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A study is made of the quasiparticle interaction processes that limit the amplitude of 
parametrically excited magnons in an antiferromagnet with a decay spectrum. It is shown that 
even a small excess above the parametric instability threshold gives rise to a sequence of kinetic 
instabilities which create several groups of nonequilibrium quasiparticles. A detailed analysis is 
made of the development of a hierarchy of kinetic instabilities in iron borate under 
experimental conditions [B. Ya. Kotyuzhanskii and L. A. Prozorova, Sov. Phys. JETP 54, 
1013 (1981 ); 56,903 (1982); 59, 384 (1984); B. Ya. Kotyuzhanskiy, L. A. Prozorova, and 
L. E. Svistov, Sov. Phys. JETP 59, 644 ( 1984) 1. Calculations are reported of the dependences 
of the number and of the spectral width of the distribution of parametrically excited magnons 
on the pump power and on the intensity of the static magnetic field. 

INTRODUCTION 

In studies of parametric excitation of waves it is usual to 
assume that the distribution deviates strongly from equilib- 
rium only well above the threshold. However, in the case of 
three-wave interactions major changes in the spectral den- 
sity of waves with frequencies far from the parametric reso- 
nance region are possible even near the threshold, and if the 
excitation is hard-at the very threshold of parametric insta- 
bility. 

These changes are due to secondary instabilities of par- 
ametrically excited states above the threshold. A series of 
such instabilities has the effect that an increase in the pump 
power results in a transition from a weak nonequilibrium to 
a highly nonequilibrium (turbulent state) of the wave sys- 
tem when all the degrees of freedom are excited and smooth 
Kolmogorov-type spectra occur (see Ref. 1 for the spin wave 
system of a ferromagnet). We shall describe the initial stage 
of the transition to turbulence in an antiferromagnet with a 
decay spectrum and show which groups of waves are excited 
due to parametric magnons and which mechanisms ensure 
the establishment of a steady state. 

The interst in nonlinear processes that appear when 
spin and acoustic waves are excited in an antiferromagnet is 
primarily due to the exchange enhancement of the magne- 
toelastic i n t e r a~ t ion .~ -~  Anomalously large amplitudes of 
three-wave magnon-phonon interactions are a consequence 
of this e n h a n ~ e m e n t . ~ ~ ~  

We shall consider an antiferromagnet with an easy- 
plane anisotropy and a high NCel temperature ON in which 
the maximum velocity of spin waves s exceeds the velocity c 
of sound and, therefore, Cherenkov emission of a phonon by 
a magnon is allowed. The existence of such decay of mag- 
nons into phonons gives rise to a number of interesting fea- 
tures of the kinetics of the excited waves. Different aspects of 
the behavior of magnons and phonons above the threshold 
under parametric excitation conditions have been investigat- 
ed experimentally for one of the most striking representa- 

tives of high-temperature easy-plane antiferromagnets, 
namely, iron borate (FeB0,) .'-I0 

We shall develop a nonlinear theory of parametric exci- 
tation of spin waves in an easy-plane antiferromagnet with a 
decay spectrum. We shall show that even a slight excess 
above the parametric instability threshold gives rise to a so- 
called kinetic instability of parametric spin waves, which 
results in the creation of intense packets of magnons and of 
second-generation phonons. We shall discuss in detail a typi- 
cal case encountered in experiments when the decay into a 
emagnon and a phonon is forbidden in the case of secondary 
magnons. In this situation such secondary magnons merge 
with phonons and form a packet of magnons at the parame- 
tric spin wave frequency not wider than a packet of parame- 
tric spin waves., The interaction of all these packets limits the 
degree of excitation of waves. 

An increase in the pump power makes a packet of sec- 
ondary magnons unstable against decay into two phonons. 
The resultant third-generation phonons interact not only 
with secondary magnons, but also with parametric spin 
waves, which again limits the number of such waves. 

At high pump powers the other types of waves may be 
excited, the first of these being long-wavelength phonons 
with wave vectors close to the reciprocal of the size of a 
sample. Generation of such phonons may be due to an insta- 
bility either of packets of third-generation phonons or of a 
packet of parametric spin waves directly. 

