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A theory is constructed for the spatial development of turbulence in one-dimensional flow 
systems described by a generalized Ginzburg-Landau equation. It is shown that it is possible to 
represent the turbulent motion at arbitrary distance from the boundary by means of a finite- 
dimensional attractor. A novel class of transitions of the "order-chaos" type is exhibited in the 
form of moving transition fronts. 

I. INTRODUCTION 

The question as to whether strange (stochastic) attrac- 
tors-finite-dimensional attracting sets-have any relation 
to turbulence in unbounded nonequilibrium systems, which 
is of exceptional and fundamental importance for hydrodyn- 
amics (turbulent jets, shear layers and other exterior flows), 
is one of the most difficult problems in the present-day the- 
ory of stochastic motions. This problem is nontrivial even in 
the way it is posed. Indeed, when one talks about turbulence 
in bounded spatial regions (in hydrodynamics these are the 
so-called interior flows), a finite-dimensional description is 
justified in a quite natural way: The spectrum of spatial exci- 
tations in a finite volume is finite, and the high-frequency 
dissipation (viscosity) depriving the small-scale motions of 
their independence, will cut the spectrum off. As a result of 
this, the problem reduces, in principle, to choosing correctly 
the required number of spatial functions which describe the 
motion in question. The mean characteristics of turbulence 
in such systems (the dimension,' the power spectrum,2 etc.) 
can, generally speaking, be determined in terms of a single 
physical variable, i.e., as a result of treating a sufficiently 
long realization of the motion considered at a single point of 
the ~ o l u m e . ~ . ~  For unbounded and semi-unbounded flows 
(in hydrodynamics these are the external flows) the prob- 
lem of the finite-dimensional description of turbulence must 
be posed in a completely different manner. In such systems 
the spectrum of spatial excitations is continuous, and the 
turbulent pulsations are, generally, inhomogeneous, even in 
their mean characteristics. This inhomogeneity may be re- 
lated to the presence of sources of a regular external field, 
boundaries on which there are no turbulent pulsations, etc. 
The turbulent regime which establishes itself in the medium 
is either "tangent" to the laminar periodic regime, or devel- 
ops out of the latter via a sequence of spatially unfolding 
"bifurcations." It is probably impossible to obtain an idea of 
such a turbulent motion only in terms of a single observable: 
even the average characteristics of such a variable will vary 
in space along the flow. 

From a more formal point of view the picture of the 
appearance and development of turbulence along the system 
seems to us to be the following. As is well known, a criterion 
for the appearance of dynamical chaos is the positivity of the 
Lyapunov exponent, or the nonvanishing of the Kolmo- 
gorov-Sinai e n t r ~ p y . ~  For a semi-infinite medium with a 
flow, generally speaking, the number of Lyapunov expo- 

nents turns out to be infinite even at a finite distance from the 
boundary. However, in the beginning portion of the flow, 
where it is still regular (e.g., periodic), all the exponents are 
negative, with the exception of a finite number of vanishing 
ones.') As spatial bifurcations develop, one or several expo- 
nents may become positive.') The point along the flow where 
this first happens corresponds exactly to the transition to 
chaotic (turbulent) motion. It seems natural that just be- 
yond such a transition point the dimension of the realiza- 
tion3 of such a turbulent flow must be small and the time 
evolution of the field at a point close to the critical one will 
correspond to motion on a low-dimensional strange attrac- 
tor. The growth along the system of already existing positive 
exponents and the vanishing of new exponents corresponds 
to the development of turbulence downstream along the 
flow. The dimension of the strange attractor will increase 
from point to point along the flow. Whether the dimension of 
the realization (and of the corresponding attractor) may 
become infinite at a finite distance (an explosive increase in 
dimension) is not clear apriori; however the inverse effect, in 
which the dimension of the turbulent motion stabilizes along 
a flow, is possible, as will be shown. 

Using as examples several models reflecting a wide cir- 
cle of physical phenomena, in the present paper we investi- 
gate the spatial bifurcations through which occurs the mo- 
tion along the flow becomes complicated prior to the 
appearance of chaos. It is shown that under certain condi- 
tions it is admissible to use a finite-dimensional description 
of turbulence arbitrarily far from the boundary and a new 
class of transitions of the type "order-chaos" is found, hav- 
ing the form of transition fronts. 

