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Integration with respect to anticommuting variables and the method of replicas are applied to 
derive the effective Lagrangian in the Keldysh representation for a gas of electrons interacting 
with phonons. The technique developed makes it possible to obtain in a natural manner the 
kinetic equations for the cooperons and diffusons, and expressions for the current and other 
kinetic quantities. As applications, the problem of the temperature cutoff of the quantum 
corrections to the conductivity in the unitary limit and the problem of the high-frequency 
conductivity of a long thin wire are considered. 

I. INTRODUCTION Green's function 

The electronic properties of metals and semiconductors 
with a high impurity concentration are determined to a con- 
siderable extent by Anderson localization of electrons. A 
complete theory of this phenomenon has still not been con- 
structed, but there has recently been considerable progress 
in our understanding of the phenomenon as a result of the 
discovery of weak-localization effects (see, e.g., the review 
in Ref. 1 ). The theory of these effects (the theory of small 
corrections contributed to the kinetic coefficients by the in- 
teraction of diffusion modes--cooperons and diffusons has 
acquired, after the introduction of an effective Lagran- 
gian2-5 that makes it possible to describe the interaction of 
the diffusion modes in a regular manner, a form that is both 
convenient to use and adequate for the formulated problem. 

In conditions of localization an important role is played 
by inelastic processes, e.g., abosorption or emission of a 
phonon. In the strong-localization limit the conductivity is 
determined entirely by these processes, while in the weak- 
localization limit these processes determine the magnitude 
of the quantum corrections. The basic aim of the present 
paper is to reformulate the theory of Refs. 2-5 in a form that 
makes it possible to take account of the interaction of elec- 
trons with phonons and to calculate various kinetic effects. 
For this it turns out to be convenient to use the method of 
Keldysh6-' and to formulate the problem in the time repre- 
sentation (Sec. 2). In this case the correlators in the diffu- 
sion and Cooper channels in conditions of weak localiza- 
tion'' are found to satisfy kinetic equations.899 

As applications of the method, two problems are solved. 
In Sec. 3 we consider the problem of the temporary cutoff of 
the quantum corrections to the conductivity in the unitary 
case (in a magnetic field or in the presence of magnetic im- 
purities). In Sec. 4 we calculate the high-frequency conduc- 
tivity of a metallic wire in conditions of strong localization. 
The results of Refs. 11 and 12 are generalized here to the case 
of a wire of macroscopic thickness. 

2. THE EFFECTIVE LAGRANGIAN 

2.1 The Keldysh technique 

We shall derive the generating functional in the time 
representation. For this we consider first the usual causal 

cpk. (r, t) cpk.' (r', t') G(r,t,r',tl)= 
*,e 

e-e  (k) ' 

where E = E + isSign~ and p, (r,t) satisfy the equation 

in which U(r) is the random field of the impurities. Using 
the following properties of the anticommuting variables X,  
and~k*,  (Refs. 13, 10): . . 

{ X ~ Q  ~k'e'}={~ke,  x~'~'}={x;~ ,  xk'ar)=O, 
(3) 

xkc axkE=l, 5 dxkl=O, 

we write the denominator in ( 1 ) in the form of a functional 
integral over anticommuting  field^^.^: 

1 - 
e-e (k) 

where 

Substituting (4)  into ( 1 ), we obtain 

i 
G (r, t; r', t') - -j Z x (r, t)f (r', t') exp [ - j 9 d r  dt] &*Dx, 

(5) 

where 

S = i x *  (r, t) (ialat-H) ~ ( r ,  t), (6) 

We introduce the matrix notation 

where t,b and $ are related by the charge-conjugation matrix 
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Using $and $we write the Green's function in the form of a 
matrix: 

4- m 

The causal character of the Green's function (10) is con- 
nected with the fact that the integral overt in ( 10) goes from 
- CXJ to + C X J ,  i.e., is time-ordered. 

We now consider the Green's function ordered in t 
along the contour C (Fig. 1 ) (Ref. 6) : 

x exp [ - J dt J d r l ~ ]  D~D*. 
C 

It is obvious that when t and t ' lie on the lower part of the 
contour the Green's function ( 11) is causal, while when t 
and t ' lie on the upper part it is anticausal. In the other cases 
we obtain an average of the operators + and $ that is not 
ordered in time. 