The positions of various groups of waves excited in an 
easy-plane antiferromagnet just above the threshold are 
shown in Fig. 1. Packets of waves of later generations are 
much wider than the initial packet of parametric spin waves. 
The transition to fully developed turbulence occurs because 
of the excitation of new groups of waves and also because of 
the broadening of the existing packets. 

Specific calculations carried out in the present paper for 
FeBO, show that because of the hard excitation of parame- 
tric spin waves their amplitude at the threshold permits the 
formation of second-generation waves. An allowance for 
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where in the collision integrals, 

FIG. 1. Nonequilibrium packets of spin waves excited in an easy-plane 
antiferromagnet. Here, PSW are parametric spin waves, SSW and SP are 
secondary magnons (spin waves) and phonons; SSW2 is a packet of mag- 
nons formed as a result of coalescence of secondary spin waves and secon- 
dary phonons; TP are third-generation phonons; ok and 51, are the dis- 
persion curves of spin waves and phonons. 

this circumstance can explain qualitative features of the 
state of parametric spin waves above the threshold, viz., lin- 
ear dependence of the spectral width Sw of a packet of para- 
metric spin waves on the pump amplitude h and a peak in the 
dependence of 6w on a static magnetic field H; moreover, we 
can calculate quantitative characteristics of an excited sys- 
tem of spin and acoustic waves. Our theory predicts accumu- 
lation of secondary magnons near the bottom of the magnon 
spectrum in fields H = H* =: 250 Oe. 

The discussion is organized as follows. In 5 1 we shall 
consider the mechanisms of the interaction between parame- 
trically excited magnons and quasiequilibrium magnons and 
phonons. We shall find smooth deformations of equilibrium 
magnons and phonon distributions, which result in nonlin- 
ear decay of parametric spin waves when the number of these 
waves is small. In 5 2 we shall study the linear and nonlinear 
stages of the first kinetic instability and determine the sus- 
ceptibility of a system of parametric spin waves. The second 
and third kinetic instabilities of nonequilibrium magnons 
and phonons will be discussed in § 3. The widths of the fre- 
quency distributions of excited magnons will be found in § 4. 

1. RELAXATION MECHANISMS OF NONEQUlLiBRlUM 
MAGNONS AND PHONONS 

1. Klnetic equations 

Parametric excitation above the threshold creates a nar- 
row packet of parametric spin waves of frequency E, = w, /2 
(0, is the pump frequency). The presence of parametric 
spin waves alters the distribution function of quasiparticles 
which do not participate in a parametric resonance. It is 
shown in Refs. 11 and 12 that the distribution function of 
such nonresonant quasiparticles obeys a kinetic equation be- 
cause of the multimode nature of a system of parametric spin 
waves. The kinetic equations describing the distributions of 
magnons n, and phonons N, are as follows for an easy-plane 
antiferromagnet with a high Ntel temperature: 

- " j 1 v k k l q  1 2 [  (nki-1) Nqnk,-nk(Nq+l) (nkr+l)  ] 

X6 ( e k - ~ ~ , - Q ~ )  6  (k-kt-q) dk' dq (1.3) 

describes the processes of decay of magnons into a magnon 
and a phonon, 

'" 1 h k q  12[nkv ( % + I )  (Nq+l )  - (?Zkl+l) nkNq] 
(2n) 

X6 (err-ek-Bq) 6  (kl-k-q) dk' dq (1.4) 

describes the coalescence of a magnon and a phonon to form 
a magnon, 

X(Nq,+l) ] 6 (ek-Qq-Qq,) 6  (k-q-q') dq dq' ( 1.5) 

describes the decay of a magnon into two phonons, 

I:') =I(') {Nq * nk, q* k) (1.6) 

describes the coalescence of a magnon with a phonon to form 
a magnon, 

'0 I. --I I Ukqqr 12[nk(Nq+i) ( N q , + l )  - ( n k + i )  

