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In this work, we postulate and analyze a mechanism for the block structure aggregation 
kinetics of a growing crystal, based on the tendency of the crystal to try to reduce the surface 
energy of its blocks. We find the size distribution function of the blocks and the law describing 
the growth of the structure off of a planar (on the average) crystallization front for isothermal 
crystal growth and growth in the presence of a temperature gradient. We present numerical 
estimates and show that for small block dimensions (smaller than 10-2-10-3 cm) the growth 
law is linear with time, while for larger dimensions the growth law is logarithmic. We also 
show that for a macroscopically convex front (i.e., convex to the melt side) the crystallization 
growth of the structure proceeds faster (an exponential law) than for a planar front. 

The problem of structural ("pattern") selection in 
crystal growth is characteristic of a whole series of nonequi- 
librium systems. In addition to such well-known examples as 
Rayleigh-Benard thermoconvection, this problem has re- 
cently been intensively studied in relation to the growth of 
dendriteslv2 and snowflakes,) as well as e ~ t e c t i c ~ ' ~  and po- 
rous6.' crystallization. These nonlinear systems, despite 
their many differences, have a common feature: at a certain 
critical value of some specific control parameter, the original 
homogeneous state becomes unstable. In the present in- 
stance, the control parameter has to do with the supercool- 
ing of an originally liquid phase, or with a temperature gra- 
dient (for a fixed rate of crystallization). The question 
which arises concerns the time evolution of the inhomogen- 
eous state, and finally the selection of that structure which is 
actually realized. 

The evolution of the structure of an inhomogeneous 
state was studied early in the development of the theory of 
phase transitions, primarily with regard to the kinetics of 
coalescence of nucleation units8 during the decay of a super- 
saturated solution. Then, in the work of I. M. Li f~hi tz ,~  the 
growth kinetics of domains with different orientations of the 
order parameter was discussed for second-order phase tran- 
sitions. 

In the present work, we investigate the analogous ques- 
tion of growth of a domain structure; however, in contrast to 
Ref. 9, we will deal with processes related to first-order 
phase transitions. In this case, there is a transition front 
between the initial and final phases, whose motion deter- 
mines the kinetics of these processes. We will investigate the 
kinetics of formation of a domain structure in the final 
phase, taking into account only the kinetic processes at the 
transition front, assuming that inter-domain boundaries 
within the volume of the final phase are frozen in place. Ob- 
viously, this question has a rather general character; how- 
ever, for definiteness we will have in mind the growth of 
crystals from a melt. A domain structure can arise, first of 
all, during the growth of an ordered crystal in which do- 
mains can exist with differing orientations of the order pa- 

rameter. In addition, domains can be single-crystal regions, 
i.e., grains, misoriented relative to one another as a result of 
dislocation formation and the amalgamation of the latter 
into small-angle boundaries. In all these cases, the interdo- 
main boundaries possess a supplementary surface energy, so 
that in time growth of the domain structure must occur. This 
mechanism leads to the following qualitative behavior: since 
domain boundaries or blocks have surface energy, in order 
for equilibrium to hold at a triple point we must require local 
warping of the crystallization front (see Fig. 1 ). The local 
supercooling at the front will depend on the block dimen- 
sions; the orientation of the block boundaries relative to the 
direction of crystal growth will also turn out to be different 
for blocks of differing sizes. For this reason, the block sizes 
change as time passes: blocks whose size exceed a certain 
average value grow larger, while blocks smaller than this 
average size shrink. These latter blocks ultimately "col- 
lapse"; hence, the characteristic size scale of the structure 
grows with time. 

In the following sections of this work, we analyze in 
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FIG. 1. 
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detail the process of domain (block) structural growth in 
the presence of a temperature gradient. We find the size dis- 
tribution function for the blocks and the time dependence of 
the growth of the structure. 

We note that the geometric selection of a domain struc- 
ture has been investigated before," along with the growth 
mechanism connected with macroscopic shifting of the tran- 
sition front into the melt region." The role of this mecha- 
nism will be discussed in the last section of this paper. 