2. FUNDAMENTAL EQUATIONS; SPATIAL BIFURCATIONS 
GIVING RISE TO CHAOS 

2.1. To analyze the evolution of disturbances in flow 
systems far above criticality one usually makes use of the 
nonlinear parabolic equation 

where u, y, 6,  x are complex coefficients describing the 
space-time evolution of the amplitude exp i (wt  - k x )  of the 
wave. This is the generalized Ginzburg-Landau equation.'-'j 
In a certain range of the parameters its solutions are indeed 
chaotic in time and space, and the Lyapunov exponents (the 
measure of chaos) depend on the choice of the reference 
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system,6 a fact which implies that Eq. ( 1 ) describes "convec- 
tive chaos" (cf. the convective instability of Ref. 5). 

As the system goes more and more above criticality, the 
equation ( 1 ) no longer describes processes in fluid systems 
(flows) : superposed on the primary wave there appear exci- 
tations of other scales and directions, the motion becomes 
strongly nonlinear, etc. These complications make it ex- 
tremely difficult to obtain models of fluid systems which are 
amenable to analysis directly from the original field equa- 
tions (e.g., the Navier-Stokes equations). Therefore one is 
forced to construct phenomenological models based on ex- 
perimental results. We shall keep in mind that as the super- 
criticality increases, the flow becomes usually more struc- 
tured. For example, in boundary layers or submerged jets 
there appear longlived large-scale vortices which situate 
themselves across the flow and exhibit their own nontrivial 
dynamics. At the same time the flow system decomposes 
naturally into mutually interacting discrete elements. Tak- 
ing into account only a linear coupling between neighboring 
structures, we represent the starting equations in the form 

dujldt=F (uj, 6) +y (uj-uj-i) 
SX ( U ~ + ~ - - ~ U ~ + U ~ - ~ ) ,  j=l, 2, . . . . (2)  

Here du,/dt = F(uj,S) describes the dynamics of one of the 
elements of the point system, and y and x characterize the 
linear coupling between them: y is responsible for the non- 
mutual coupling determined by the presence of the flow and 
x can be interpreted as a diffusion coefficient. The physical 
nature of the vector u, may differ: these may be, for example, 
the complex amplitudes of azimuthal modes on transverse 
vortices in translational hydrodynamic flows,' concentra- 
tions of substances participating in an autocatalytic chemi- 
cal r eac t i~n ,~  etc. We shall be interested in the process of 
spatial evolution of chaos along the flow in the absence of 
external stochastizing (noise) interactions; therefore we 
shall write the boundary conditions in the form uo(t) =O or 
in the form u, ( t )  - uo( t )  = 0 consistent with uj + , - 2u, 
+ uj -  ~ 0 ) .  

Self-generation of turbulence along a flow in a system of 
type (2) was first reported in Ref. 9, where a numerical ex- 
periment was used to investigate spatial bifurcations which 
caused chaos to propagate down along a chain, the dynamics 
of the elements of which is described by a Landau equation5 
and diffusion was absent. In the same paper the phenomenon 
of "stabilization of turbulence" (partial synchronization of 
chaos) was discovered, a phenomenon which consists in the 
fact that starting with some element of the chain the mean 
characteristics of turbulence (power spectrum, dimension) 
become independent of the spatial coordinate j .  This phe- 
nomenon does not seem to depend on the character of spatial 
bifurcations leading to the appearance of chaos. In particu- 
lar, it was observed experimentallyJ0 in a chain of unidirec- 
tionally coupled oscillators, in which chaos appeared on ac- 
count of spatial period-doubling bifurcations, rather than on 
account of transition though quasiperiodicity, as was the 
case in the numerical simulation cited. 