X N , N , , ] ~  (ek-8,-Q,,) 6  (k-q-q') dq' dk ( 1.7) 

corresponds to the coalescence of two phonons into a mag- 
non, 

represents a three-phonon interaction (decay and coales- 
cence). Here, 

is the amplitude of the interaction of two magnons with a 
p h o n ~ n , ~ . ~  

is the amplitude of the interaction of a magnon and two 
phonons, l 3  

is the amplitude of an effective three-phonon interaction,4p6 
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are functions dependent on the direction of the phonon prop- 
agation n = q/q, on its polarization vector e, and on the ratio 
of the magnetoelastic constants 8, 

e,= (eo2+s2kz) ", Q,=cq (1.13) 

are the magnon and phonon frequencies, E, is the antiferro- 
magnetic resonance (AFMR) frequency, Jo = w, /S, w, is 
the exchange frequency, S is the spin of an ion, O is the 
magnetoelastic energy, and vo and M = pv, are the volume 
and mass of a unit cell. 

2. Influence of parametric spin waves on thermal magnons 
andphonons 

The occupation numbers of magnons and phonons can 
be represented in the form 

where nt and N z  are the equilibrium distributions of quasi- 
particles: 

nkO=[exp (er/T) -I]-', Nqo= [exp (Qq/T) -I]-', ( 1.15) 

nP, is the distribution function of parametric magnons in k 
space, which to first order can be regarded as singular 

nP is the total number of parametric spin waves per unit cell, 
and Sn, and SN, are perturbations of the distribution func- 
tions caused by the interaction of waves with parametric 
waves. 

If the number of parametric spin waves is sufficiently 
small, then the quantities Sn, and SN, are also small and 
they can be found from the linearized kinetic equations 

Here, yi and rt are the equilibrium damping factors of mag- 
nons and phonons, respectively, JLm' and Jy' are the inte- 
gral operators of the linearized kinetic equation, and r, and 
R,  are the terms due to the presence of a packet of parame- 
tric spin waves. 

We can seek the solution of the system ( 1.17) in the 
form of a series 

If the region of the phase space (defined by the laws of 
conservation) containing particles responsible for the relax- 
ation of the perturbations Sn, and SN, is greater than the 
region where the right-hand sides of r, and R, in the system 
( 1.17) are large, then the series of Eq. ( 1.18 ) converge and 
they can be terminated at the first term: 

The strongest of the interactions described by Eqs. 
( 1.9)-( 1 . 1 1  ) is the first, whereas the others are weaker by 
factors 

Aqt= (~,JB,~/E,J)" and AqlA,gt. ( 1.20) 

Here, 

Z ; ~ , = @ ~ ~ O / E ,  ~'Mc' 

is a dimensionless coupling constant which in the limit q' + 0 
(5,. -5) defines the velocity of sound in an antiferromagnet 
renormalized by a magnetic field: c ( H )  = c( oo ) ( 1 - 6) ' I 2 .  

Therefore, in the expressions for r, and R,  it is sufficient to 
retain only the principal terms: 

r k = 2 n ~ ~ ~ r l ~ T  (ep-ek) np/skskp, E , < E ~ < E ~ ,  ( 1.22) 
R,=2na-1~JoTeozn~/skpQq (8,-Q,), O<Q,<ep-e,, ( 1.23) 

rk=2na2f tJoT (ek-ep) nP/skskp, E * < E ~ < E ~ ,  ( 1.24) 

R,-2na-'tJoTe~nP/skpQq (ep+8,), OGQ,Gel-e,, ( 1.25) 

where 

If these inequalities are not obeyed, then r, and R, given by 
Eqs. (1.22)-(1.25) vanish. 

Here and below we shall assume that the magnon spec- 
trum and the elastic subsystem of the investigated crystal are 
isotropic. Summation over the polarizations of phonons and 
integration with respect to the angles of the functions p, p ' 
give rise to a numerical coefficient of the order of unity, 
which we shall ignore. It is clear from Eqs. ( 1.22)-( 1.25) 
that the quantity R ,  isa3 times less than r, , so that perturba- 
tions of the phonon distribution function are relatively small 
(in the case of FeBO,, the parameter is a E 3 X l op2) .  

