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We investigate the interaction in a crystal between an intense coherent polariton wave, whose 
amplitude is close to the threshold for Mandelstam-Brillouin scattering, and a background of 
scattered-polariton "noise." Correlations between scattered polaritons and phonons emitted 
during this scattering are taken into account, leading to the creation of mixed phonon- 
polariton modes. Near threshold, the decay rate of one of these modes reduces to zero, and the 
number of quanta in the mode grows. Backscattering leads to the appearance of fluctuations in 
the forward waves, consisting of correlated polariton pairs. We describe the system using 
diagram techniques devised for nonequilibrium processes, and solve Dyson-type equations in 
the so-called T-approximation, in which the usual polarization operators for polaritons and 
phonons do not depend on the amplitude of the coherent wave while the anomalous phonon- 
polariton polarization operator is linear in this amplitude. We show that near threshold the T- 

approximation ceases to be useful, due to accumulation of quanta in the weakly-damped mode; 
this leads formally to an increase in the number of diagrams, along with an increase in the 
order of perturbation theory to which the phonon-polariton interaction must be treated. We 
show that this problem can be avoided if we include a large number of single-loop diagrams in 
the expressions for the polarization operators, in which case near threshold all "dressed" 
diagrams become first order (as in the theory of phase transitions); a full solution of the 
problem then requires use of the renormalization group. In this paper we set up a self- 
consistent approximation for treating a simplified one-dimensional system (for example, 
polaritons in an optical fiber), taking into account only the single-loop diagrams in the 
polarization operators. 

INTRODUCTION 

In this paper we will investigate the interaction between 
a coherent electromagnetic wave (i.e., a polariton) propa- 
gating in a crystal with frequency close to the polariton reso- 
nance and scattered-polariton "noise," in the case when the 
amplitude of the coherent wave is close to the threshold for 
stimulated Mandelstam-Brillouin scattering. In this situa- 
tion, the intensity of the noise is found to increase strongly, 
and the "feedback effect" of this noise on the propagation of 
the coherent wave becomes appreciable. In addition, this ef- 
fect also gives rise to a significant modification in the spectra 
both of the scattered polaritons and of the propagating 
waves. The fact that polariton-acoustic phonon scattering 
accompanies each scattering event leads to the appearance of 
a certain coherence between polaritons and phonons. As a 
result, in place of the original polariton-phonon scattering 
there appear mixed polariton-phonon modes, just as the 
photon-exciton interaction gives rise to the polaritons them- 
selves. Near the threshold for stimulated scattering, the de- 
cay constant of one of these mixed modes goes to zero; hence, 
there is an accumulation of quanta in this mode, and the 
intensity of the mode increases strongly. Under these condi- 
tions, the behavior both of the scattered polaritons and the 
phonons in resonance with them is entirely determined by 
only one of these weakly-damped modes, so that in practice 
the scattered polaritons and phonons behave as practically 
identical particles. The scattering process we investigate 

here is in effect transformed into one in which a coherent 
polariton wave decays into two practically identical 
"mixed" particles. The feedback effect of these scattered 
particles on the original wave (i.e., back-scattering) leads to 
the development of intense fluctuations around it, whose 
spectral width increases as threshold is approached. In po- 
lariton language, these fluctuations correspond to polariton 
pairs whose frequencies and propagation directions are close 
to tlie original wave; these pairs arise as a consequence of the 
intense interaction and secondary scattering of the weakly- 
damped mixed phonon-polariton modes. 

The formal investigation of the physical picture de- 
scribed above is carried out here within the framework of the 
diagram theory of nonequilibrium processes. For simplicity, 
the amplitude of the coherent wave is taken to be given, and 
depends neither on time nor on the coordinates. From a for- 
mal point of view, this is equivalent to assuming there is in 
the medium a distribution of internal sources when sustain 
this amplitude despite the losses connected with scattering. 
From the standpoint of physics, this limits the region of ap- 
plicability of the results we obtain to fields not too close to 
threshold, for which the intensity of the scattered waves is 
still small compared to the forward wave, which can there- 
fore be treated approximately as a given "pump." The rel- 
evant quantitative criteria will be presented at the end of the 
article. 

In section 1 we formulate rules for the diagram tech- 
nique, and obtain and solve the equations for the normal 
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phonon and polariton propagators, the anomalous propaga- 
tors for correlated phonons and scattered polaritons, and 
correlated pairs of forward polaritons. 

In section 2 we develop the so-called r-approximation, 
in which we take into account only low-order terms (not the 
linear terms mentioned above) in the expansion of the polar- 
ization operator in powers of the amplitude of the coherent 
wave. Within the framework of the T-approximation we in- 
vestigate the poles of the Green's function for polaritons 
which scatter with phonon emission (i.e., the Stokes compo- 
nent of the scattered-polariton spectrum) and for resonance 
phonons. The analogous problem for the anti-Stokes compo- 
nent was solved in Ref. 1. It is shown that when a certain 
threshold value of the intensity of the forward wave is at- 
tained, the decay constant of one of the mixed phonon-polar- 
iton modes changes sign, i.e., stimulated polariton scattering 
occurs. 