2.2. In the analytic description of spatial bifurcations 
we shall first neglect diffusion. Then for a regime which is 
spatially irlhomogeneous along the direction j we have 

If for specified initial parameters y and 6 this regime is stable 
for any j, then no restructuring occurs along the flow. In the 
general case the solution uy is stable only up to a certain 
valuej*. The dynamics of evolution of the disturbances f j  ( t )  
superposed on u? is described by the system 

dEjldt=Ful (uj", 6) Ej-yE,-, ( t)  . (4) 

The matrix of this system is block-triangular, so the charac- 
teristic exponents of Eq. (4) coincide with those of the sys- 
tem of partial equations: 

This relationship is physically obvious: the convective com- 
ponents - 6,-, ( t )  play the role of external forces in the 
partial equations and thus can naturally have no influence 
on the exponential growth of the disturbances. This circum- 
stance is extremely important. It implies, in particular, that 
in the chain of elements the solution changes in time as it 
passes through the point j* (i.e., the stability of the initial 
motion is lost in the same way stability is lost when a param- 
eter is changed in the corresponding point system (the pa- 
rameter in this case is the value of uy which changes along the 
chain). Thus, in passing through the point j* the motion is 
restructured in a way which can be predicted if one knows 
the possible bifurcations in the point system. 

The new stationary motion which appears for j > j* 
(this may consist, e.g., of modulated oscillations) can also 
be described by means of the system (3) ,  but with different 
variables (amplitudes of the modulation) ." Repeating the 
analysis one can then determine the coordinate of the next 
spatial bifurcation, etc. In view of the discreteness of the 
spatial coordinate, the number of spatial bifurcations pre- 
ceding the appearance of chaos must be finite (see Appendix 
1) .  

3. THE GENERALIZED GINZBURG-LANDAU EQUATION; 
TRANSITION THROUGH QUASI-PERIODICITY; 
STABILIZATION OF THE TURBULENCE 

3.1. When the point system is described by the equa- 
tion' 

where S = 1 - iP, the original system (2)  takes the form of 
the Ginzburg-Landau equation complemented by the addi- 
tional convective term y (u, - u, - , ). Since uj and 6 are 
complex, in what follows the parameter y will be considered 
complex. In the analysis of the spatial development of chaos 
we shall treat the diffusion ( -x)  perturbatively. 

For x = 0, assuming that steady-state oscillations have 
established themselves in the first element (u,( t )  = AeiB'), 
where A characterizes the amplitude of the external force in 
the frequency P, and after the substitutions 

ai=uj(l-Re y)-Ih exp {i[j(arg 1 ) -  (p-Im y/Re y) t,, I ) ,  
o,=(P-Im y/Re y) (1-Re y)-', 

y'=Jy( (1-Re 7)-',  t = t ,  (1-Re y) 
the system under investigation can be written in the form 
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with the boundary condition a? = A .  Then the equation ( 3 )  
for the stationary regime takes on the form 

According to Eqs. (4)  and (5 )  the stability of this regime is 
determined by the behavior of the disturbances in the system 

This yields the expressions for the characteristic exponents 
( lay12 = I, 1 

The stationary values of the intensity I j  are determined from 
Eq. (8 ) :  

I,[l+wa2+ (1+p"IjZ-2(1+po0)Ij] =ylZIj- , ,  
Z a = l l ( l - R e  y ) .  (11) 

When this regime loses stability a t j  = j* a new periodic mo- 
tion arises in the system [only this type of bifurcation is 
possible in the point system ( 6 )  1, i.e., the initial single-fre- 
quency regime for j > j* turns into a quasiperiodic, two-fre- 
quency regime. By means of scale transformations and sub- 
sequent averaging one again obtains the initial equation (7)  
for this modulated regime, and so on (cf. Appendix 2). 

Let us carry out a stability analysis of the solution ( 1 1 ). 
The dependence of I, on I, - , for various values of the pa- 
rameters is shown in Fig. l .  It is clear that this mapping may 
have up to three fixed points (corresponding to a spatially- 
homogeneous periodic regime). It follows from the analysis 
of ( 10) that the values of I j  situated where dI,/dI,- , <O in 
the region of the graph of 4 (I, - , ) (Fig. 1 ) are unstable. 
Indeed, in order to have a negative real part of A, it is neces- 
sary and sufficient that the intensities of the oscillations in 
each element satisfy the relations 

Ij>'/z, Zj@ [Ii*, 12'1 9 

z ~ : ~  = [ 3 ( 1 + p 2 )  ]-'{2(1+i300) f [ ( I f  $00)' - 3(00-$)a]"'}.,. 