ISOTHERMAL GROWTH 

Let us investigate the isothermal growth of a crystal 
from a thin sample melt. Near the crystallization front, the 
crystal has a certain block structure (see Fig. 1 1. The motion 
of the crystallization front [, ( x , t )  can be described by the 
equation: 

where 

( 2 )  
are the normal velocity of growth and curvature of the front; 
v, and R, are the rate of growth of a plane surface and the 
radius of a critical-sized nucleus for the supercooling A T  in 
question. Equation ( 1) must be supplemented by boundary 
conditions at the juncture of three lines, i.e., a "triple junc- 
tion". First of all, the condition of continuity of the crystal 
front must hold: 

Y i = t i ( x i ( t ) ,  t )  = t i - ,  ( x , ( t ) ,  t ) .  ( 3  

Second, if the mobility of the triple point is large enough, 
thermodynamic equilibrium must hold at this point, i.e., the 
angle between the line tangent to the front and the line per- 
pendicular to the block boundary at this point must be fixed. 
Neglecting the anisotropy of the surface energy, we will as- 
sume this angle is constant at all triple junctions. Then the 
equilibrium condition at a triple junction can be written in 
the form 

dc i /dx= tg (0 -6 i ) ,  
(4)  

where 9, is the angle between the growth direction and the 
tangent to the block boundary at the ith triple junction. The 
angle 9, is connected with the velocity componentsx, and y ,  
of the triple point by the obvious relation 

Equations ( 1 )-(5), together with initial conditions, 
completely describe the growth kinetics of the block struc- 
ture. The formulation of this problem for the entire volume 
is very complex, and in what follows we will investigate only 
the quasi-static approximation. By this approximation we 
mean the following: for a fixed block size A, the front is 
described by stationary equations, i.e., it moves without 
change of shape with a certain velocity V, normal to A, (see 
Fig. 1 1. In order for this approximation to make sense, the 

characteristic time it takes to establish the stationary front 
must be appreciably shorter than the time for the value ofil, 
to change. 

The correctness of the quasistatic approximation and 
the behavior of the system for il <R can be understood qual- 
itatively from the following considerations: for a given set of 
block sizes Ai  , over a large section of the front 1 >A a station- 
ary configuration is established, which moves with constant 
velocity V. Then the ith block, moving with velocity v, = V 
according to ( 1 ) must have a front curvature ki which does 
not depend on the index i, that is 

where il, is a characteristic size scale of the structure. The 
rate of change of the size of a block can be estimated thus: 

The characteristic time for a block dimension to change can 
be estimated from this relation to be T, -il,/v,8. After this 
time, according to ( 1 ), the stationary motion of the crystalli- 
zation front is established aong the line 

that is, as we assumed, over a distance significantly larger 
than 1,. Thus, the rate of change of the block dimensions 
depends on the ratio (A /A,). Those blocks with dimensions 
smaller than A, continue to shrink and eventually collapse. 
Because of these processes, the number of blocks in the sys- 
tem decreases while the characteristic scale of the structure 
increases. Thus, the question which arises is analogous to 
that of coalescence of domains dealt with in Ref. 8. 

Best on these qualitative considerations, we now under- 
take systematic calculations using the quasistatic approxi- 
mation. In this approximation, the equation of motion takes 
the form 

where the curvature k = - d p  /ds, p is the angle between Vi 
and v, , and s is the arc length measured from the ith triple 
point. In the quasistatic approximation, the form of the front 
[, ( x , t )  is symmetric relative to a line perpendicular to the 
middle ofR, ; the angle p in the vicinity of the triple junction 
satisfies the relation 

As a result of integrating equation (6)  for these boundary 
conditions, we obtain the following equation for the velocity 
v, : 

For small angles 8< 1 and (9, + , - 9, ) 4 1, and A, not too 
large, 

from ( 7 )  we have 
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and in the limit of large A; (Ai f3 /R, $1 ) 

In the quasistatic approximation, the coordinates x and 
y of the triple junction are related to the block dimensions by 
the following expressions: 

~c+i-xi=ht cos [ (6i+6i+i) 121 , 
y. -y.=-h. 