3. Nonlinear damping of parametric spin waves with low 
amplitudes 

The presence of nonequilibrium secondary magnons 
and phonons in accordance with Eq. (1.19) gives rise to, 
e.g., additional damping of parametrically excited spin 
waves SyP, = Sy,  + Sy,, where 

x8(kf--k-9)dk' dq. ( 1.28) 

The substitution of Eqs. ( 1.22) and ( 1.23) into the expres- 
sions for the damping Sy,  and Sy, gives 
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where 7 is the damping y: averaged over a packet of secon- 
dary magnons. It should be pointed out that the contribution 
to the damping Sy, due to decay of parametric spin waves is 
positive, whereas Sy, due to coalescence of secondary mag- 
nons with parametric spin waves is negative, and the two 
contributions have similar absolute values. In particular, if 
E, - 4ep,  then 

It therefore follows that in the case of FeBO, the nonlin- 
ear damping of Eq. ( 1.30) corresponding to small ampli- 
tudes of parametric spin waves is negative and is two orders 
of magnitude less than the result given in Ref. 14, which only 
allowed for the damping Sy,. 

Consequently, in calculating the nonlinear damping of 
parametric spin waves we must allow also for the three-wave 
process of decay of a magnon into two phonons. In spite of 
the relatively small amplitude of this process, it is important 
because there is no contribution which would balance it (the 
process of coalescence of a magnon with a phonon to form a 
phonon is forbidden by the laws of conservation). Calcula- 
tions carried out in accordance with Eq. ( 1.28) give 

In the case of an experimentally investigated situation7-lo 
the quantities Sy, + Sy2 and Sy, are of the same order of 
magnitude. 

5 2. FIRST KINETIC INSTABILITY IN A MAGNON-PHONON 
SYSTEM AND MECHANISMS LIMITING IT 

1. First kinetic instability 

An increase in the number of parametric spin waves nP 
enhances their influence on thermal magnons and phonons, 
and these effects cannot be allowed for in the approximation 
which is linear in the number of parametric spin waves. If nP 
is not small compared with the number of thermal waves 
interacting effectively with parametric spin waves, the influ- 
ence of spin waves must be allowed for exactly. If parametric 
spin waves are in the decay part of the spectrum, perturba- 
tions of the distribution function 

are described by the following system of equations obtained 
from Eqs. (1.1) and (1.2): 

where 

y: and ri are the equilibrium damping factors of magnons 
and phonons. We then have 

The determinant of the system (2.2) vanishes and a kinetic 
instability of parametric spin waves  develop^'^-'^ (by ana- 
logy with the Suhl parametric processes, this is a first-order 
kinetic instability). In the case of FeBO, the relaxation fre- 
quencies of magnons and phonons are of the same order of 
magnitude, a-3 4 1, so that 

which corresponds to vanishing of the combined damping of 
magnons y; - Ay, . It follows from Eq. (2.5) that the kinet- 
ic instability threshold is lowest for the smallest k of secon- 
dary magnons allowed by the laws of conservation. We can 
easily show that in the case of decay of a parametric spin 
wave into a magnon and a phonon, we have 

Under the experimental conditions of Ref. 10, we ob- 
tain 

The factor kp k,,, (ep - E~~~~ ) - 2  depends on the applied 
magnetic field and ranges from (a2 - 1 ) / 4 ~ 2  in a field 
H = H, (kp = 0)  to zero when H = 240 Oe. If in our esti- 
mates we use the experimental value of the nonlinear damp- 
ing f a ~ t o r , ~  we find that the kinetic instability threshold 
n,, z 2 X is attained for (h /h, ) - 1 ~ 0 . 1 .  

2. Mechanisms limiting the first kinetic instability 

We shall assume that secondary magnons formed as a 
result of decay of parametric spin waves have a frequency 
which is not too far from f and, therefore, that they cannot 
decay into a magnon and a phonon. In this case the main 
mechanism for relaxation of secondary spin waves with re- 
spect to the magnetostriction parameter ( is the process in 
which they coalesce with thermal and secondary phonons. 