We now turn to the Keldysh matrices; for this we de- 
note the function $on the lower part ofthe contour Cby $-, 
and the function $ on the upper part by ++. Thus, dimen- 
sionality of $ is doubled. Then, in place of ( 1 1 ), we can write 

F = i $ ( r ,  t )  [Go- ' ( r ,  t ;  r f ,  t ')  

and G,(r,t;r1,t ') satisfies the equation 

[ io ,dldt-Ho]Go(r ,  t ;  r', t f ) = 6 ( r - r f ) 6 ( t - t ' ) .  ( 1 5 )  

We shall transform the basis in such a way that the 
function Go has the form 

Go = ( G" Go; ) 
O G '  

FIG. 1 

The function Go is brought to the form ( 16) by a rotation 
(unitary transformation in the Keldysh space) and permu- 
tation of the elements of the b a ~ i s . ~ ~ ' ~ ' ~  Then 

and + and $ are connected by the relation 

where 

in which rX is a Pauli matrix in the Keldysh space. 
The final expresion for the Green's function G, unaver- 

aged over the configurations of the random potential U ( r ) ,  
is now written with allowance for the phonons and the exter- 
nal electromagnetic field: 

where 

F = i $ ( r ,  t )  [Go-'(r ,  t ;  r', t f ) - U ( r ) 6 ( r - r f ) 6 ( t - t ' )  ] $ ( r f ,  t') 
+zXp(r, t ) D o - ' ( r ,  t ;  r', t f ) rp (r f ,  t ' )  

-igy,j"Qi.gjq,6 (r-r ' )  6  ( t - t ' )  , (21) 

here q, (r,t) is the phonon field, g is the electron-phonon cou- 
pling constant, the matrix y has elements 

and the functions Go and Do satisfy the equations 

=6 (r-r') 6  (t-t')  , (24) 

where A and @ are the vector and scalar potentials. 

2.2 Averaging over the random potential 

The next step is to average over the random potential 
U(r). We shall assume that for scattering by impurities the 
Born approximation is applicable, and the random potential 
is Gaussian: 

We shall make use of the method of replicas, as was 
done, e.g., in Ref. 3. As a result of the averaging of exp( - F )  
the function 9 acquires the term 

&jn ( r ,  t )  +,, ( r ,  t )  V(r - r ' )Gm(r t ,  t ' )$m(r17  t ' ) ,  9- , ,"P = 7 
nra 

(27) 
where n and m are replica indices. The expression (27) is 
transformed by the introduction of an integral over the ma- 
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trix Q- field^,^ and in the process we separate out the weakly nonuniform field 

Qknm (q ,  t ,  t') -<+, (k+q, t )  gm (k ,  t ')  ). 
Then 

Xexp {- Jdt dt' z 7 Vk.k,Tr QQ., (q ,  t, t ' ) ~ k , ( - q ,  t', t ) }  
q k t k ,  

(here Q are matrices in the replica indices, and 
_V,,,l = V ( k ,  - k , )  ). From the condition that the quantity 2 ( k )  - ie E DOUP (d Y U ~  (k-q) yp, (34) 

( I  56 
e X Q $  be real it follows that the matrix Q is hermitian: 

where 
Q=Q+, 

and from ( 18 ) follows the condition 

The averaging over the phonon fields is performed anal- 
ogously. After the integration over q, the free energy ac- 
quires a term quadratic in $$ and this term is eliminated by 
integration over an auxiliary matrix X-field. As a result we 
obtain 

F - Jdr dt dt' z {$ (k ,  t )  [ 10.-' (k, t ,  t') - iZ (k ,  t ,  1' )  
k 

xQkl (r, t', t )  + 2 d t i x ~ r  XU (4 t ,  t i )  
2g2 cl 

[A- i  (q,  ti, t') I i,,,iZu (k-hpl t', t ) ,  (32) 

where 

Actually, as follows from (33)-(35), a function Q, over 
appears in the equations. Without introducing new notation 
for this function, henceforth we assume that Q, depends on 
the direction of the vector k  but not on the modulus k. In the 
integration over the Q-fields it should be taken into account 
that E ~ T %  1, and therefore it is also possible to use the meth- 
od of steepest descent. The extremum of 2 corresponds to 
the function Q; determined from 

in which G s  is given by (35) with the saddle-point function 
Q.,. 