(11) 
, , sin[ (6i+6t+l)/21. 

Taking the time derivative of the relation 

and using ( 1 1 ) and (5 ) , we obtain 

The velocity of the ith triple junction along a tangent to the 
block boundary yi /cos 8; is connected with the normal ve- 
locities of the fronts u,,, , and u,,, on both sides of it by the 
obvious relation 

Within the quasistatic approximation under investiga- 
tion here, the normal velocity for motion of the front at the 
triple junction is connected to the velocity V, by the follow- 
ing relation 

v,,t=Vt cos ( O f  (6i+i--6i)/2). (15) 

Then from (14) and (15) we obtain the result that within 
this approximation the quantity 

-= V {  COS[~+ (6r+i-6i) 121 
COS er cos 0 

COS[O+ (61-6;-t)/2] 
= V i 4  , = V=const 

cos 0 
(16) 

does not depend on the index i, and consequently is constant 
along the front. 

As a result, we obtain from ( 13 ) and ( 16) the following 
system of equations for determining the change in the width 
of a block 

dhi/dt=2V sin(A61/2), (17) 

V=Vi (hi, 8.6.1) [COS (A6J2)  -sin (A6,/2) t g  01, ( 18) 

where ASi = 8, + , - S ,  . 
Since the velocity V, determined in the general case by 

equation (7)  will depend on A, and AS,, equation ( 18) cou- 
ples AS; with the quantity Ri. 

GROWTH OF THE STRUCTURE WITH TIME 

Let us investigate the change in the size scale of the 
structure with time in the limit of large values ofA whenRf3 / 
R, $1. In this case V, is determined by expression ( 10). Let 
us introduce a characteristic length scale of the structure A, 
connected with its characteristic growth velocity V by the 
following relation: 

Eliminating A6,  from equations ( 17) to ( 19) and taking 
into account the smallness of the parameter R,/AB we ob- 
tain for the rate of change of the block dimension the equa- 
tion 

It is clear from (20) that blocks with dimensions larger than 
A, tend to grow while blocks smaller than il, tend to shrink. 
Eventually these latter blocks "collapse". Thus, this mecha- 
nism causes the number of blocks in the system to decrease, 
and the characteristic scale A, of the structure grows with 
time, analogous to the coalescence problem investigated in 
Ref. 8. 

Let us introduce into our discussion a time-dependent 
distribution function f (A,t) for the block sizes, in such a way 
that f (A,t) dA is the number of blocks per unit length along 
the front whose size lies in the interval A to A + dil. This 
distribution function satisfies the continuity equation 

where 2 is determined from formula (20). The function f is 
normalized by the condition - 

j Y ( L ,  t)ah=i. (22) 
0 

The continuity equation (21) was written down for a distri- 
bution function f which is homogeneous along a planar 
front. (In the presence of a macroscopically curved front, A? 
in equation (21) should have in addition a term a( fS)/ds, 
where s is the coordinate along an arc of the "macro-front", 
while 

# 

i= j V,,X7ds 
0 

is the rate of change of the coordinates of blocks whose boun- 
daries are expanding perpendicular to the "macro-front" 
and moving with normal velocity V,  ). 

In order to determine the distribution function f (il,t) 
and thefunctionA,(t) asymptotically at large times, we seek 
a self-similar solution to equations (2 1 ), (22) in the form 

f (h,  t )  = A h ~ - ~ ( t )  cp(u), (23) 

where u = A /A,(t ) , A is constant which is determined by the 
normalization condition (22). Substituting (23) into (21 ), 
we find the asymptotic variation of A,(t) with time and an 
equation for the function p ( u  ) : 

ho ( t )  = [(2nRc)  Zv,t/y t g  01 '", (24) 

where the self-similarity parameter y takes on a specific val- 
ue in the limit of large times. Analogous to the coalescence 
problem,' the constraint that the distribution function be 
normalizable for this value of y gives rise to a cutoff point u, 
for the system (i.e., for u>u,, p ( u )  = 0 ) .  The coordinate of 
the cutoff point u, and the value of the self-similar parameter 
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y are determined by the condition that the function in the 
square brackets in equation (25) reduce to zero along with 
its derivative, i.e., 

uo=l13, y=ll3/2. (26) 