(12) 
In the parameter region 1 + pw, < 0 we always have I y,, < 0 
and therefore for stability it is sufficient that I j >  1/2, i.e., the 
single-period regime with an oscillation intensity that in- 
creases monotonically and slowly along the chain is stable. 
In the parameter regime 1 + /?wo > 0 the situation is more 
interesting. Here 12 ,  > 0. The stability of regimes with in- 
tensity which increases monotonically along the paths is 
again insured by the condition I,> 1/2. Thus, if the spatially- 

homogeneous regime which corresponds to the upper 
branch of the mapping ( 1 1 ) (see Fig. 1 ), has a small ampli- 
tude (I O < 1/2) then the single-period oscillations are stable 
only on the first few flow elements (corresponding to those 
iterations of the mapping which are situated above the line 4 
= 1/2 on Fig. 1 ). As soon as the intensities of the stationary 

pulsations (on thej*th element) fall below 1/2 the regime of 
periodic oscillations becomes unstable and changes along 
the flow path to a beat regime; in the ( j* + 1 ) th subsystem 
there exists a limit cycle (in the original variables this will be 
a 2-torus). It follows from Eq. (12) that the stability region 
of the periodic regime in the space of the parameters w,, B, 
and S is described by the inequalities 

( ~ o - f i ) 2 ~ y 2 ( l + f i 2 ) ,  0 ~ > ( 8 ~ - 1 ) / 2 8 ,  ( 0 O - p / 2 ) ~ G y ~ - ~ / 4 .  
(13) 

3.2. The establishment of a chaotic regime with power 
spectrum and dimension D which do not vary with j (for 
sufficiently large j) along the chain (7),  as observed in the 
numerical simulation7, can be explained in the following 
manner. We have seen that to steady one- and two-period 
regimes corresponds a smooth increase of the intensity of 
pulsations along the chain, up to the mean value I O (the fixed 
point of the mapping). It is natural to assume (and this is 
confirmed in the numerical experiment) a similar variation 
of the mean intensity of the pulsations also for the steady 
chaotic regime. This assumption is satisfied, in particular, by 
a solution of the form 

a j ( t )  =e2'a,-, (tS7) =Y ( t ) ,  

where the phase q and the retardation time .rare determined 
by the parameters y and/3. Substitution of this solution into 
Eq. (7)  leads to the differential equation with retarded argu- 
ment 

With respect to general solutions of such an equation (see, 
e.g., Ref. 12) it is known that there always exist only a finite 
number of eigenvalues for the corresponding linearized 
problem, eigenvalues which have a positive real part. Thus, 
among the solutions of the infinite-dimensional system (7)  
there exist stochastic solutions which have a finite dimen- 
 ion.^' However, it is in general not clear whether such solu- 
tions are stable. 

The rigorous result on stabilization of turbulence 
(time-independence of the average properties of the chaotic 
regime) for sufficiently large j may be obtained from an anal- 
ysis of the Lyapunov characteristic exponents. The number 

FIG. 1 .  Graphs of the map ( 11 ) for different values of the param- 
eters. a )  ( l + B o o ) > o ,  ( 1 + o ~ ) ( 1 + B 2 ) > ( o , - 8 ) 2  the map 
has two nontrivial fixed points 1: and 1: < 1/2 (on the curves 1, 
2 1: > 1/2, on the curves 3 ,4  we have I:< 1/2); b)  y2 > (1 + o g )  
one nontrivial fixed point (curves 1,2); for f < (1 + mi) there is 
only the trivial fixed point (curve 3 ) .  
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FIG. 2. The position of the newly appearing Lyapunovexponents for& 10 
in the ( A  j )  plane; 11 :, 1 >/1,,, = 0.05. 

of Lyapunov exponents of the realization taken at the 
(j + 1)st element of the chain exceeds by two the number of 
exponents of the realization taken from the jth element. For 
increasing j the mean characteristics of the turbulent regime 
will obviously remain unchanged only in the case when the 
newly produced exponents (as one moves along the chain) 
will be negative and large. This circumstance was verified 
numerically. The corresponding results are shown in Fig. 2. 
As j increases the number of positive exponents and expo- 
nents which are close to zero does not change and pairs of 
negative exponents appearing along j are situated in the strip 
A , ! ' s Z ) ~  [A :,A /2]  where A t, <0. 