By means of ( 35 ) and (36) we can obtain an equation 
satisfied by the function Q;. This is the kinetic equation 
(well known in the theory of dirty superconductors) for the 
quasiclassical Green's function13: 

a Qk' k a Q 8  s, - + qOz + -[--I - ieA ( t )  G Q . ~ + ~ ~ A  (t') ~ t ' o . 1  
at at m ar 

A{,, u (q ,  t ,  t') = ~ s ~ ~ D o ~ ~  (q, t1 t') 7bB, 7 u= ( 7 u ~ )  T. + ieQ (r,  t)Qka - ieQkO@ (r ,  I f )  f i d t i [x ( t ,  f )Qka(f ,  t f )  

Now we can calculate the integrals over $ and $: - Q.0 ( t ,  t , )  2 ( t i ,  t )  ] - nv J ?!k, v k k *  (QkpOQka-Qk*Qkps) = 0, 
2n 

9 = -TI h [- ( k )  + iZ ( k )  - nv E ~ ~ k , ~ ~ , + i e b  ( t )  ] (37) 

where 

Qk"Qk* ( t ,  t') . 

+ z ~r xu ( k )  [A-' (q )  I U , ~ I & I  (k+q) .  ( 33 1 2.3 The effective Lagrangian 
2ff kq  

We introduce the following notation (in the formulas 
Here, for abbreviation, we have omitted t and t ' in the containing averaging Over the angles, for definiteness We 

arguments and regard the corresponding quantities as matri- take the total angle to be 2a, corresponding to dimensionali- 
ces in these variables; the symbol Tr incorporates integration tY d = 2) : 
over the time. 

In the integral over the X-field we can confine ourselves ~ = 2 n v r  j 5 v ~ , Q ~ ~ .  
,226 

to the saddle-point value (since g 4  1 ), which is obtained 
from the equation 6 3 / 6 2  = 0 and leads to The saddle-point matrix Ps possesses the property 
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(PS)' = 1. Expanding the free energy in small deviations of 
the matrix P from P" we can convince ourselves that matri- 
ces P( r )  which experience only "transverse" deviations 
from P 9 h a t  do not violate the condition 

fluctuate the most strongly. In fact, if external fields and 
phonons are absent, Eq. (37) is satisfied by any uniformly 
rotated matrix Q, = T -'Q; T. Terms that break the sym- 
metry under uniform rotations will be taken into account by 
perturbation theory. 

We write P in  the form 

and assume that the matrices Tare slowly fluctuating in time 
and weakly nonuniform (i.e., the difference k - kt  in the 
arguments of T is small). The Lagrangian can be written in 
the form 

+ Z Vk,k2Tr Q(kl+q,  kl)Q(k,-q,  k,) 

+ L z ~ r  E (k) A-l ( q )  Z (k+q) ,  
2g2 k q  

where a, = a6 ( t - t ')/at. Expanding to first order in the 
small quantities, we obtain 

d ika iekA d Q k ~ r [ ( ~ z - + - - - o , + i ~ + i e ~ )  9 - n v  J- 
2n at 2m m 

The operator acting on Q in the expression (41) plays the 
role of the operator of the kinetic equation. 

The condition for applicability of (41) is that Q vary 
slowly over distances f i /p , .  For distances greater than the 
mean free path I,, = v,~,,, we can use the diffusion approxi- 
mation 

where 

QO=Qo (k-kt )  , 6Q(k,  k') =kw (k-k') , 6QQn+Qo6Q=0. 