2.1. We shall now determine the contribution made to 
the damping of secondary spin waves by the processes of 
coalescence with thermal phonons. The kinetic equation for 
phonons disturbed from equilibrium by a packet of secon- 
dary spin waves is 

where E,, k,, and n h r e  the frequency, wave vector, and 
number of secondary spin waves. Similarly, the deviation 
from the magnon occupation number Sn, is described by 

a - 6nr+2(rr"+p, ( k )  n1]6nk=2 Te.  
at er (er-E.)  pi ( k )  n*, 

(2.9) 
pt ( k )  =na2bJoeo2 (~r- -e . )~ /erske . sk . .  

1048 Sov. Phys. JETP 63 (5), May 1986 Lutovinov et aL 1048 



Consequently, the contribution to the damping of secondary 
spin waves made by the perturbations SN, and Sn, is 

a. 

6y.=6yI (k.) = - a2WoTe2 I$[ pnr 
%neN3sk8 r (R) + pn" 

In the case of small wave vectors of secondary spin waves 
(ask, 4~~ ), we have 

This contribution to the damping is negative and it saturates 
at ns of the order of the threshold intensity of parametric 
spin waves of Eq. (2.5), necessary for the excitation of the 
kinetic instability. Therefore, this mechanism does not limit 
the instability. 

2.2. We shall now consider the processes of interaction 
of secondary spin waves with nonequilibrium secondary 
phonons, which appear because of the development of a ki- 
netic instability. We shall assume that a packet of secondary 
spin waves is sufficiently narrow so that A&, /E ,  4 1, but wide 
compared with a packet of parametric spin waves 
(AE, )vAkp ). We shall demonstrate the validity of these 
assumptions below ( 5  4). It is clear from Eq. (2.2) that the 
width of a secondary phonon packet is equal to the width of a 
packet of secondary spin waves. Secondary spin waves 
merge with secondary phonons to form a packet of nonequil- 
brium magnons ii; with a frequency close to E, and a width 
AE, (we shall call it SSW2). Superposed on this packet is a 
narrower packet of parametric spin waves. Therefore, above 
the threshold of the first kinetic instability there are four 
coupled magnon and phonon packets: parametrically excit- 
ed spin waves, secondary spin waves, secondary phonons, 
and SSW2, representing the product of coalescence of secon- 
dary spin waves with secondary phonons. The narrowest is 
the packet of parametric spin waves: its width on the fre- 
quency scale less than the damping factor y, . The distribu- 
tion function of parametric spin waves 

nrp = Ink: du, (2.12) 

is described by 

where n, is the total pumping (in our case nk = h V k  ), 

vr2=yr2- Ink 1 ', @k=Q)r"+Sk, (2.14) 
V0 1 Vkkrq 1 2TZk1'Nq86 (&k nQ)kO=ykOnkO, %k = - 

(2n) 
-er*-Qq) 6 (k-k'-q) dk dq. (2.15) 

The incoming term @: is due to thermal noise, whereas &, is 
due to the interaction with magnons and phonons of the sec- 
ond generation. In the case of integral numbers of secondary 
spin waves, secondary phonons, and SSW2, it follows from 
the kinetic equations ( 1.1 )-( 1.4) and ( 1.6) that 

- n"V - N'fi' ] (2.18) [ a 3 ~ ' ~ s k .  e,sk.e,sk, a'Q.aa,sk,, 
Here, yy, I'y, and 7 are the equilibrium damping factors of 
secondary spin waves, secondary phonons, and SSW2. The 
damping factor of parametric spin waves is the sum of the 
equilibrium factor y; and the contributions due to secondary 
spin waves and secondary phonons: 

Equations (2.16) and (2.17) yield the relationship 

y.On"I'.W, (2.20) 

which demonstrates that one secondary magnon and one 
secondary phonon participate in the coalescence processes. 

It should be pointed out that we are allowing here for 
just one mechanism for limiting the amplitude of parametric 
spin waves, namely, an increase in their damping because of 
the scattering by secondary spin waves and secondary phon- 
ons. Consequently, within the framework of the system of 
equations (2.16)-(2.19) the kinetic instability threshold is 
identical with the parametric excitation threshold. 