Integrating equation (25) for this value of y, we find the self- 
similar distribution function 

uz exp[-2/(3-V3 u )  ] 
o ( u ) = -  

( u f  1312) "/0(13-u) '"e ' 
(27) 

Let us now find the link between the parameter A, intro- 
duced above and the average characteristics of the structure. 
Multiplying equation (21 ) by A, integrating it over dA and 
using (221, we find 

Taking this circumstance into account, equation ( 10) gives 

For small values of the angle 8, in the problem we are 
studying here there is an intermediate asymptotic regime in 
which the characteristic structure scale satisfies 

The velocity V, introduced in equation ( 18) is determined 
by relation (9); let us introduce the characteristic length 

with a constant temperature gradient G. Since the dragging 
velocity v, is given, the problem reduces to finding the posi- 
tion of the crystallization front in the furnace (for example, 
relative to the location where the temperature equals the 
melt temperature,as determined by the equilibrium phase 
diagram). In the course of time, the block structure will 
grow, and corresponding to this growth the position of the 
crystallization front changes. 

Let us first investigate the steady-state growth of an 
ordered structure with block dimension A,. The position of 
the crystallization front c (x )  is described by an equation 
relating the normal growth velocity to the local supercooling 

v,=vo cos cp=P [ -Gc+Tk] ,  (33) 

where q, is the angle between the direction of velocity v, and 
the normal to the front, B is the kinetic growth coefficient, 
and r is a constant proportional to the boundary energy 
separating the phases. At the triple juncture, the value 
)p 1 = 8. For small angles, p-6 ', and equation (33) can be 
cast in the form 

Here, we introduce the notation R, = p r / v ,  for the radius 
of a critical nucleus for a kinetic supercooling rate v,/ P, and 
L, = ( r /G)  ''' for the capillary length. Integrating equa- 
tion (34), we obtain 

scale A, of the structure, connected with the characteristic 
growth velocity V: 

V=vO (1-2Rc0/h,). (29) 
x [ I - ~ ~ ~ ( F ) ]  , 

Eliminating ASi from equations ( 17), ( 18 and (291, and 
taking into account the smallness of the parameter A08 /R, , ( L - C ~ ) / R C  

we obtain the following equation for the rate of change of the - J dy { y  (I(,) ' + (i-exp(-g) ) 
block size: 1 2  LO 

hc=2vO0 [A&,-I] . (30) 

Solving equations (2 1 )-(23) in this case, we obtain 

If in the beginning the size distribution function for 
large blocks is exponentially small, then the self-similarity 
parameter y = 1. In the case when the initial distribution has 
an integrable power-law "tail" with exponent 6, according 
to (32) the value of y is given by ( y  - 2)/( y - 1 ) = 8. The 
average value of the structure parameter (A ) over this distri- 
bution coincides with A,, while the averaging of the growth 
velocity gives ( ) = V. The self-similar function (3  1 ), de- 
scribing the intermediate asymptotic behavior, goes over to 
the asymptotic function (24) for values of the structure pa- 
rameter A, - R, /i? and times t - R, /u,8 2.  

wherel, is the front position forp = 0, x = 0. Wedenote by 
6, the front position at the triple-juncture level (Iq, I = 8, 
x = A,/2). Solving equation (35), we find the value of (6, ( 
and (6, - cm I for various limiting cases: 

a) hoeR,/O, I.,KLG: 

( t m l =  (Lo21Ro) (1+20Rclho) ; 

C )  Rc/OKL,KAo: 
CRYSTALLIZATION IN A TEMPERATURE GRADIENT 

( f m l  =(Lce/R,) [ I +  (Rc/Lo)Z exp (-ho/2LG)] ; 
Let us investigate the analogous problem of the growth 

of a crystal by block structure aggregation in the case where ( 3 6 ~ )  

the furnace is "dragged" along the system with velocity v, I C ~ - S ~ ~ = ~ R ~  I ~ ( L G ~ / R , Y ~ )  <lbrnl; 
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d)  Lcaho, LGKR,/0: 