(43 
The Q chosen in this form satisfies the conditions (to within 
terms -6Q 2, 

The quantity SQ is determined using the saddle-point equa- 
tion (37): 

6Q. ( r )  = ( ~ ~ . l m )  Qo (kVQo-iekA[ IS,, Qol) . (45) 

Using (42)-(45), we rewrite the effective Lagrangian in the 
diffusion approximation: 

where D is the diffusion coefficient. The last term in formula 
(46) is written for the case when there is a magnetic field 
H = (O,O,H) (the existence of this term in the Lagrangian 
was first pointed out in Refs. 15 and 16). Formula (46) is a 
generalization of the results of Refs. 2-4 and 17, and is con- 
venient for the description of nonstationary and inelastic 
processes. 

2.4. The kinetic equations 

We shall obtain the equations that are obeyed by the 
diffuson and cooperon propagators. For this we choose a 
parametrization of the matrix Q(k,kl) in the form 

and perform an expansion in the matrices w. The choice (47) 
corresponds to setting2' Q = T,, and treating the deviation 
of Qs  from rZ by perturbation theory. Since the matrix Q is 
related to Q by a unitary transformation, we have TrQ = 0. 
Let A = A(t). Then, expanding in (47) to w2 and substitut- 
ing into (41), we obtain 

d iekA ( t i )  
f 0, - wkZL (-(I, til t )  + -- wZ1( -q )  oz 

Oh nz 

iekA ( t )  -- 
m 

ikq + w k n ( q )  [- ; + i E A  ( k )  - iZR ( k )  

1 - ieO ( k )  + -1 wkZ1(-q) 
T 

From this, after Fourier transformation with respect to 
t - t ', we obtain the equations that are obeyed by the diffu- 
sons (density correlators) D,,,.,. (r,t,rl,t ') and cooperons 
CkV,,+, (r,t,rl,t ') : 

a k d  I [- + -- + i P ( e ,  k )  - iER(e, k )  - ieO ( k )  + -1 
?t m dr F 

X Dke,k#c,  ( r ,  t ,  r', t') 

- 2iEK{D}- 2nv Js v ~ ~ , D ~ , ~ , ~ ~ ~ *  (1, t, r', t l )  
2n 

= 6 (k-k') 6  ( t - r1)6  (e-8')  6  (t-t') . (49) 
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= 6 (k-k') 6 (e -E ' )  6 (r-r') 6 (q-q') , (50) 

where r ]  = t - t '. The kinetic equations (49) and (50) in the 
diffusion approximation and in the absence of phonons were 
obtained earlier in Ref. 9. 

In an external magnetic field, field terms containing the 
Lorentz force appear in the kinetic equations (49) and (50). 
These terms can be obtained using (41 ), with A regarded as 
an operator in the k-representation, i.e., A = 4 iHXV, (in 
the axial gauge). Without writing out the equations for the 
diffusons and cooperons in this case, we note that the term 
with the Lorentz force appears only in the equation for the 
diffuson. 

2.5. Formula for the conductivity 

To derive the formula for the conductivity we shall 
make use of the following expression for the current in terms 
of a nondiagonal element of the Keldysh matrix: 

nev dQr 
i ( I )  = - J- ( ~ r  (k-e*oZ) *oZQk(t, t) >, m 2n (51) 

where the angular brackets denote averaging over the Q- 
fields with the effective Lagrangian (41). Here the integra- 
tion is performed over all possible rotations of the saddle- 
point matrix Q ;, i.e., Q, = U + Q ",, where U is the matrix 
of the unitary transformation. We shall consider the linear 
response to a weak field SA(t). Solving the saddle-point 
equation (37) to terms linear in SA: 

we obtain an equation for SQ, (t,t ') : 

The separation of the dependence on SA in (5 1 ) implies 
a transformation rotation Q, -. Qk + SQ, {SA). With 
allowance for the term linear in A in theeffective Lagrangian 
(41 ) we arrive at the following expression for the current: 

v dQr ievk, 
jab, t)=; Jln( kaTr[rxo,6Qk(t, f)]+= 

The calculations are simplified if the effect of the phon- 
ons can be neglected. In this case, as follows from (53), 

Substituting this expression into (54) and taking into ac- 
count that SA(t) = 6A0e - '"I, we obtain the formula for the 
conductivity: 

o ~ B ( @ )  

v de - - dak r  - dr' dt' ~ - ' ~ ( ' ' - ' ~ k , k (  Tr [T.o@L. (r, t) 1, 
2 2n 

i 
XTr[o.Qw. (r', 1') 1 - -T~[T%Q~.  (r, t) I) . (56) 

m 

To go over the diffusion approximation we write Q, in the 
form 

Qk=Q+kw, {Q, kw}=O. (57) 