In section 3, we investigate the properties of a system 
nea; the threshold for stimulated scattering. It is shown that 
the normal and anomalous propagators for scattered polari- 
tons and phonons near threshold grow (which corresponds 
to the decrease in the decay constant of one of the mixed 
modes and the accumulation of quanta in it). Near the 
threshold, the r-approximation is found to be inadequate; 
diagrams which are not taken into account in this approxi- 
mation for the polarization operator of forward polaritons 
diverge as threshold is approached. Furthermore, the num- 
ber of diagrams grows with increasing orders of perturbation 
theory. This latter difficulty can be overcome if we go be- 
yond the r-approximation framework and include in the for- 
ward-polariton polarization operator the single-loop dia- 
grams, which are very large near threshold. Then the leading 
diagrams cancel out, and the order of the diagrams does not 
grow as the order of perturbation theory increases. Conse- 
quently, the situation near threshold for stimulated scatter- 
ing is similar to the situation near a phase transition, and a 
full solution to the problem requires the use of the renormal- 
ization group. 

In section 4 we construct a simplified model in which 
quanta of the coherent mode decay into pairs of quanta with 
the same free-particle spectrum. In addition, we investigate 
a one-dimensional system (for example, polariton waves in 
an optical fiber). 

In sections 5 and 6,  we set up a self-consistent approxi- 
mation for the model system near threshold, analogous to 
the mean-field approximation-including one-loop dia- 

FIG. 1 .  Polariton branch ( 1 ) along with the absorption ( 2 )  and emission 
( 3 )  spectra of phonons. The intersection of the dispersion manifolds with 
a plane passing through the vectorp is shown. 

grams for the polarization operator. It is shown that broad- 
spectrum, low-intensity fluctuations arise near the forward 
wave. This noisy component near the coherent wave gives 
rise to an essential change in the lifetime and occupation 
number of the scattered particles. 

In conclusion, we analyze the applicability of the one- 
dimensional self-consistent approximation to a system of po- 
laritons in an optical fiber. 

1. SCATTERING OF POLARITONS IN A COHERENT 
MACROSCOPICALLY-OCCUPIED MODE OFF OF PHONONS: 
POINT OF VIEW 

Let us investigate the interaction between a large-am- 
plitude electromagnetic wave in a direct-gap semiconductor 
and acoustic phonons. As is well-known,2 the exciton-pho- 
ton interaction in direct-gap semiconductors leads to renor- 
malization of the exciton and photon spectra, i.e., to the ap- 
pearance of polariton branches. We will assume that this 
renormalization has already been included in the free-parti- 
cle Hamiltonians for polaritons and phonons. We will treat 
the influence of the large-amplitude electromagnetic wave 
by assuming that one of the polariton modes is macroscopi- 
cally occupied (i.e., its occupation number is large and pro- 
portional to the system volume), and furthermore that the 
mode is in a coherent state. Letp, = (~,,p,) be the frequency 
and wave vector of this mode [here E~ = E ( p,), and ~ ( p )  is 
the dispersion relation for the polariton]. Then the scatter- 
ing of polaritons out of this mode with absorption and emis- 
sion of phonons will also populate other polariton modes. 
We estimate their characteristic frequency and wave vector 
p * = (E , ,p+ ) where the index " + " refers to absorption 
and " - " to emission of a phonon. Let us note that the ma- 
trix element for interaction with acoustic phonons grows 
with the momentum transfer, and is a maximum for back- 
ward scattering (see Fig. 1). We therefore take as a charac- 
teristic energy of the scattered polaritons the quantities 
E, = E(P  + ), where the p, , i.e., the characteristic mo- 
menta of the scattered polaritons, are solutions to the equa- 
tion 

while u is the velocity of sound. The characteristic frequen- 
cies and momenta of the phonons are p , - p,. Since p , 
differ significantly from p,, the back-scattered polaritons 
and forward-scattered polaritons are quanta of essentially 
different kinds. We will underline this state of affairs by us- 
ing different notations for polariton propagators withp-p, 
and p -p , . Because of this notational convention, the re- 
sults we derive below are applicable to any three-quantum 
process in which a coherent macroscopically-occupied mode 
takes part. 

In order to describe the system, we will make use of the 
diagram technique for nonequilibrium proce~ses,~ in which 
particle propagators are matrices with temporal indices i, 
j = 1, 2. In applying perturbation theory to the polariton- 
phonon interaction, we consider only "resonance" diagrams 
in which the coherent-mode polariton takes part, along with 
the neighboring modes withp-pot the scattered polaritons 
withp -p + and phonons with k -p, - p , . Measuring fre- 
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quencies and momenta of these particles from p,, p * , and 
p, - p  + , we can display their free-particle Green's func- 
tions in the forms 

0 T [E-O, (p) -iOl-' 
=( ~[e -o , (p )+ iO] - '  -2ni(1+2N,)6(s-a,) 

(1.4) 
where 

a=O, +, -, a, (p) = r ~ ( p + p ~ - p , l + ~ + - e ~ ~  

N,=[exp(tiulpo-p,llk~T) -11 -', 

and N * is the phonon number density in thermal equilibri- 
um. We have assumed that the temperature is small com- 
pared to E, /k ,  , and that we can neglect the polaritons as a 
heat source. In order to derive ( 1.4) from the expressions 
usually used (see e.g., Ref. 3), we have taken the positive- 
frequency part for phonon emission and the negative-fre- 
quency part for phonon absorption. The indices " f " on the 
Green's functions Go,, are not written explicitly, since in the 
resonance approximation the contributions of absorbed and 
emitted phonons cannot be confused, and can be computed 
separately. 