I Em I = ( L 2 / R c )  [I+ (4R,BILG) exp (-ho/2Lc) ] ; 

In cases (a)  and (b),  the change in temperature over the 
length scale of the structure is small, i.e., the distorted front 
is in fact isothermal. Therefore, the analysis presented in the 
previous sections is entirely correct here, and the change as a 
function of time in the scaleA,(t) of the structure is given by 
formulae (31) in case (a)  and (24) in case (b) .  However, 
for crystallization in a temperature gradient, as A, increases 
not only the growth velocity but also the position of the crys- 
tallization front f, changes, corresponding to expressions 
(36a) and (36b). 

In the second pair of cases (c)  and (d) ,  for A,,L, the 
influence of the temperature variation on the scale of the 
structure is appreciable. The position of the crystallization 
front and the supercooling at that point depend exponential- 
ly on A,. Thus, one can expect that the growth of the struc- 
ture takes place much more slowly than in the previous 
cases. 

For definiteness let us investigate the situation where 
R,  /8)LG for the growth of the block structure. In equation 
(34) we can therefore neglect terms in e, ' / R , .  Then solving 
equation (34) with the boundary conditions (4), we find for 
the ordinates of the triple junctions that 

2 ( W e i + , )  + (O-ai) [exp (hi/Lo) +exp (-h, /L,)  I 
' exp ( - h $ / ~ ~ )  -exp (h, /L,)  

-"), 
R, 

(37) 

2 (O-Qi) + (O+ei+,) [exp (ht/LG) +exp (-hi/Lc) 1 
exp (-hilLG) -exp (hilLc) 

ForAi <L,, we have from (37) that 

i.e., y, does not depend on the index i, and is constant along 
the front. In this case, as we have already noted, we return to 
the equation of motion (30) and the function A,(t) deter- 
mined by relation ( 3  1 ). 

For A L, , from equation (37) and the continuity con- 
dition for the front ( 3 ) ,  we find 

Unlike all the previous cases, the rate of variation /if of the 
block size given by (39) varies not only with the local value 
Ai  but also with the sizes of the neighboring blocks. A similar 
nonlocal equation of motion was investigated by Langer4 as 
a model for analyzing structure selection in the growth of 
eutectics. 

To find the growth law of the block structure with time, 
in place of the exact nonlocal equation (39) we will investi- 
gate this equation in the mean-field approximation, i.e., we 
replace the quantities exp( - Ai + , /L, ) and exp ( - Ai - , / 
L, ) by their average values, which we denote by 

<exp(-AILo) )=exp(-ho/Lo).  

Let us introduce the dimensionless variables T = 2v,$r / L ,  , 
2 = A /L, . The distribution function f satisfies the contin- 
uity equation (21 1: 

a f  a - +- { f  [exp(-Xo) -exp(-X) ])=O 
d r  dX 

(40) 

and the normalization condition (22). 
In the region 2 >A, in (40), we can neglect the term 

e -%ompared to e -""recall that /?,)I ). Thus, the gen- 
eral solution to equation (40) takes the form 

where the function $ determines uniquely the form of the 
initial distribution function in the large 2 region. 

In the region A <A,, neglecting e compared to e 

we find 

f (X,  z) =exp (X)g[z+exp(X) I ,  % < X O ,  (42) 

whereg is an arbitrary function. We determine this function 
from the "connection" formulae (40) and (41) for 2 = A,, 
and thereby obtain an approximate solution. 

It is clear from the normalization condition (22) that 
the distribution function in the large-2 region must fall off 
rather quickly: either as an exponential or as a power-law 
2 -" 6 > 2. We can show that in both of these cases the con- 
dition of the time-independence of the integral (22) leads to 
the conclusion that for asymptotically large times 7, to lead- 
ing order the argument of the function $ in (41 ) should not 
depend on time for A = A,,. This condition yields the depen- 
dence 

In fact, in the case of exponential decay of the distribu- 
tion function in the large-2 region, $(x) me-"". From the 
"connection" formulae (41 ) and (42), for A = A,, we find 

and for the normalization integral we obtain 

The dependence (43) implies an exponent in (44) which is 
time-independent. In the next approximation, in order to 
reduce the time dependence of the coefficient of the expo- 
nential it is necessary to assume that 

i.e., A,zln T + (a In T) -'. 
For the case of a power-law decay of the distribution 

function in the large-A regime, we have $(x) -x -' ( 8  > 2), 
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and in place of (45) we obtain 

lo - erp (-lo) d r l  (In r) "(4-0<ln r. 