It follows from Eqs. (2.13) and (2.14) that if 

~ = y , & ~ s k , @ / 2 @ ~ ~ n ~  (2.21) 

is small compared with y,, then the condition for the ba- 
lance of energy in the case of parametric spin waves can be 
represented in the form 

IhVI=yp, (2.22) 

and this equation closes the system (2.16)-(2.19). 
The solution of this system of equations is 

where 

1049 Sov. Phys. JETP 63 (5), May 1986 Lutovinov et aL 1049 



It is clear from Eq. (2.23) that just above the kinetic instabil- 
ity threshold the number of parametric spin waves rises lin- 
early with the excess above the threshold. An increase in the 
pump amplitude saturates the dependence nP (6). The coef- 
ficient of proportionality in the dependence of nP on 
(6 - l)/f  under the experimental conditions of Refs. 7-10 
is 10-'-lop6, which is close to the results of measurements 
reported in Ref. 9. The dependence of this coefficient on the 
temperature of the crystal and on the magnetic field H are 
also in good agreement with the experimental results. 

2.3. Decay of secondary spin waves into two phonons. 
This decay can also contribute to the relaxation of secondary 
spin waves. If the frequency of the secondary spin waves is 
close to E ~ ,  then the phonons which appear as a result of 
decay of these waves have frequencies close to ~ d 2 .  The 
change in the distribution function of phonons in these pro- 
cesses is 

Consequently, the contribution to the damping because of 
decay of secondary spin waves into two phonons is 

It follows that the processes of decay of secondary spin 
waves into two phonons give rise to nonlinear damping of 
these waves in addition to the processes SSW + SP -SSW2, 
where SSW represents second spin waves and SP represents 
secondary phonons which set the limit on the kinetic insta- 
bility. An allowance for just these processes yields the fol- 
lowing dependence of the number of parametric spin waves 
on the pump amplitude: 

(2.27) 
Comparing Eq. (2.27) with the expression for nP given by 
Eq. (2.23 ), which is obtained allowing for the interaction of 
packets of secondary spin waves, secondary phonons, and 
parametric spin waves, we can see that the processes of decay 
of secondary spin waves into two phonons are two or three 
orders of magnitude less effective. Therefore, the main 
mechanism which limits the kinetic instability is the interac- 
tion of four packets: parametric spin waves, secondary spin 
waves, secondary phonons, and SSW2. 

3. Position of a packet of secondary spin waves In k space 

In the derivation of Eqs. (2.16)-(2.19) we have as- 
sumed that a packet of secondary spin waves is narrow in k 
space, i.e., that Ak, 4 k, . We shall show that the relaxation 
mechanisms discussed above do indeed give rise to a narrow 
packet of secondary spin waves. We shall do this by consid- 
ering the behavior in the k space of the total magnon damp- 
ing: 

yr=yrO-Ayk+6yk. (2.28) 
A steady equilibrium state of magnons is stable when 

yraO, (2.29) 

where n, #O in those parts of k space where18 

y*=O. (2.30) 

We can easily show that the quantity y, of Eq. (2.28) calcu- 
lated by us has its minimum value at k = k,, of Eq. (2.61, 
and at this point we have 

dykldk=yClk>O. (2.3 1 ) 

Consequently, a packet of secondary spin waves is concen- 
trated near the k = k, = k,, surface in the k space. 

8 3. SECOND AND THIRD KINETIC INSTABILITIES 

1. Second kinetic instability 

An increase in the number of secondary spin waves re- 
duces the damping of phonons of frequency close to E, /2. 
Perturbations of the phonon distribution function at fre- 
quencies a, and a,. = E, - flq are described by the follow- 
ing coupled systems of linearized kinetic equations: 

'12d6Nq/dt+ (I?,'-Arq) 6Nq-Arq6Nq.=0, 
(3.1) 