Let us denote the matrix Do graphically by a wavy line 
(Fig. 2a), Go,,, by a straight line (Fig. 2b), and G,,, by a 
dashed line (Fig. 2c). The interaction of polaritons and 
phonons in the deformation-potential approximation corre- 
sponds to the vertices in Fig. 2d. The point in the figures 
represents the matrix vertex function with temporal indices 
i , j ,  I =  1, 2: 

i'"p~Mij'(2n)16(p-k-p'), (1.5) 
where 

pr='/*D ( Ik-p++pO Ilfip~~) ' I2,  Mij1=61.L6i,j+ 62,f (ox) ijr 
(1.6) 

FIG. 2. The free Green's functions Do (a) ,  Go.,, (b), Go,,, ( c ) ,  the nor- 
mal vertices for the polariton-phonon interaction (d)  and the anomalous 
vertices (e ) .  

FIG. 3. Green's functions D (a) ,  G,, (b) and G,, (c ) .  

here, D is the polariton deformation potential constant, p is 
the semiconductor density, and ox is the first Pauli matrix. 

Our treatment of the effect of the coherent mode with 
p =p, parallels the treatment of such modes in the diagram- 
matic analysis of Bose systems: i.e., we add new vertices (of 
external-field type, see Fig. 2e) which consist of matrices 
with temporal indices i, j = 1, 2: 

where 

no is the spatial density of polaritons in the coherent mode, 
which we take as an externally-imposed parameter. Like- 
wise, in determining the anomalous vertices corresponding 
to creation and annihilation of polaritons, we have fixed the 
phase of the coherent wave at q, = 0. This is legitimate, since 
later on we will be interested in stationary solutions which 
do not depend on the phase. 

For a full description of the system, i.e., one which takes 
into account the anomalous vertices ( 1.7), in addition to the 
exact Green's functions for polaritons withp -po (Fig. 3a): 

for scattered polaritons (a = pol, Fig. 3b) and for phonons 
(a = ph, Fig. 3c): 

we need to introduce anomalous propagators. For scattered 
polaritons and phonons, we call these functions Go (p, - p) 
and G , ( - p, p )  (Figs. 4a and 4b); they are proportional 
respectively to (Tcab )and (Tca+b +), wherea+ andb +are 
creation operators for a polariton and a phonon. For polari- 
tons with p-p,, we use the Beliaev functions DO (p, -p) 
and D , ( - p, p )  (Figs. 4c and 4d), corresponding to cre- 
ation of polariton pairs out of the Bose-condensate and to 
annihilation of such pairs. We will use a notation analogous 

FIG. 4. Anomalous functions Go (a) ,  Ex (b),  Do ( c ) ,  ( d )  and the 
simplest diagrams which correspond to them in (e-h). 
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to (1.8) and (1.9) for the time components of these func- 
tions. The simplest diagrams for the anomalous propagators 
are shown in Figs. 4e4h.  Further on, we will - use the abbre- 
viated notation G, =G, (p), Ga =Ga ( -p) ,  
Go =Go (p, -p) ,  and a, = G , ( -p, p ) ,  etc., when this 
will not lead to confusion. 

It is convenient to combine these functions, which are a 

all matrices in the temporal indices, into matrices g ,  (p), 
d,(p),a,P= 12: 

where "T" denotes the transpose of a matrix. Let us also take 7 
0 0 Do 

b 

Let us emphasize that the matrices ( 1.10) and ( 1.11 ) are 
four-rowed matrices, since the quantities GPO,, etc., are 
themselves two-rowed matrices in the temporal indices. 
From here on we will denote matrices of this kind with lower 
case letters. The extra indices, i.e., the nontemporal ones, we 
will refer to as "external" indices and denote by Greek let- 
ters. On the graph, we will denote the matrices correspond- 
ing to the lines with large black arrows (see Fig. 5).  

It is easy to see that any diagram for the Green's func- 
tions (1.8), ( 1.9) etc., can be obtained as a matrix compo- 
nent of the topologically-equivalent graphs for the functions 
( 1. lo), in which the propagators Do and Go,, are replaced by 
the matrices ( 1.11 ), while the vertex matrix (the triangle in 
the diagrams in Fig. 5e) 

has only two non-zero components m f 2  and m:, . 
Let us introduce the polarization operators, which con- 

sist of sums of all single-particle operators of a given type. 
We require polarization operators for scattered polaritons 
(a = pol), phonons (a = ph) and polaritons withp-p,: 

as well as the anomalous operators for creation and annihila- 
tion of phonons and scattered polaritons 2,,( p, - p )  and 
Z,,( - p, p )  and also for creation and annihilation of pairs 
of p -po polaritons: no,( p, - p )  and n,,( -p, p )  ." The 
simplest diagrams for Z0, and Z2, consist of the vertices 

FIG. 6. Diagrams for the polarization operators for polaritons withp -po 
(a),  and scattered polaritons and phonons (b). 

