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Inelastic collisions X + Y-A + D are considered for arbitrary atoms X, Y in which the 
particle D is in a quasistationary state and decays via D-B + C to give three charged particles 
A, B, and C in the final state. The influence of their Coulomb interaction on the reaction cross 
section is considered, and a simple analytic solution is derived for a wide range of particle 
velocities. The "postcollision" interaction ofA, B, and C in the final state greatly alters the 
angular distribution and energy spectrum. The results are compared with available 
experimental data, and experimental techniques for observing the predicted effects are 
discussed. 

I. INTRODUCTION though the details differ, these models all lead to similar 
results. 

In this paper we examine inelastic collisions between The case when the two final-state electrons in reactions 
arbitrary atoms X and Y in which two other atoms A and D (3),  (4) have comparable energies was recently considered 
are produced, where D is in a quasistationary state and de- in Ref. 10 by using a simple physical model which indicated 
cays D-B + C to give three particles A, B, and Cin the final that the interaction among all three particles in the final 
state. We thus consider reactions of the type state plays an important role. The same conclusion was 

(1) 
reached in Ref. 11, where the classical equations for two 

X+Y+A+D+A+B+C, electrons moving in the field of an ion were solved numeri- 

where X, Y, A, B, C, and D are arbitrary atomic particles. We 
will assume that A, B, C, and D are charged and analyze how 
the Coulomb interaction between A, B, C in the final state 
affects the reaction cross section. We will see that the cross 
section for reaction ( 1) is greatly altered, and qualitatively 
new effects occur. 

Among the processes ( 1 ) actively studied in recent 
years, we may mention the excitation of autoionizing atomic 
states by ion-atom collisions1: 

I+A+I+A'-+I+e+A+ (2) 

or electron impact: 

photoionization of the inner atomic shells: 

y+A+e+A+*+e+ef+~++, (4) 

is another example. In all these reactions the autoionizing 
atomic state gives rise to a final state with three charged 
particles. 

The consequences of the particle interaction in the final 
state (the postcollision interaction, or PCI) have been stud- 
ied theoretically1-9 for the case when the autoionizing elec- 
tron in (2)-(4) moves so rapidly that its interaction with the 
other two particles is negligible. This situation occurs near 
the excitation threshold for the autoionizing state, and in 
this case only the interaction between two particles in the 
final state is important [between the ions I andA + in (2  ), or 
between a slow electroneand ionsA +,A + + in (3) and (4) 1 .  
Various models--classical,' ~hake-down,~-~ ~emiclassical,~, 
quasimolecular-adiabati~,~ quantum-mechanical,-, re- 
fined semiclassical9-have been used to analyze PCI; al- 

cally. 
In the present paper we show that the Coulomb interac- 

tion of the three particles in reaction ( 1 ) can be treated ex- 
actly for a wide range of particle velocities in the final state, 
and the problem admits an analytic solution. This is because 
all three particles interact only if the distance between them 
is large. The results are valid even for slowly moving parti- 
cles in the final state, when perturbation theory is inapplica- 
ble. 

The quasistationary nature of the intermediate state D 
in (1) gives rise to a line in the energy spectrum for the 
particles A, B, and C. If the latter do not interact, the line is 
Lorentzian with width equal to the full width r of the state 
D. In what follows we will analyze the spectra of the particles 
A, B, C near the resonance line. Other coherent but nonre- 
sonant processes can be neglected, because their cross sec- 
tions vary smoothly. 

We will see that the three-particle interaction in the fi- 
nal state greatly distorts the Lorentzian lineshape; the line 
becomes broader and asymmetric, and the maximum inten- 
sity decreases and is shifted. All these spectral changes are 
extremely sensitive to the scattering angles of the particles, 
which determine even the direction of the spectral shift and 
the sign of the asymmetry parameter. 

This paper is organized as follows. In Sec. 2 we qualita- 
tatively describe the processes that occur in the final state of 
reaction ( 1 ) . Expressions for the amplitude and cross sec- 
tion for ( 1 ) are derived in Sec. 3, while Sec. 4 applies the 
results to some particular reactions of the type (2)-(41, 
compares the results with available experimental data, and 
discusses how the predicted effects might be confirmed ex- 
perimentally. We employ atomic units /el = ri = me = 1 
throughout this paper. 
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2. THE IMPORTANCE OF LARGE DISTANCES. EIKONAL 
APPROXIMATION 

The width of the quasistationary intermediate state D in 
the atomic reactions (2)-(4) is usually small ( r < 1 eV --, 1/ 
27 a.u.) and may thus be regarded as a small parameter. The 
distance between particles A and D at the instant of decay 
D-B + C is given approximately by rAD --, V A D / r .  We will 
assume that r,, is large, 

and write ru = I ri - rj I and Vi/ = I Vi - V, I, where ri and Vi 
are the position vector and velocity of particle i, i, = A,  B, C, 
D. 

