident waves in such a way that their regions 
of uncertainty are displaced toward the center of the coordi- 
nates. The intensity of the scattered wave 1 is reduced (in 
these arguments, c = s = 2-11'), i.e., there is antibunching 
and, as a consequence, ordering in time of the stream of scat- 
tered photons. This ordering is the physical reason for the 
suppression of the photo-observation fluctuations. In the 

6. PHYSICAL INTERPRETATION OF QUANTUM WAVE scattering channel 21 in which the intensities are subtracted, 
PHENOMENA the intensity is not changed, since the shifts of the regions of 

The phenomena of photon antibunching and suppres- uncertainty are compensated. 
sion of the natural fluctuations of photo-observation cannot, In the case of interference under the same conditions of 
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FIG. 2. Regions of quantum uncertainty for the incident waves before 
(continuous curves) and after (broken curves) reduction corresponding 
to emission of a photoelectron in the observation channel 1: a)  sub-Pois- 
sonian fields, b) waves with excess fluctuations of the intensity. 

waves possessing excess fluctuations of the intensity (Fig. 
2b), the arguments are analogous except that absorption of a 
photon by the detector in channel 1 does not so much weak- 
en energetically both incident waves as it does rather indi- 
cate a burst of their intensity. The regions of uncertainty are 
shifted in the direction opposite to the case of sub-Poissonian 
waves, and the intensity of the secondary wave is higher than 
the average. 

APPENDIX 

To investigate the quantum fluctuations of light in the 
interference pattern, it is necesary to know the second- and 
fourth-order correlation functions of the operators of the 
intensity of the incident waves. We give below the results of 
the corresponding calculations. Since the field equation of 
motion ( 1 ) has a fairly general form, these results can also be 
helpful for other physical models of a quantum field source. 
The correlation functions are found in the leading order and 
following order in the large parameter ni ) 1, the mean num- 
ber of photons in the resonator, and have the form 

<ai+ ( t )  a, ( t )  )=ni, 

(ai+ ( t I ) a i ( t z )  )=ni exp {- ( io i+Di)At )  

X [ I -  (giI4ni) ( l -exp  (-I'iAt) ) I ,  

goii(t,, &)=n?+nigi exp (-rdt) , gtjji ( t i ,  t 2 )  =ncni, 

gijij(t , ,  t z )  =ninj exp {- ( ioi ,+D)At)  

gilu(t,, t z )  =n;'njK exp {ioijt,-irpij(0) -Dt,-(Aq, ,2>/2)x,  

gjiu ( t l ,  tz) =nl."njK exp {ioijt2-irpij (0)  -Dt,-<Aq,,Z)/2) x ,  

where 

x=l+  (EJ2nj) exp ( - r j A t )  +[ (I-et /2) /4ni+ ( i -  j ) ]  

In these relations i, j = 1,2, i#j;  w, and w, are the frequen- 
cies of the incident waves. The spectral parameters of the 
waves are for generality assumed to be different, w1#w2, 
I',#I',. By At we denote the time difference t, - t,, with 
t,>t,. 

''We do not consider here the possibilities of nonperturbing measure- 
ment~,"'~ when the investigated field does not interact directly with the 
photodetector. 

''We found (SN: ) directly; its analysis gives the same physical results. 
"The reduced weight function does not factorize, and therefore to find the 
distribution for wave 1 we found the trace with respect to the variables 
a;, a; and vice versa. 
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