*/,as~,.iat+ ( r q r O - ~ r , . )  ~ N , . - - A ~ ~ ~ ~ N , = O ,  

where 

If sk, <E, and a= 3 (FeBO,), we have g(fl) z 1/5. In this 
case we obtain a, =aq. ZE,  /2. It follows from Eq. (3.1 ) 
that the threshold of the second kinetic instability is reached 
at 

where 
1z,,'=5sk,I'~ ( E O / ~ )  / ~ c z ~ ~ E ~ ~ ~ .  (3.4) 

In the case of iron borate under the experimental conditions 
of Ref. 10 [g = 0.2, r, = ( 1-3) X 10-5fl], this gives 

It follows from Eqs. (2.19 )-(2.21) that the critical number 
of secondary spin waves is reached at a pump amplitude g,, 
given by 

For example, in the case of iron borate in a field H = 200 Oe, 
we have 

The phonon damping decrement T0(&d2) of iron borate is 
not known reliably, but it is probable that the damping 
is governed by the same microscopic processes as the 
magnon damping y:. Therefore, we can expect 
0.3 5 r0(&d2)/y,0 5 3 and, consequently, 3.5 5gc, 5 25. 
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2. Third kinetic instability 

Third-generation phonons may not only coalesce with 
parametric spin waves, but also decay into two phonons, 
which we shall call fourth-generation phonons. The kinetic 
equations for the perturbations of the distribution function 
of fourth-generation phonons 6Nf of frequency IR/ and 
6Ny of frequency 0; = fl, - flf are as follows: 

(a/at+2I':-2Arf) 6Nf =2Arf6Nf', 
(3.8) 

where 

The threshold number of third-generation phonons at- 
tains a minimum in the limit Of -0. It is equal to 

The damping rate is rf z lo4-10' sec- (Ref. 8), which 
gives Nt, -- lo-'; therefore, the third kinetic instability 
threshold may be crossed when the threshold of the second 
instability is exceeded only slightly. It is probable that for 
{ 2 10 the generation of low-frequency phonons7.10 is due to 
the second kinetic instability. 

$4 .  WIDTHS OF SECONDARY SPIN WAVE AND 
PARAMETRIC SPIN WAVE DISTRIBUTIONS 

1. Form of a packet of secondary spin waves 

In § 2 we have shown that a packet of secondary spin 
waves is located on a surface in k space on which the rela- 
tionship y', = 0 is satisfied. In fact, a packet of secondary 
spin waves is always broadened by four-magnon scattering 
by secondary phonons and thermal noise.19 The kinetic 
equation for the distribution function of secondary magnons 
in the eigenfrequencies n(&) has the following form when 
these factors are allowed for: 

where A = Jo(Q - ~[E;/E:) is the amplitude of the four- 
magnon interaction calculated allowing for the processes of 
virtual phonon e~change .~  It follows from Eq. (2.17) that 

where y' = y:~, /(sks )', and yy b A. The influence of the 
four-magnon scattering reduces to the transfer of magnons 
from the negative damping region to the positive one. If 
ns > Tsk, yy/O; z lo-'', i.e., practically always, we can ig- 
nore the thermal noise in Eq. (4.1 ). The noise associated 

with the scattering by secondary phonons can be ignored if 
nS > 10-'(6- 1)1'2b/(1 + b ) z 3  . l)"*.Then, 
integrating Eq. (4.1 ) with respect to the frequency E, we can 
obtain 

In our case, if E < E, the damping is very strong but n (E)  is 
small. In the limit y:/A+ oc the value of n (E)  vanishes in 
this region. Therefore, 

a 

(T)=-A+~. J on(m)do, o=s-a,. (4.4) 
0 

It follows that Eqs. (4.3) and (4.4) give the relationship 
between the zeroth and first moments of the distribution 
function n (E) . 