Thus, in effect, neither the Kolmogorov-Sinai entropy 

nor the dimension D = M + d (M is the number of first ex- 
ponents for which the sum is still positive, and 

cf. Ref. 13) will change along the flow for sufficiently large j. 
3.3. We now return to the original equation with diffu- 

sion 
da,/dt=aj(l-61aj12) +y(aj-a+,)+% (aj,,---2aj+aj-,). (15) 

It is obvious that even a weak coupling which transfers infor- 
mation on the spatial disturbances "upstream", i.e., from the 
(j + 1 )st element to the jth, may strongly influence the way 
chaos evolves along the chain. However, different character- 
istics of the behavior of the dynamical system under investi- 
gation will depend differently on the magnitude of the diffu- 
sion. Indeed, assume that far enough downstream along the 
chain a chaotic regime has established itself, characterized 
by dimension D and a power spectrum S ( w ) .  On account of 
feedback the chaotic pulsations of the jth element will be 
transmitted back to the ( J  - l)st, etc., up to the left end of 
the chain-the first element. The smaller the magnitude of 
the coupling x, the smaller will obviously be the reaction of 
the preceding oscillator to the feedback from the succeeding 
one, and this action can be considered as an outside noise 

which will somewhat distort the proper nonlinear dynamics 
of the initial portion of the chain, and moreover add to it a 
chaotic component of dimension D depending on the total 
number of elements of the chain.I3 Thus, speaking of the 
dimension of a realization along a path, no matter how small 
the feedback, it must in general remain constant along j and 
be equal to D. Nevertheless the character of the pulsations 
along the path will differ substantially, as well as the power 
spectrum of the pulsations in different elements. One may 
continue to speak about a spatial evolution of chaos and of 
bifurcations along a path for moderately large j, having in 
mind the smooth part of the solution of the system ( 15), a 
solution which must be represented in the form 

Here E ~ w ( ~ )  is a small chaotic addition of dimension D, 
which decreases together with the numberj, and Uj ( t )  is the 
smooth part of the solution, determined by the nonlinear 
dynamics of the initial portion of the chain for x = 0 (on this 
portion the intensity of fully developed chaos of dimension D 
is still small). The possibility of such a description was tested 
in a numerical experiment carried out in a path of 150 ele- 
ments, where the last 50 elements served as an "absorbing 
wall"-their dissipation increased with the numberj; at the 
boundary of the last element we set a,,, - a,,, =O. As can be 
seen from Fig. 3, even on the first few elements of the chain, 
which exhibit almost periodic oscillations, one detects signs 
of random pulsations of the amplitude. Such pulsations in- 
crease slowly along the flow, and in parallel with this process 
and on its background there takes place another one: period- 
ic oscillations of large intensity (with a weak modulation 
amplitude) are replaced by quasiperiodic ones and then by 
chaotic motions. The transition to intense chaos along the 
path turned out to be the smoother, the larger the chosen 
feedback (the constant x ) . For sufficiently large values of x 
intense chaotic pulsations were observed even on the first 
element of the path. 

For weak diffusion ( x  & 1) the transition from single- 
period to quasiperiodic pulsations and subsequent loss of 
stability of the quasiperiodic regime along the chain can be 
investigated analytically, constructing a perturbation theory 
on the basis of solutions of the system (7).  Within the frame- 
work of Eq. ( 15) the single-period regime is described by the 
mapping 

where x = a;, y = a;- , . For x ( 1 this mapping has fixed 
points which are close in x to the fixed points of the map (81, 
with the difference, however, that the fixed points of (8 )  in 