Substitution into Eq. (37), with allowance for the fact 
that k*w is small in comparison with Q, gives (A = X = 0)  

whence it follows that 

de' 
- 9 - dr1 dt' erpt-io (tl-t) 1 

2 2n 

i 
Y T ~  [o,Q.r (r', 1') P.Q.. (r', tl) 1- ;Tr [%Q.(r, t) I )  , (59) 

which agrees with the result obtained in Ref. 18. 

3.TEMPERATUREDEPENDENCEOFTHEQUANTUM 
CORRECTION IN THE UNITARY CASE 

In the case when the cooperons are suppressed by a 
magnetic field or by scattering by paramagnetic impurities 
(the unitary case), a quantum correction to the conductivity 
arises because of the interaction of diffusons and has relative 
order ( l / ~ , r ) ~ l n  wr ford = 2. The corresponding Feynman 
diagrams are depicted in Fig. 2 (Ref. 4). The contributions 
of these diagrams are equal to ( I/E,T) 21n wr and have oppo- 
site signs. Nevertheless, the diagrams do not cancel each oth- 
er, on account of the different character of their cutoffs at 
large m ~ m e n t a . ~ * ~ , ~  This result was obtained by means of a 
(2  + E )  -expansion. The question of the incomplete cancella- 
tion of the graphs of Fig. 2 directly ford = 2 dimensions is of 
independent interest, and, in principle, can be solved by 
means of the kinetic equation for the diffusons. 

ieTrrka 
6 Q r e Y  Qk [6AaoZ, Qrl  . (55) 
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Another topic that we consider in the present section is and the corresponding eigenfunctions are expressed in terms 
the need to cut off these corrections at small momenta. This of the hypergeometric function: 
cutoff is connected with inelastic processes and can also be 
obtained by means of the kinetic equation. $*=(ch y)-"F[ik-I, ik+2, ik+l; (l-th y)/21 (69) 

We shall find the eigenmodes of the operator of the ki- 
netic equation in the diffusion region q( l/vr. We shall as- (we d, not write the normalization factors). 
sume that the phonons are equilibrium phonons with distri- The equation for the diffuson DEE, (q,t,t 0 
bution function N,. The equation for the usual electron 

= (x(E,~)x(E' ,~ ') ) has the form 
distribution function f ( ~ ,  ) has the form 

where 

In the case when a collision of an electron with a 
phonon occurs with small energy transfers, so that the elec- 
tron experiences diffusion in energy, the collision integral 
(6 1 ) is simplified. We shall consider precisely the case, and 
then generalize the result obtained. 

We write the equation linearized in the deviation 
x ( ~ , t )  =Sf(~,,t)  of the distribution function from the equi- 
librium distribution function f 'O': 

(62) 
where 

(BT is the coefficient of diffusion in energy). 
Let 

Then it follows from (67) that 

where A, is found from the eigenvalue equation 

in which y = (E - p)/2T, and the derivatives are taken with 
respect toy. Equation (66) is reduced by the substitution 
p = $/cash y to the Schrodinger equation for a particle in 
the potential l/cosh2y. For us, the only important point is 
the presence of one discrete level A, = 0 and the correspond- 
ing zeroth mode 

The continuous spectrum starts from 1/4T: 

a (, + 09'-1) D... (q, t, t') =6(a-at)6(t-t'), (70) 

and from this, using the expa'nsion of (69), we obtain 

z0.(.)$n(a)$n(a1) 1 
D d  (!?,a) = $a(&') -io+Dq2+Bhn . (71) 

Using the orthogonality and normalization conditions for 
$, ( E )  in (7 1 ), we can convince ourselves that the correlator 
of the total density satisfies the diffusion equation3' 

Thus, electron-phonon collisions lead to the result that a 
diffuson with a definite energy is cut off at BA,, and only for 
the zeroth diffusion mode is this cutoff absent (A, = 0). The 
scale of the quantity BA, is equal to l/rE, which, in the case 
of quasielastic scattering by phonons, is of order 
7,- -R2/rph T2, where R is the characteristic energy trans- 
fer in an electron-phonon collision (a-sp,, where s is the 
velocity of sound). 