In the absence of the thermal noise, Eq. (4.1 ) is equiva- 
lent to a condition for an extremum of the functional 

It is shown in Ref. 16 that the solution of Eq. (4.1 ) has an 
exponential asymptote. Approximate determination of the 
parameters of a packet of parametric spin waves can be made 
by taking n (E)  in the form of the test function 

n (e) =E exp (-Am), (4.6) 

with the arbitrary parameters E andil. The functional for the 
class of such functions is 

whereas the condition (4.3) gives 

Minimization of Eq. (4.7) subject to the condition (4.8) 
gives 

Substitution of numerical values for iron borate in the case 
when ns = yields 

As shown in 4 2, the strongest among the second-gener- 
ation waves is a packet of secondary spin waves. Secondary 
phonons are formed as a result of induced decay of parame- 
tric spin waves into secondary spin waves and secondary 
phonons, and we have 

The width of a packet of secondary phonons is equal to the 
width of a packet of secondary spin waves and the total num- 
ber of secondary phonons is 
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2. Form of a packet of parametric spin waves 

The formula (2.13) for nP,, representing the distribu- 
tion function of parametric spin waves in the k space, is given 
in 5 2. The distribution function of the frequencies of para- 
metric spin waves 

has a characteristic width y2/2yp [the definition of v is given 
by Eq. (2.14) ] and in the case of a wide-band incoming term 
@, for parametric spin waves, this distribution function is 

( ~ ~ - 2 i 7 ~ 0 - 0 ~ ) ' " ,  @ = a - e p .  

In particular, the width of the distribution at 10% from the 
maximum is 

6a=3v2 / rp .  (4.14) 

The incoming term a, represents the sum of the ther- 
mal noise @: and of the noise created by the waves of the 
second, third, and later generations in the region of a para- 
metric resonance: 

@,O=~rOTlne!,, (4.15) 

V0 1 1 Vk*kq l2nk,'N;6 (e l . - e f i -Pq)  o r t = -  
( 2 n )  

X 6  (k' -k-q)  dk' d q  

5 2 1 C Z C . & - f ~ 1 0 & ~ ~ ~ S  ( e , s k , ~ ~ s k ~ A ~ ~ )  n'Nf. (4.17) 

If nP 2 lo-'*, then-as already pointed out-the thermal 
noise can be ignored. We can identify the mechanism which 
dominates the frequency width of parametric spin waves, cp' 
of Eq. (4.16) or @' of Eq. (4.17), by determining the width 
of a packet AE, of third-generation waves. However, in the 
range of fields where k, -0 it is obvious that the main contri- 
bution comes from the scattering by second-generation 
waves. This is supported by the experimental results of Ref. 
10, showing a considerable increase in the width of a packet 
of parametric spin waves Sw in the range of magnetic fields 
closetoH=H*wherek, =O( i . e . ,when~~f  ckp = E ~ ) . A  
simple calculation shows that under the experimental condi- 
tions of Ref. 10 we have H * =. 240 Oe. When the scattering by 
second-generation waves predominates, we have 

Substitution of Eq. (4.18) into the expression for the width 
of a packet of parametric spin waves given by Eq. (4.14) 
yields 

(4.19) 

We have expressed here the damping factor of parametric 
spin waves yp in terms of the pump amplitude reduced to the 
threshold value 6 = h /h,  [Eq. (2.24) 1. The expression for 
Sw given by Eq. (4.19) is in full qualitative and good quanti- 
tative agreement with the experimental results. The magnet- 
ic field dependence of Sw has a sharp peak for H-H * 
(k, -0) and is a linear function of temperature (because 
yy, ry, and y; are proportional to temperature T) and of the 
excess above the threshold 6. If sk, ZE,, we have 
6w/y;6=:0.4, which is close to the experimental value of this 
quantity. 

It should be stressed that the dependence of 6w on the 
experimental parameters which we have found is due to the 
interaction of parametric spin waves with intense packets of 
secondary spin waves and secondary phonons generated as a 
result of a kinetic instability. The width of the spectrum of 
parametric spin waves in iron borate was also considered in 
Ref. 14, but the authors reached the conclusion that the ki- 
netic instability threshold cannot be attained and the incom- 
ing term for parametric spin waves is entirely due to the 
thermal noise. Therefore, the width 6w of a packet of para- 
metric spin waves calculated in Ref. 14 for { <&, gives a 
completely different dependence 6w(6) from that observed 
experimentally in Ref. 10. 
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