( 1.7), i.e., linear in n:l2 (or a). It is convenient to treat them 
separately, beginning with an expansion of 2,, and 2,, to 
third order in n:',. The simplest diagrams for no, and n2, 
appear in the central blocks of Figs. 4g and 4h. 

Let us combine the polarization operators into two ma- 
trices uaB and raB : 

The simplest skeleton diagrams for these operators and their 
matrix components are shown in Fig. 6. 

In addition, let 

We obtain the standard equations for the functions (1.10): 
gagofgo (o+(P) gr (1.16) 

d=do+dond. (1.17) 

The structure of these equations for the various matrix com- 
ponents is shown in Fig. 7. It is easy to obtain the solutions to 
( 1.16), ( 1.17) for the leading-order Green's functions: 

FIG. 5. Graphical notation for the matricesg, d, go, 
do, i ' '2pm& along with their matrix structure. 
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(1.19) 

where 

Do-'=e-eo (PI, 

za (p) = [ ~ c : h - ~ ~ d ]  [~0.:~1-2~~1] - [&+@ 1 [ &+@ 1 ,  
(1.20) 

Ya ( p )  = [Do-'-nsiT] [Do-'-DisO] -DozO~zoa. (1.21) 

A more cumbersome expression for the static Green's func- 
tions can be found using the matrix formulae 

f=groga, s=d'6d", (1.22) 

where 

So, S 
A11 &2 

Formula ( 1.22) follows from ( 1.16) and ( 1.17), and is anal- 
ogous to the formula F = GrQ Ga ,3 which is correct in the 
absence of anomalous Green's functions. For example, 

F p o t  = GLI [QpotG;o~ + QoGxQ]+  G 0 ' [GP,,c: + D z o P W l ] .  

( 1.24) 

2. THE 7-APPROXIMATION: QUASIPARTICLE 
(PHONORITON) SPECTRUM 

Let us first consider only the lowest-order diagrams in 
power of n;', (no higher than linear) for the polarization 
operators. In this approximation, which we call henceforth 
the r-approximation, the normal polarization operators do 
not depend on a, while the anomalous ones, whose expan- 
sion in powers of @ begins with quadratic (for no,, n,,) and 
cubic (for ZO2, Z,,) terms, equal zero. 

Near the corresponding surfaces E = E (  p) ,  in the r-ap- 
proximation 8, ( p 1 and II, , ( p can be expressed in terms 
of the polariton lifetime r,, ( p) = y i l (  p) and phonon 
lifetime rph = y ~ '  (see, e.g., Ref. 5)  : 

FIG.-7. Equations ( 1.16Land ( 1.17) for the components GPO, 
(a), G, ( b ) , D  (c)  and D ,  (dl. 

Here the upper sign, as before, refers to absorption of phon- 
ons, the lower one to emission. The solution to ( 1.17) is 
trivial: 

D o=Dx-O, (2.4) 

and the quantity which replaces the functions G &, ,... equals 

Let us investigate the zeroes of the function (2.5 ) . We 
obtain a quadratic for the excitation spectrum: 

[*e*o* (-p) Firph] [e-ef (p) -iypoll -Q)pZ=0. (2.6) 

The behavior of the solutions (2.6) for the anti-Stokes com- 
ponent (the upper sign in 2.6) was analyzed in Ref. 1; we 
therefore limit ourselves to an analysis of the Stokes compo- 
nent. The two solutions to (2.6), which (following Ref. 1 ) 
we will call "phonoritons," take the form 

et,l(p) ='la{e-(p) -a- (-PI +ir 

where r = yph + ypol, y = ypol - yph. Separating out the 
real and imaginary parts of (2.7),,' we obtain 

Re el,* (p) ='/,{e- (p) -a- (-PI 

*2-" [(Qa+Rpa)'"+Qp] '" sgn R,), (2.8) 

Im et,a (p) ='I2 {I?* 2-'''1 (Qp2+Rpa) "'-Qp] "'), (2.9) 

where 

QP= [e- (p) +a- (-p)] z-yz-4Q)p2, 

RP=2 [e- (P) +a- (-PI I y. (2.10) 

In certain ranges of momentum the decay constant of 
one of the phonoritons can change sign (Im ~ ~ ( 0 ) .  Over 
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FIG. 8. Graphical solution to equation (2.1 1); the figure is explained in 
the text. 

these ranges ofp, it is possible to generate polaritons and 
phonons; therefore, the stationary approximation is mean- 
ingful only in the region below threshold. 