In contrast to the case of the cooperon, for which, in the 
quasielastic case, a new kinetic time T, a ~ p e a r e d , ~  the damp- 
ing of diffusons is determined by the energy-relaxation time 
7,. 

According to (71), there is no need to know the exact 
functions $, (E). The rather general statement that there ex- 
ists a zeroth mode and an orthonormal set of functions 
$n (E) is sufficient. The existence of the zeroth mode is con- 
nected with the invariance of Eq. (60) as the chemical po- 
tentialp changes; therefore, even without the assumption of 
quasielasticity, because of this invariance, for the correction 

the distribution function the collision integral 
I,, (p,) = 0. The possibility of choosing an orthonormal set 
of eigenfunctions of j,, is connected with the hermiticity of 
this operator, which follows, e.g., from the condition of de- 
tailed balance. 

We now elucidate the role played by the cutoff of diffu- 
sons of the form ( 7 1 ) in the calculation of the second-order 
graphs of Fig. 2. The expression corresponding to the graph 
of Fig. 2a is proportional to (for convenience we transpose 
the indices with the arguments of the D-function) 
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do' d o N  0' of 0" 
A = Iw ~ ~ e s , a ~  ( 8  - - 2 * e - - -  2 all) D ~ , - ~ , ,  ( e  - - u") 

4rOr 
2 -- 2 

- - j do' d;" y, 4i0 ( E - 0 1 / 2 )  h, ( 8 - e r / 2 )  &, ( E - o f / 2 - o f ' )  

q,q* ,,,9?2 $0 (8 -o ' /2-o")  
1 p ~ ( ~ - o " / 2 ) l p , . ( ~ - w " / 2 )  $n,(e-o'-d"'2) 1 1 

X- 
lpO (e-U'-m1'/2) -to'+Dqla+BA,, io"+Dq,Z+Bhn, ' 

In this integral, values Jwl,w") < A=B/4T- 1/r, are 
important. Therefore, in the cutoff at the lower limit an im- 
portant role is played by A and 

Amln2 [zz ( A )  1, (75) 

wherez( A )  is a certain function. To determine it we formal- 
ly introduce two different A: 

and differentiate (74) with respect to A, and A, (we neglect 
the zeroth mode, since for n,,n2 = 0 the singularity is weak- 
ened by the integration4' over w, and w,). We then obtain 

whence, with logarithmic accuracy, we obtain 

Thus, the cutoff of the graphs that diverge logarithmi- 
cally in q occurs, at the lower limit, at the reciprocal of the 
diffusion length L = (07,) ' I 2  of the energy relaxation. 

4. HIGH FREQUENCY CONDUCTIVITY OF METALLIC WIRES 

We shall consider the high-frequency conductivity of 
thin wires at low temperatures, when 

(the latter condition follows from the inequality 
Lph = (Drph ) ' I 2 )  L~ -I( p$), where LC is the localization 
length in the wire, 1 is the mean free path, and S is the cross- 
sectional area). Under these conditions the electrons are lo- 
calized and the conductivity at frequency o is due to 
phonon-assisted hoppings. The condition wr,, ) 1 permits 
us to confine ourselves to the lowest orders of perturbation 
theory in the interaction with the phonons. In this case the 
high-frequency conductivity can be expressed in terms of 
correlators of the Q-fields. Of course, we cannot calculate 
these correlators in the localization region by any perturba- 
tion theory. However, for estimates it is sufficient to know 
only that they all behave like exp( - 1 r - rl(/L, ). The prob- 
len~ of the conductivity of one-dimensional chains under the 
conditions mentioned above was solved in Refs. 1 1  and 12. 
The localization length in this case is of the order of the mean 

convenient to go over to the representation of exact wave- 
functions t,bi (x) in a given random potential. The saddle- 
point equation in this representation, after Fourier transfor- 
mation with respect to the time, can be written in the form 