Thus, for A,) L, and asymptotically large times the scale of 
the structure grows at a logarithmically slow rate according 
to 

ho ( t )  =LC In (2voet/LG). (46) 

DISCUSSION 

In this work we have used the quasistatic approxima- 
tion to analyze the growth of a block structure. This approxi- 
mation leads to the condition that the velocity of a triple 
junction V is constant along the front. The time it takes this 
regime to be established along a length of front I is estimated 
to be 

This estimate is derived from a diffusion problem with diffu- 
sion coefficient v$, , as a characteristic time over which a 
solution is nonsteady; this diffusion problem in turn is a con- 
sequence of equation ( 1 ). Along with the time 7, , there is a 
characteristic time T, over which the block dimension 
changes. This time can in various limiting cases be deter- 
mined by linearizing equations (20) and (30) 

The quasistatic approximation is applicable for those parts 
of the front of this length I which contain a large number of 
blocks, i.e., l)A,, while at the same time 7, remains smaller 
than From estimates of T, and TA it follows that 

l<ho (R,lhoO)'"Bho at hocR,lO. 
From this it is clear that the conditions for the quasistatic 
approximation to apply will be fulfilled. Depending on the 
increase of the structure size scale A,, these conditions hold 
over all portions of the crystallization front larger than A,. 

In conclusion, we present some numerical estimates. 
Let us take the following values as characteristic for the 
system parameters: p- 10 cm s-' K-',  r- 10 K - cm, 
8- 10-I and the adjustable growth parameters v,-- loW3 
cm/s-', G -  lo2 "cm-I. Then the characteristic value of the 
length R is 1 cm, while L, - cm. So long as the charac- 
teristic length scale of the structure satisfies A, < L, , the 
growth of the blocks is described by the dependence (31 ), 
i.e., A,-uo8t. After a time t-LG/vo8- 10 s the average 
block size reaches a value L, (at which point the crystal has 

grown to a size L-v,t- lop2  cm); after this, the time de- 
pendence of the structure's growth changes over to logarith- 
mic, i.e., (46). Thus, for a crystal which has grown to the 
size L - lo2 cm, the characteristic block dimension amounts 
toA,-LGln(L8/LG) - 10LG - cm. 

The macroscopic shift of the crystallization front into 
the melt region (which can be controlled by selecting the 
corresponding thermal conditions) can substantially acce- 
lerate the process of block growth. Actually, the presence of 
a macroscopically curved front introduces an additional 
contribution A X u ,  to the rate of change of the block dimen- 
sion A. According to (39), for logarithmic growth /i -vo8 
exp( -A/L,). Thus, fo rAXZ8exp(  -A/L, ), i.e., for 

the growth of the structure will take place not logarithmical- 
ly but exponentially: 

ho--LC In (O/Lc%) exp ( v , X t )  . (47) 

The length of a fully-grown crystal, i.e., one at which we 
make the transition to the dependence (47) is L - X - I .  

Let us assume that the curvature is on the order of the 
transverse dimension of the crystal, i.e., X- lo-' cm-I. 
Then the block structure in fact disappears for A,%- 1. 
From (47) we find that this occurs when the crystal has 
grown to a length 

L-X-'  In ( I I L X )  -10' cm. 

The mechanism for growth of the structure which we have 
investigated here ultimately must lead to the disappearance 
of all the blocks. However, we observe in experiments that a 
certain finite density of blocks remain. This can be related to 
our neglect of block nucleation processes, and also to the 
presence of special low-energy boundaries which expand 
along the growth axis. 
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