FIG. 3. The spatial distribution of turbulence in a sys- 
tem with diffusion [ x  = 0.5; y = 1 + 1.71i; B = 5; 
a , ( t )  = a,(r)l. 
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Eq. (17) turn out to be saddle points: two new directions 
with multipliers - l /(xl appear. Moreover, all the trajector- 
ies of ( 17) go off very quickly to infinity with a speed > I / (% I 
(we recall that this is a spatial divergence, and not one in 
time). The only surface which satisfies the boundary condi- 
tions a, = A  (for j = 1) and la, I < cc is a stable separatrix 
surface for the saddle-point equilibrium state.'' For x ( 1 the 
coordinates of the points on this surface are approximately 
(to O( ( x  1 ) ) determined by the mapping ( 8 ) . Indeed, since 
y=Z ,and fo rx=O 

then it follows from Eq. ( 17) that for x # 0 

This mapping is close to (8),  i.e., the previous consider- 
ations are valid for it. 

The stability of the regime of pulsations which are peri- 
odic in time for x $0 is determined by the Lyapunov expo- 
nents of the system ( 15), linearized near the stationary re- 
gime ( 17). A perturbative calculation for (tt < 1 ) of the 
correction A ;  to the Lyapunov exponents A 9 in Eq. ( 10) 
yields 

(and similarly for A ;'*' ), where E - 0, Eq. ( 1 ) . It is clear 
that the influence of weak diffusion at the beginning of the 
path is insignificant: for j 2 1 ( A  9'k' - ll J +  O'k' 1 ) - A  9'k' 
(k = 1,2), and therefore A;'k' - 1 %  1 .  At the same time, suffi- 
ciently far downstream this influence becomes noticeable: 
for large j all -+A O'k' and the corrections A;'k' in- 
~rease .~ '  Thus, a weak feedback, without changing the quali- 
tative character of the transition from the periodic regime to 
the quasiperiodic one, may shift the transition point by one 
element down along the path, if the transition occurs at its 
beginning, and by several elements if the transition occurs at 
large j. Numerical experiments confirm these results. 

4. WAVES OF ORDER-CHAOS TRANSITIONS 

A chaotic regime which is close to spatially homogen- 
eous which has established itself in a flow system for suffi- 
ciently large j may be unstable against the synchronizing 
action of an external periodic field fed to the boundary of the 
system. The phenomena which should be observed in this 
situation are to a certain degree analogous to those which 
occur in potentially unstable (excitable) media when an ex- 
ternal pulse is started in them. In this situation, as is well 
known, in an excitable medium there appears a transition 
wave, corresponding to the passage of the medium from the 
unstable state into the stable one. A similar transition from 
the unstable (chaotic) state of the nonequilibrium medium 
into a stable (synchronized) state must be observed in the 
flow systems under consideration here. To prove this possi- 
bility it suffices to convince oneself that in that region of 
parameter space where in the autonomous chain one ob- 
serves a regime of spatial evolution and establishment of cha- 

os, in the presence of a periodic external force only the regu- 
lar regime is stable. 

We exhibit this for the system (15) with the boundary 
conditions 

ao(t) = A,,, exp(iw,,,t). (19) 
The chain must be most sensitive to synchronization at an 
external frequency we,, close to the partial frequencies of its 
component elements, i.e. (taking into account the complex 
coupling y) ,  at the frequency 

A stationary spatially-homogeneous regime of synchroniza- 
tion is described by the mapping (cf. Eq. ( 11); we consider 
the case x = 0)  

I j ( l - I j ) 2 = I j - 2 / ( 1 2 ) ,  Io=A :,, . (20) 
For arbitrary values of the parametersp and y this mapping 
has a stable fixed point I ?  = 1 + 1 y l / ( l  + /32)1'2, and, as 
can be seen from Fig. la (curve 1 ), for an arbitrary ampli- 
tude of the external field there exists a trajectory of the map- 
ping completely situated in the stability region. Moreover, 
the regime of complete synchronization (20) also turns out 
to be globally stable, i.e., in the infinite-dimensional phase 
space ofthe system (7),  ( 19) for we,, = wp there do not exist 
any other attracting sets. 