The distance rBc between particle B and Cmay be large, 
small, or intermediate. For small r,, (R,B and C interact 
strongly; however, this interaction can be treated using the 
ordinary two-body model. According to (5), the distance 
from particle A to the pair B + Cis large, so that its Coulomb 
interaction with B + Cis essentially the same as the interac- 
tion of A with D, which again is a two-body problem. 

The situation changes only if the distance between B 
and Cis considerable, rBc zR, in which case we have a three- 
body problem. We conclude by combining the condition 

r R with (5) that a full-fledged three-body problem 
arises only for configurations in which all three particles are 
well-separated: 

However, the problem then simplifies considerably for the 
following three reasons. 1 ) The internal structure ofA, B, C, 
their form-factors, polarizabilities, etc., may be neglected 
when treating the Coulomb interaction. 2) The three-body 
quantum-mechanical problem for the motion of the particles 
becomes semiclassical. 3 )  The Coulomb potential energy of 
the interacting particles is a small quantity. We will hence- 
forth assume that it is much less than the kinetic energy; 
more precisely, we assume that 

IZAZB I / ~ A B < E A B (  I Z A Z C  I / rAC<&AC.  (7) 

Here Zi is the charge of particle i and 
E~ = mim, (mi + mi)-' Vi./2 is the kinetic energy of parti- 
cles i and j in their center-of-mass system. Inequalities (7 )  
are assumed valid along all classical trajectories lying within 
the region (6); they imply that the particles A,  B, and C 
move uniformly along straight-line classical trajectories. 

The semiclassical equations for quasi-uniform motion 
along straight trajectories has a simple solution given by the 
eikonal approximation. Here we should mention that the 
eikonal approximation is usually employed to describe the 
motion of fast particles, whereas in our case it is not neces- 
sary to assume large relative particle velocities. Indeed, the 
inequalities (5)  and (7)  underlying our treatment may hold 
even for velocities < 1 because the width r is assumed to be 
small. 

We also observe that the trajectories will actually be 
approximated by straight lines only in the large-separation 
region ( 6 ) ;  the decay process D + B  + C and the initial por- 

tion of the trajectory of the pair B + C will be described 
quantum mechanically, as will the motion of the pair A + D 
for small distances rAD. 

Conditions (7) constrain the energies and scattering 
angles of the particles, but there are any processes (2)-(4) 
for which they are satisfied. For example, unless the scatter- 
ing angle of the photo- and Auger electrons is very small 
(8 < 5 "), (7)  holds for photoelectron energies EA 2 rZt3. 

It is thus necessary to treat a full three-body interaction 
only for large distances (5)-(7). We will see that the exact 
solution of this problem leads to some qualitatively new re- 
sults. 

3. AMPLITUDE AND CROSS SECTIONS FOR THREE- 
PARTICLE PRODUCTION 

We expand the amplitude as an infinite series of Feyn- 
man diagrams; some of the lowest-order diagrams are shown 
in Fig. 1. The straight lines describe the propagation of the 
particles X, Y, A ,  B, C, D, while the wavy lines describe the 
Coulomb interaction. The vertices (circles) describe the in- 
elastic collision X + Y - A  + D and the decay D-B + C. 
We use the standard correspondence rulesI2 to evaluate the 
diagrams and exploit the fact that r is small (Sec. 2). We 
will see that each diagram can be evaluated in the eikonal 
approximation, after which the total amplitude follows by 
adding all the diagrams. This approach was developed pre- 
v i ~ u s l y ' ~ * ' ~  to handle problems when the long-range interac- 
tion among charged particles is important. 

The simple diagram in Fig, l a  gives the contribution - 

to the amplitude, where M, is the matrix element for the 
inelastic scatteringx + Y-+A + D, M, is the matrix element 
for the decay D+ B + C, and 

where Ei is the sum of the internal and kinetic energies of 
particle i. The second equality in (8)  corresponds to passing 

FIG. 1. Diagrams for three-particle interaction in the final state for reso- 
nant collisions ( 1 ) . 
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to the time representation, which is convenient when adding 
the higher-order perturbation-theoretic diagrams. 13,14 The 
variable t is interpreted as the lifetime of particle D. 