From (2.9), it follows that the boundary surface in mo- 
mentum space which satisfies the condition Im E, = 0 is giv- 
en by the equation 

where 7 = ( y,,, y,, ) 'I2. The properties of equation (2.1 1 ) 
are illustrated in Fig. 8, in which curve 1 shows the depen- 
dence of the left side of (2.11 ) on longitudinal momentum 
pII = po.p forp, = 0. Curves 2-4 give the dependence of the 
right side of (2.11 ) on pll  for various coherent-mode densi- 
ties. If the density is smaller than a certain critical value, i.e., 
no(nc (curve 4), equation (2.1 1) has no solution and both 
phonoriton branches are stable. For no = n,  (curve 3), 
Im E,)O everywhere, excluding the tangent point p = p,, at 
which Im E, = 0. For no)n,  (curve 2) there is a region of 
momenta aroundp in which Im E,(O and stimulated polari- 
ton scattering can occur. It is not hard to show that to within 
small terms of order (r/.c0) 4 1 

Therefore 

In Fig. 9 we illustrate schematically the functions Re 
(2.18) and Im E,,, (2.9) for no = n , .  

3. ABOVE-THRESHOLD REGION: INADEQUACY OF THE 1- 
APPROXIMATION 

Fundamental interest attaches to an investigation of the 
Green's functions ( 1.18), ( 1.22) in the region near thresh- 

FIG. 9. (a)  The dependence of Re E, ( p )  (curve 1 ) and Re EZ (curve 2); 
(b) the same for Im E,  ( p )  (curve 1) and Im &,(p) (curve 2). The 
straight lines 3 and 4 are projections onto the planep = 0 of the tangent 
planes to the spectra at the point p = p-. 

old-for no = n, ( 1 - A ), 0 <A 4 1-and in a small region of 
frequency and momentum around p- . In this case 

Saving the leading terms in an expansion in A 4 1, we obtain 

Re (PI -e-(P) ~poJr-o-(-p) ~ p n l r ~ - u t ~ ~ ~ + ~ , p ~ ~ / 2 I p o J ,  

(3.4) 
Re ea (P) =e- (P) yphlr-@- (-P) ~ ~ o l / r ~ - ~ 2 p ~ ~ + ~ ~ ~ ~ / 2 ~ ~ ~ ( ~  

(3.5) 
where 

. - ( L g ) ' ,  ( c + u ) ~  a& (P) 
8(c-u)clP0lZ' '4 -TIp-.. 

~ 1 ( 2 ) = ~ y ~ a l ( P h ) l r - ~ y p h ( z o l ) / I ' ,  (3.6) 

c+u YPO*(P*) C+ u Yph(po1) - c--.- V l ( 2 )  - LC-- 
C-u r 2c I' - 

In the Green's function ( 1.18) we can ignore the pole 
with E = E, ( p )  in view of the large damping of Im E, com- 
pared to Im e, (see Fig. 9b). Let 

x,=-uzpll+vzp_,l/21poI+i ('i,'/I') ( h f  aplt+bpla). (3.7)  

Then to the same accuracy as (3.2)-(3.5), we obtain 

where 

  or   mall^'^' (for I E ~  5: y2A /r; Ip( S 5;A 'I2/c), the com- 
ponents R ( p) of (3.9) are large: the off-diagonal terms are 
proportional to A - I ,  while R,, -A -2. As a consequence of 
this, near threshold the T-approximation is insufficient, 
since there are diagrams not included in it which diverge for 
R + 0. For example, a simple estimate of the one-loop dia- 
grams n'') for the polarization operator (Fig. 6a) gives 

where n is the spatial dimension of the system. In order to 
improve the T-approximation it is necessary to extract the 
leading diagrams inil -" (a)O) . We are therefore up against 
a problem, which at first glance rules out the possibility of 
our making such a choice in general. It  turns out that if in the 
skeleton diagrams we substitute the functions d (2.3) and g 
(3.8) in the T-approximation, the quantity a increases as we 
go to higher orders in perturbation theory. Thus, if we intro- 
duce the two new vertices ( 1.5) into a given diagram, there 
arise diagrams which, although having one extra integration 
d ~d " p  (giving a small contribution in the anomalous re- 
gion, whose volume goes as2 ' + "" ), also contain large coef- 
ficients of type ff") which go as A -3.  Because in the T- 

approximation d-constant in the anomalous region, the 
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FIG. 10. The "correction" d2' to the diagram #' in Fig. 6a, which is 
actually larger than the latter if in place of d and g we substitute their 
values in the 7-approximation. 

magnitude of these diagrams is increased by a large factor 
A - + n'2. For example, the components of the diagram d2' 
in Fig. 10 

can be substantially larger than the components of the dia- 
gram for T"' (Fig. 6a). 

In this estimate, however, we have ignored the fact that 
to leading order in2 - ' the components of the functiong are 
linear in the single function R .  If we include in the polariza- 
tion operator the large diagram T"' (i.e., depart from the T- 

approximation framework), this leads to mutual compensa- 
tion of the leading terms in R for higher order diagrams, 
and these diagrams do not grow in size. We will demonstrate 
this by performing a certain linear transformation: let 

where 

It is easy to verify that for (3.8) the following relation holds 

In addition, the vertices which transform according to the 
rule mLB = x,! rn,YeB. xBpD take the form 

where, for example, 

k 

IIM~zlli;=Mij' (0,) j*j. 

(The vertices (3.14) are sufficient for us because only 
g,, = R is non-zero). 