- i ( e - ~ ' - e ~ + ~ j )  Qij(.e, e ')  - ( ieAJm)  [ki la,Qlj(e-a,  8') 

- Q ~ I ( E ,  ~ ' + o ) k , j ~ . l + i [ z ,  Q l u ( ~ ,  8 ' )  =O, ( 7 9 )  

where w is the frequency of the external field and E~ is the 
energy of the ith level. We shall treat the effect of the phon- 
ons by perturbation theory, and so we solve Eq. (79) by 
iterations: 

e A* 
6~:;"  (e, E * )  =- 

m ( a - e I + e j )  

Using (51) and (80)-(82) we obtain (the superscript ( 0 )  
can be omitted) 

-uzQi (e) a.yaQj ( 8 - q - o )  V B l  )e-iot, (83 

where the matrix element of the momentum has been repre- 
sented in the form ku = im (ei - ~ ~ ) d , ,  where d, is the ma- 
trix element of the coordinate. We treat the phonons in the 
momentum representation, and therefore the matrix ele- 
ments of the electron-phonon interaction contain the factor 
(eivr ) u,  where q is the phonon momentum. 

The element Q : of the matrix Qi is a small perturbation, 
and its fluctuations can be neglected. For this element, there- 
fore, we use the expression 

free path 1. In wires, LC -1k $3. In the calculation of the &--I' 
conductivity we shall use the method given in Sec. 2, with Qik ( 8 )  =-2 th- 6 ( e - e0 .  

2T (84) 

allowance for electron-phonon interactions. 
We shall calculate the phonon-related contribution to Since the phonons are in equilibrium, for the D-matri- 

the conductivity. In conditions of strong localization it is ces we take 
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In order to estimate the expression (83), we shall omit the 
dependence on E in the diagonal elements of the matrices Q. 
This corresponds to assuming that the Q-matrices are fluctu- 
ating equally over distances S LC. With allowance for the 
property TrQ = 0, from ( 83 ) we obtain an expression for the 
high-frequency conductivity, which can be written in the 
form of an average over the distribution of levels: 

The same formula for one-dimensional chains was obtained 
in Refs. 1 1 and 12. Using the method of Ref. 1 1, we adopt the 
following estimates (the contribution arises from hoppings 
over distances r% 1 but ( L C  ) : 

Replacing the summation over i and j by the corresponding 
integration, we obtain 

which coincides with the result of Refs. 11 and 12 when 
LC = I .  

5. CONCLUSION 

The principal result of this paper is the derivation of the 
effective Lagrangian in the time representation for the Kel- 
dysh Green's function of a disordered system. The method 
developed makes it possible to solve various kinetic prob- 
lems (in addition to the examples considered in this paper, 
the kinetic equations for cooperons have arisen in the prob- 
lem of the magnetoresistance of a thin metallic filmI9). It is 
obvious that electron-electron interactions can be incorpo- 
rated into the treatment, in the same way as was done in Ref. 
15. 

We are grateful to A. I. Larkin for a very useful discus- 
sion of the paper. One of the authors (V. D.) is also grateful 
to K. D. Tovstyuk for numerous discussions and support. 

"For the determination of the matrix elements of the processes of emission 
and absorption of phonons it is necessary to take into account the Fermi 
statistics of the electrons. This cannot be done in the framework of the 
method of s~persymmetry'~ using Bose and Fermi variables for the de- 
scription of the electron. Therefore, in the article we use the replica 
method of Refs. 3 and 4. 

*'It should be noted that the saddle-point matrix Qs = T, does not satisfy 
the condition (3  1 ). This means that in the integral over Q it is necessary 
to displace the contour of integration in such a way that it passes through 
the saddle point. This question has been discussed in Refs. 18 and 10. 

3'The expressions (71 ) and (72) are derived for a gas of noninteracting 
electrons. In considering the zeroth mode in (71 ) and the total density 
(72) it is necessary to takeelectron-electron interaction into account. As 
a result, in the denominator of the term with n = 0 a Maxwell relaxation 
time appears, and this denominator (and also the denominator in (72) ) 
acquires the form - io + ~ q '  + Dxq, where n = 4n-e2v is the inverse 
screening length. 

4'See also footnote 3. 
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