In order to prove this rather strong statement it suffices 
only to assume that on the first k elements of the chain as 
t - cc a single-period regime establishes itself at the frequen- 
cy of the external force we,, = 0,. Since the ( k  + 1)st ele- 
ment of the path will then be described by a second-order 
autonomous equation, whose phase space admits in general 
only attractors of two types: stable equilibria and limit cy- 
cles, it will suffice to prove the absence of limit cycles. This 
implies the global stability of the synchronization regime on 
the (k + 1)st element of the chain, and by induction--on all 
other elements. After the substitution 

bj(t) =aj(t) exp {iarg (I-ip)), y ' = ~  ( i + ~ ~ ) - ' ~  

in agreement with Eq. (7) the oscillation equation of the 
(k  + 1)st element is written in the form 

dbk+Jdt= (1-ip) (bk+,-1 bk+l)2b,+1+y'bkO). (21) 

Making use of the function 

Hk+,= I bk+! 1'-'12 ( bk+l 14+7' (bkObk;1+bk0*bk+~), 

we can write this complex equation in the generalized gradi- 
ent form: 

The absence of periodic motions in the system (21) follows 
from the fact that the sign of the time derivative of H ,  + , 
does not change sign: 
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(here use was made of the fact that H ,  + , = H ;+ , ). Since, 
as is easily seen, the infinity in Eq. (21 ) is absolutely unsta- 
ble in view of the absence of limit cycles, the only stable 
equilibrium state of this equation is globally stable. Taking 
into account that the action of the external field (at the fre- 
quency we,, = o, ) on the first element of the path is station- 
ary, i.e., b , ( t )  = const, we find by induction for t-+ co that a 
synchronization regime establishes itself along the path for 
arbitrary initial conditions. 

However, it may take quite long to establish a synchro- 
nization regime: it is determined not only by the system pa- 
rameters, but also by the initial level of excitation of the 
elements forming the system. Since the oscillations of the 
elements are not isochronous, a spread in the initial data 
must soon lead to the establishment of a chaotic regime (for 
instance, for values of the parameters discussed in the pre- 
ceding section). The synchronization of this regime, starting 
from the first element, will gradually take over the elements 
downstream, i.e., a propagating synchronization front is 
formed. When the mismatch between the frequency of the 
external field and the partial oscillation frequency of the ele- 
ments of the chain is larger than the width of the synchroni- 
zation band, a regular beat regime will form at the left edge 
of the path. This regime, like the single-period regime, will 
take the place of the chaos: a "beat-chaos" transition wave is 
formed (see Fig. 4) .  If the duration of the periodic driving 
signal is finite, then the spatial region of synchronization (in 
j )  will also be finite, i.e., we are dealing with a regular spot on 
a turbulent background. 

The authors are indebted to V. S. Afraimovich and M. 
M. Sushchik for stimulating discussions. 

APPENDIX 1 

Here we prove the finiteness of the number of period- 
doublings along the path to chaos on a chain consisting of 

elements for which the dynamics is described by one-dimen- 
sional parabolic mappings7' 

x j ( n + l )  = 2 6 x j ( n )  + 2xj ' (n)  +yx j - ,  ( n + l )  , 

here n is a discrete time and S > 0 characterizes the degree of 
nonequilibrium of the system. Let SE [0.5, 1.51, then on the 
first element a regular regime of oscillations of period Twill 
be realized [corresponding for y = 0 to a fixed point of the 
mapping ( A l ) ] .  In this case the analog of Eq. will be 
[xj"(n + 1)  =xj"(n)] 

For sufficiently small coupling y and 6 5 1.5 the single-fre- 
quency oscillation regime becomes unstable for some j* 
(Ref. 9)  and along the chain a "period-doubled" regime es- 
tablishes itself, which later loses its stability, and so on. In 
order to determine the number of spatial bifurcations of the 
period-doubling type we make use of the approximate renor- 
malization group scheme of Ref. 11. 