Let us now include the single-loop diagrams a"' in the 
polarization operator in addition to the term n"', i.e., (2.1 ). 
Then 

where the matrix 

and the trace is taken over the omitted indices. Formula 
(3.15) shows in particular that to leading order in R - ' a 
formula holds which is analogous to the Hugenholtz-Pines 
formula for a nonideal Bose gas: 

The matrix (3.15) is diagonalized (in the "external" in- 
dices) with the help of the linear transformation 

where 

If we limit ourselves to terms linear in p for a small-p 
expansion p), then E,( p) = - E,( - p) and 

This matrix is diagonalized in the "external" indices by the 
transformation &, = y - ' dg .  Therefore, the solution to 
( 1.17) is also diagonalized and takes the form 

where Dl coincides with the solution to 2.3 in the T-approxi- 
mation, while 

I 

For A ( 1 the operator n"' is the same order as (3.10) and tions D,. It is not difficult to show that the orders of the 
II"', n'"'. Thus, in the anomalous region, quantities D, are such that the addition of the new vertices to 

any diagram preserves its order in an expansion in powers of 
(3.23) A - 1 .  

On the other hand, the transformed vertices &,BY 4. MODEL SYSTEM 
- - ma8 ),,., take the form In the previous paragraph, it was shown that near - - 

f i l1=0 ,  iiilt2=2"i(~/I') o,M. (3.24) threshold the T-approximation is inapplicable, but that in 
principle it can be improved by a judicious choice of leading 

From this it is clear that the large functions R are connected diagrams. Below we will construct a self-consistent approxi- 
through the vertices not with the finite D, but with the func- mation which takes into account one-loop diagrams in the 
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polarization operators. So as to simplify the problem, we will 
investigate a model system in which quanta of the coherent 
mode can decay into two quanta within the same free-parti- 
cle spe~trum.~' Apparently, such a simplification is not too 
critical, since near threshold, as we have seen, even in the 
three-quanta problem the propagators for phonons and scat- 
tered polaritons coincide to within a numerical factor. A 
further simplification occurs because we are investigating 
only a one-dimensional system (for example, a polariton 
wave in a light fiber). 

Dropping the subscripts pol and ph, we denote the com- 
ponents of the functions g and go in the following way: 

Correspondingly, we transform also the matrix a ( 1.14): 

Including in the expansions of the spectra around the special 
points only leading terms linear inp (herep is a one-dimen- 
sional vector), we will use the following forms for the free- 
particle Green's functions: 

It is easy to show that for each of the functions g, d, a 
and rr only two of the four matrix components are linearly 
independent; for these functions, the following relations 
hold: 

G Go 211 
= [- ozG oz o, Go, ] ' ' = [- u ,X0z~ .  

(4.4) 
Do D ozn11oz 

0zDoz ~zDouz  
] (4.5) I ,  n = ['z:;: no2 . 

The differences in sign between (4.4) and (4.5) are related 
to the fact that diagrams for G, XII , D, 1111, D, and no, con- 
tain an even number of the vertices ( 1.7), while those for G, 
and ZO2 contain an odd number. 

The matrices (4.4) and (4.5) are diagonalized in the 
external indices with the help of the transformations (3.12) 
and (3.19). In the matrix (3.12) we must set y,, = y,, : 

Then 

@ = x - ~  cpx = O I [ -:Om o0.0.0. 

'The vertices, which transform according to the rule 
r%&, = XD8' mg.l/~,,y y,., have four non-zero components - - 

filIi2=2-"io,M, filz22=-2-'hiM~I, 

After the diagonalization equations ( 1.16) and ( 1.17) are 
easily solved. The functions G ,, and D which enter into 
the solutions [see (4.8), (4.9) ] have the form 

G,,2 ( P )  

0 [ e + w p - ~ , f ~ ( p )  * i@l-' 
= ( [&+wp-z ; ,  ( p )  r i m  I-' Q.,, 1 e+wp- -~: . f  i@ 

(4.14) 
(the upper sign refers to the function GI)  and 

0 
D'r2(p)= ( [ & - ~ ~ - n ; , ( ~ ) ] - ~  

(4.15) 

5. THE MODEL SYSTEM NEAR THRESHOLD 

Let us first investigate the r-approximation, in which 

where yo is the decay constant for g-particles in zero field. 
Then 

0 [ & f  wp-i (y0T@) I-' 
) = ( l&+wp+i (y . r@)  I-' -2iy.l ( ~ + w p ) ~ +   TO)^]-^ 

(5.2) 
In the T-approximation, therefore, the threshold for genera- 
tion is reached when @, = yo. Near threshold, for 
Q, = yo( 1 - R ), R g 1, the components of the function 
gl l  = G, are large, whereas the component function G, is 
finite (compare with (3.13), taking into account only the 
leading terms in il - ) . 

We now investigate the possibility of generating g- 
quanta outside the framework of the T-approximation, i.e., 
when 2, and 2, are certain functions of Q,. We denote 

From (4.14) it is clear that for Q, - Q,, , where @, is a root of 
the equation 

1093 Sov. Phys. JETP 63 (5). May 1986 L. V. Keldysh and S. G. Tikhodeev 1093 



the imaginary part of the denominator of GI is small and 
changes sign as @ passes through @, . Therefore, if there is a 
solution to (5.3), it corresponds to the threshold for genera- 
tion ofg-quanta. Let us assume that such a @, exists (we will 
verify this a posteriori). As in section 3, we will study the 
system behavior below threshold but close to the threshold 
region. Let 

@,-@=A@, (5.4) 

where the quantity A 4 1 is a parameter which determines 
how we will select our diagrams. 