We next evaluate the diagram in Fig. lb, which de- 
scribes the interaction between particles A and B in the final 
state to lowest order perturbation theory. Its contribution to 
the amplitude is 

Here kA and k, are the momenta ofA and B in the final state, 
and 4 7 ~ Z ~  ZB/q2 is the Fourier component of the Coulomb 
potential. Since we consider a resonant process, E is small, 
I E ~  - r. Small momentum transfers q 

A ,  q e k n ,  ks, (11) 

therefore give the dominant contribution to the integral 
(10). Since we assume that I' is small, r < m A  V:/2, 
m, Vi/2, the first inequality in ( 11 ) implies the second. 
According to ( 6 )  and ( 7 ) ,  small q corresponds to large rA, . 
We can use ( 1 1 ) to simplify the integral ( 10) by retaining 
only the terms linear q in the energy denominators; in addi- 
tion, the matrix elements M ,  and M2 in ( 10) are assumed to 
vary slowly with q and can be treated as constants in the 
integration. With these simplifications, the diagram in Fig. 
1 (b)  can be evaluated in the eikonal approximation.15 Pass- 
ing to the time representation, we find the simple expression 

Ca 

A,= (-i)'M,MZ dt dr e x p { i ( - - e f  iI'12)t) (I, ( t ,  r ) ,  ( 12) 
0 

for the amplitude, where 

Ul  ( t ,  T )  =ZAZB/ I V A D  ( t + ~ )  -VBTI. (13) 

As in ( 8 ) ,  the variable t in ( 12) is interpreted as the lifetime 
of particle D; 7 is the time after the decay D - B  + C, as 
shown schematically in Fig. lb. 

The first-order diagram for the A-C interaction (Fig. 
Ic) and the other higher-order diagrams can be evaluated 
similarly. In all cases the principal contribution comes from 
small momentum transfers q in the A-B and A-C interac- 
tions, and simplification yields an expression similar to ( 12) 
for the diagram in Fig. lb. Summation then gives the expres- 
sion 

OD T 

A=-iiV,iVZ dt exp{ (-ef iI 'I2)t  - J U ( t ,  r ) d r }  (14) 
0 0 

for the amplitude. Here MI denotes the matrix element for 
the collision X + Y - A  + D, in which the A-D Coulomb in- 
teraction is treated exactly; the matrix element M2 for the 
decay D- B + C treats the B-C interaction exactly (Fig. 2).  
This is important because the A-D and B-C interactions are 
strong at small distances. The potential U(t,r) in (14) is 
equal to 

U ( t ,  r )  

=ZAZ~/IV~Dt+VA,?l +ZAZC/l vADt+vAc~l -ZAZD/VAD ( t+? ) .  
(15) 

The three terms in ( 15) are respectively the potential ener- 
gies for the A-B, A-C, and A-D interactions in the final state. 
The third term has a minus sign for the simple reason that 
particle D is not present in the final state; the interaction 
with D, which is included in the matrix element M,, must 
therefore be subtracted out in the final state. The interaction 
B-C does not appear in U(t,r) because it is already included 
in M ~ .  

The term J U(t,r) d r  in ( 14) has a simple physical in- 
terpretation-it is the classical action computed for straight- 
line trajectories. This term is responsible for the interaction 
in the final state (without it, ( 14) give the ordinary Breit- 
Wigner amplitude). 

We note that the integral over T in (12) and (14) is 
formally divergent at the upper limit because of the long- 
range nature of the Coulomb interaction. The standard pro- 
cedure16 for avoiding this divergence is to cut off the poten- 
tial at a distance D )  R, where R is the characteristic radius R 
of the problem ( 5 ) ,  and then let D -  co in the resulting cross 
section. The upper limit T in the T-integral in ( 14) is then 
finite (TBR /VA ), and T affects only the argument of the 
amplitude, not the cross section. 

To find the cross section we must calculate IA 1' [Eq. 
( 14) 1 by substituting the explicit expression ( 15) for the 
potential U(t,r). We consider a collision process ( 1 ) for 
which the velocities VA , V,, and V,  of the outgoing particles 
are specified. Energy and momentum conservation then im- 
plies that the cross section is determined by a five-dimen- 
sional set of independent parameters (e.g., the energy and 
scattering angle EA , f l A  of particle A and the scattering angle 
a, of particle B ) .  A straightforward calculation gives the 
following expression for the cross section: 

FIG. 2. Calculation of matrix elements k,, M~ for treat- 
ing the A-D and B-Cinteractions exactly. 
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Here r,, is the partial width of the decay D+ B + C; it de- 
pends on the matrix element k2, while the cross section a, 
for the collision X + Y-A + D depends on fi,. The param- 
eter f in (17) depends on the velocities of the particles 
emerging from the final state: 

The three terms in ( 18) correspond to the three terms in the 
potential energy ( 15). 