The stationary oscillation regimes (of period 2"T) 
which are established between the spatial bifurcation points 
will be close to homogeneous in the case of weak coupling y. 
Keeping this in mind, we consider in the framework of Eq. 
( A l )  the behavior of disturbances [, (n)  superposed on a 
spatially homogeneous [xj ( n )  = xj - , (n)  ] regime of dou- 
bled period [xi (n + 2) = x, (n)  ] described by the equations 

x ( n + l )  = 2 6 x ( n )  + 2 x 2 ( n )  + y x ( n + l ) ,  
(A31 

x(n)=26x(n+l)+2x2(n+l)+yx(n). 
The deviations in which we are interested are described by 
the equations 

c j ( n + l )  =d%j(n)+2t;j2(n)+y%j-l ( n i - I ) ,  
(A41 

FIG. 4. Waves of phase transitions: a-regular oscillations 
into chaos [ y  = 0.7( 1 - 1.71i);p = 3.42, K = 0.001; a, = 0, 
I, > 1/21; b)-beats into chaos (same parameters, I, < 1/21. 
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where d=2S+4x(n  + l ) ,  p = 2 6 + 4 x ( n ) .  To order g 2  
one can write in place of (A4) 

fJ(n+2)-pd%,(n)+2(p+d2)f,Z(n) 

+yI%j-t (n+2) + p f j - t  ( n + l )  I .  (A51 

Carrying out a scale transformation y = (p + d 2)[ and con- 
sidering Cj two time intervals later we are led for y from the 
equation (A5) again to the original equation ( A l ) ,  with 
renormalized constants 

Here we have used the solution of Eq. (7 ): 

Thus, after the doubling the parameters y and 6 cannot 
change by arbitrarily small increments, accumulating at the 
critical point-the point where chaos appears. The change of 
y and S according to (A6) means that the accumulation 
region which contains an infinite number of bifurcations (as 
well as the point of transition itself) will be "jumped over," 
i.e., the number of spatial bifurcations where the period dou- 
bles along the flow will indeed be finite. 

APPENDIX 2 

In order to describe the motions (7) after the first spa- 
tial bifurcation (for i >j*)  we choose the parameters wo and 
p so that I :  = &/2 (see Fig. 1 ), where 0 < E  4 1. According 
to Eq. ( 10) we have 

i.e., the solution of Eq. (7) will be close to an oscillation at 
the beat frequency R, with a slowly varying amplitude C, ( t)  : 

(aj-a:) = ( l+ iB)Cj ( t )  exp (iS2t) + (i+iB')C; ( t )  exp (-iQt) , 

B= (ZiO+iQ) / ( I - I t0 )  $. (A71 

After substituting (A7) into Eq. (7) and averaging we ob- 
tain 

LCC 
3 I + l B I V  [ -- - - 
2i B-B' 2  ( B - B * ) / ( I + ~ B ~ ~ ) ] .  

After the substitution aJNEw = [ ( 1 + I B  J2)/&] '/*c,, yNEW 
= y / k ,  y,,, = k t  this equation reduces to the original 

equation (7), i.e., each time it passes through "quasiperiodi- 
city" the coupling parameter increases by a factor 1/2&. 

"We deal only with flow systems (flows) in which there are no external 
random sources. The number of vanishing exponents corresponds here 
to the number of incommensurate frequencies in the flow ~pec t rum.~  

"On Lyapunov exponents in infinite-dimensional systems, see Ref. 4. 
"For spatial bifurcations there occurs a scaling similar to the one encoun- 
tered for bifurcations in a point system when a parameter is changed 
(see, e.g., Ref. 11). 

4'The finite dimension of the solution (realization) follows directly from 
the finiteness of the number of roots in the right half-plane and the boun- 
dedness of their absolute value.4 

')All non-finite spatial distributions turn out to be unstable on account of 
the strict dissipativity of the system. 

@Forj- m all exponents of the system (9) are infinitely degenerate (an 
infinite-dimensional system has only two distinct exponents). Taking 
into account a weak diffusive coupling -x lifts this degeneracy: each 
exponent O O ' ~ '  defined by Eq. ( 10) for x#O splits into a countable set of 
exponents which in the complex plane are situated in a strip of width 
j ~ 1 " ~  nearA O'k'. 

7'Parabolic mappings describe the dynamics of the most varied physical 
systems which exhibit upon variation of a parameter a chain of period- 
doubling bifurcations. 
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