If yl (@) is differentiable for @-a,, then for small p 

and @ - @, , analogous to (3.3 ) we have 

yi=o,- (ayila@)Q-,JO,+apa, a-wZlyD. 

Therefore 

(7 i -m)  e - * c ~ l - h , = ~ ~ c + a ~ 2 ,  (5.5) 

where 

Y .=[ 1- (a71/aa,) Q - ,  J oc. (5.6) 

For ( E I  SAY,, (p(  S A  '12~,/w, thefunctionsG canbecast 
in the form 

where 

Here it is assumed that the functions Rlz (p) and Z1,, ( p )  
are analytic for @- @, , p -0. This assumption can be 
proved within the framework of the self-consistent approxi- 
mation to be developed below. 

The goal of the next investigation is to find self-consis- 
tent values for @, , a,,,, y,, (ay,/a@), = , , . The single-loop 
diagrams for the polarization operators included in the self- 
consistent approximation are representative in order of mag- 
nitude (see section 3). But higher-order diagrams, generally 
speaking, will also be of the same order in an expansion of 
h -I. The situation near threshold, consequently, coincides 
with the situation near a phase transition, and a full solution 
requires the use of the renormalization group. We will not 
solve this problem here, but rather limit ourselves to the 
mean-field approximation. 

6. SELF-CONSISTENT APPROXIMATION 

Let us first calculate the polarization operator (Fig. 
6a), using the representations (5.7) and (5.8) for the func- 
tions G ,,, in terms of the parameters a,, a,,, , ... . In addi- 
tion, by making use of (4.15), we obtain also the function d. 
After then calculating 6 (Fig. 6b), we will compare the ex- 
pressions we derive with (5.6), ( 5.9), and thereby obtain the 
self-consistency equation. The solutions to these equations 
in terms of the parameters a,, a,,, are presented in the fol- 
lowing Table I: 

TABLE I. 

For comparison, we also present the values of these param- 
eters within the T-approximation (see section 5). In the self- 
consistent approximation, as is clear from Table I, a linear 
dependence on the field amplitude appears in the decay con- 
stant near threshold, and the occupation numbers are also 
renormalized. Thus, the functional form of the propagators 
for scattered polaritons and phonons is not changed. The 
fact that the value of the amplitude @, is the same for both 
approximations is related to the neglect of the dependences 
ofg and d onp (within the framework of the self-consistent 
approximation) for large p. The most significant disagree- 
ment between the two approximations is in their description 
of the particles withp-p, [compare (2.3) with (4.9) and 
(4.15); the expressions for the operators HI,, in (4.15) are 
presented below, see (6.3), (6.4), (6.6) and (6.7)]. In the 
self-consistent approximation, near the coherent wave there 
appears a low-intensity but broad-spectrum noise ampli- 
tude. 

We now turn to a description of the self-consistent ap- 
proximation.'' 

A. Polarization operator fi 
Let us calculate the operator I l l  (q) = uz ?rll (q),  

q = ( w , q )  (see (4.11) and Fig. l l a ) .  Using (4.8) and 
(4.13 ), we obtain 

T-approximation 1 2 0 2 1 
Self-consistent approx. 1 8 - 1 4 3 
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FIG. 11.One-loop diagrams for ir, , (a),  ir,, (b, c), b,, (d, e) and bZ2 (f, 
g). Here, the numbers are "external" indices. 

nlr (9) =-ip2 1 - dp [F~(P)G;(P-~)-G:(P)F~(P-~~) I. 
(2n) (6.2) 

The leading terms in (6.1) and (6.2) equal 

pzat 
(AY ,) -'". (6.4) 

nt'(q) 4aob[o+wq+i(m.+y2) 1 

We note that II, is slowly-varying in the vicinity of q = 0. 
With the help of (4.15) we find that over a wide interval of 
values Iwl SQ,,, 141 SQc/w 

Wenow calculate n2 (q )  = - 3Tz2(q)uz (Figs. 1 Ib and 
1 lc) .  The basic contribution to II, comes from the integra- 
tion over the anomalous region involved in the diagram in 
Fig. 1 lb: 

&(q)  m -$ S*[pt ( p )  F* (p-q) - G ~ ~ G ~ ' - G I ~ G ~ ~ I  
(2n) ' 

where 

In contrast to II,, the operator 112 is strongly dependent on q 
in the neighborhood of q = 0. 

6. Polarlzatlon operator u 

Let us calculate the matrix component -- - i(Q,, 
+ y2)/2. (Figs. 1 ld, 1 le).  The diagram shown in Fig. 1 ld  

makes the following contribution to SZ, (0 )  : 

It can be shown that after integrating over the anomalous 
region the basic contribution to (6. lo),  which is finite as 
A -0 and equal to - 3ia,/4, comes from the first term. The 
integral for large p, where the function under the integral 
differs only slightly from the Q, = 0 function, together with 
the diagram in Fig. 1 le, gives - 2iy0. Consequently, the 
self-consistent value of a, is found from the relation 

-ial=&, (0) --3/rial-2iyo (6.11) 

and so a,-- + 8y0. 
Let us now calculate X; (0). The diagram in Fig. 1 ld  

gives 

It can be shown that the integral in (6.12) over the anoma- 
lous region gives only a small contribution, proportional to A 
and equal to - iil\Vc K. Numerical calculations give K ~ 0 . 5 .  
On the other hand, the integral in (6.12) for largep, together 
with the diagram in Fig. I le, gives a finite contribution as 
A -0 which equals - iy,. Thus, this self-consistency condi- 
tion takes the form 

-iy,Ia=ac(,-&,=XIr (0) =-iyo-iKhY ,. (6.13) 

From this, using (5.5) and (5.6), we obtain 

It remains to calculate the matrix component 
X2(0) = oz e Z 2 ~  (Figs. 1 lf, 1 lg). The diagram in Fig. 1 lf 
gives the following contribution to R2 (0): 

de dp --;[Ft (p)S, (p) +GtaD,7+GIrD,a]. (6.15) 
2 (2fi) 

The basic contribution to (6.15), which is finite asA -0 and 
equal to - ia2/2, is contained in the first term. The large-p 
integral for both the diagrams 1 lf and 1 lg  gives - 2iy,. 
Thus, the self-consistency condition for a, takes the form 

-ia2=Qz (0) x-ia2/2-2iyo, (6.16) 

or a, z4yo. 
Diagram 1 l d  for 2; (0) gives 

The first term in (6.17) integrated over the anomalous re- 
gion gives a finite contribution as A-0, equal to -- - i(@, + y2)/2. Including the large-p contribution to 
the integral, we obtain the self-consistency condition for y,: 
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CONCLUSION 

Let us discuss the applicability of the model we have 
just investigated to a real polariton system in an optical fiber. 
In order to use the one-dimensional model, it is necessary 
that only light waves with pl = 0 propagate. Transverse 
modes will not be excited if the spacing (in frequency) 
between them satisfies Aw - W /1 (where Wis the phase ve- 
locity of the wave and 1 is the thickness of the fiber) exceeds 
the spectral width yo. This can be achieved if we take a thin 
enough fiber, i.e., with I (  W / y , .  

In order to apply the self-consistent approximation, we 
had to show first that the one-loop polarization operators II, 
(6.3), (6.4) and II, (6.6)-(6.9) were large compared to the 
T-approximation polarization operators 

and second, that the higher-order diagrams in perturbation 
theory were small compared to II ,,, . It is easy to show that in 
order of magnitude 

Here, the dimensionless quantity A = ,u2/wyo < 1 ,  since the 
scattering of polaritons by phonons, which gives (as is not 
difficult to show) a contribution to the polariton width on 
the order ofp2/w6' is not solely due to the broadening of the 
polariton levels. There are also in yo contributions from in- 
teractions with optical phonons, impurity scattering, and 
losses at the surfaces of the optical fiber. The scale of near- 
ness to the threshold for stimulated scattering is naturally 
determined by powers of A, which also define the regions I- 
IV shown in Fig. 12 in which various relations hold between 
the polarization operators II,,, and II'O'. In region I the T- 

approximation holds; in region IV the self-consistent ap- 
proximation holds. In regions I1 and 111, some of the param- 
eters are determined by the T-approximation while others 
are determined within the self-consistent scheme. 

For the self-consistent approximation, the situation is 
worse as regards fulfilling the second applicability condi- 
tion, since as we have already pointed out all the higher- 
order perturbation diagrams are, generally speaking, of the 
same order as II,,,. The analogous situation arises in the 
theory of phase transitions; a full solution to the problem 
requires the use of the renormalization group. 

FIG. 12. Ranges of /2 over which various inequalities hold between the 
components II,, II,, and II'O'. 

Finally, let us discuss the region of applicability of the 
undepleted (i.e., prescribed pump approximation. It is not 
hard to show that the total spatial density of polaritons after 
scattering near threshold 

n--nc&-'ls. (7.3 1 

Consequently, the undepleted pump approximation obtains 
in regions 1-111 (Fig. 12) and does not hold near threshold 
in region IV, where losses to scattering become significant. 
(The intensity of polaritons before scattering in the frame- 
work of the self-consistent approximation is found to be 
small compared to n, for all A. ) 

"We use the index notation from Ref. 4. 
"In this case, for calculating z'I2 it is convenient to put the cut along the 

lineImz=O, Rez>O. 
3'We will call this small region aroundp = 0 the "anomalous" region. 
4'However, we will not assume these two quanta are identical particles in 

the quantum-mechanical senses. For this reason, the model developed 
below cannot be directly applied to problems such as the decay of optical 
phonons into acoustic phonons. 

"A similar calculation was presented in Ref. 7. 
"In the one-dimensional case, in determining the vertex ( 1.6), in place of 

a volume density p a line density down the optical fiber ofpl 2. Thus, the 
dimensions of [p2/w] are s- '. 
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