4. DISCUSSION 

To analyze expression ( 16) for the cross section, we 
note that the first two factors describe an ordinary Breit- 
Wigner resonance. The factor k ( ~ )  (the principal result of 
this paper) describes the interaction of the particles in the 
final state. It depends on E through the ratio T/E and thus 
varies greatly over the linewidth, so that the Lorentzian line 
is appreciably distorted. A straightforward analysis of ( 16) 
reveals the following distortions: 

1. The peak is shifted by AE, 

A ~ = g r / 2 .  (19) 

2. The peak intensity decreases monotonically as (f I 
increases, 

For large (g I > 1, the function (20) decays as If I - ' ,  so that 
the line broadens in such a way that the total intensity re- 
mains constant. The line width T at half-maximum is pro- 
portional to Ig ( for large If (: 

r=const 1 1.  (21 

3. The line becomes asymmetric. (These assertions are 
illustrated in Fig. 5, which is discussed below.) 

All these spectral changes depend only on the single 
parameter f ( 18). According to ( 16) and ( 17), the distor- 
tionincreases with 16 I. It is important to note that our under- 
lying assumptions (5)-(7) do not rule out the possibility 
that one or all of VA, , VA, , VAc may be small ( < 1 ) . It is 
therefore possible for 16 1 to exceed unity, so that the spectral 
distortions may be significant. 

We now apply these results to the reactions (2)-(4), 
where A is an ion or electron, B is an autoionizing electron, 
and D and Care heavy atomic particles, so that V, ,-- V, ,--0. 
Expression ( 18) for 5- then simplifies to 

E=-ZAZ, ( v A - l - v A B - i ) .  (22) 

If we assume that the autoionizing electron is fast 
( V, ) VA ), then f (22) [and hence also the cross section 
( 16) ] is independent of RA ; this case has been analyzed ex- 
tensively in the literature. The shift AE ( 19) is then given 
by the familiar Barker-Berry formula,' which in our situa- 
tion takes the form 

FIG. 3. Dependence of the energy shift calculated by (19), (22) as a 
function of the velocity ratio and angle 0 between the outgoing particles. 
1 ) 0 = 15 "; 2)  0 = 30 "; 3) B = 120 ". The energy shift is normalized by 
the Barker-Berry shift (23). 

A & B B = - ~ ~ A Z B / ~ V A .  (23) 
AE,, is also independent of RA and a , ,  and it does not 
change sign as VA varies. 

The situation is completely different if VA - V,; in this 
case 6 given by (22) is sensitive to the angle 8 between A and 
B (COS 8 = VA VB / VA V, ) , and even the sign of{ depends on 
8. This is illustrated in Fig. 3, which plots A& ( 19) as a func- 
tion of VA /VB and 8. We see that the shift is sensitive to 8 
when VA = V, but independent of 8 in the limit V, 4 V,. 

Let us now discuss how the above results might be veri- 
fied experimentally. For reactions (3)  and (4)  there are two 
electrons in the final state. Complicated coincidence experi- 
ments are necessary to measure their velocities, on which 
k ( ~ )  (16) depends. Although such experiments have not 
been carried out, much experimental work has been done for 
the case when only a single autoionizing electron is present. 

To describe these experimental results we must inte- 
grate the cross section ( 16) over RA , the scattering angles 
for particle A on which both k ( ~ )  and a, depend. Since the 
dependence a,(R, ) is not known a priori, we will use two 
very simple models to perform an average. 

To a very rough approximation, the experimental shift 
of the spectral line for particle B is given by 

with AE and A E ~ ~  defined by (19) and (23). The approxi- 
mation on the right in (24) was first suggested in Ref. 10 and 
was subsequently demonstrated numerically." 

A more accurate estimate for AE can be obtained by 
averaging the cross section ( 16) over CIA and taking a, to be 
isotropic. We carried out such a calculation numerically for 
electron impact excitation of the 2s2('S,) and 2s-'3s('S) 
autoionizing states in helium and neon, respectively. Figure 
4 shows how the shift A E ( ~ )  in the maximum of the cross 
section averaged in this way depends on the amount AE by 
which the energy of the incident electron exceeds the excita- 
tion threshold. The figure also plots bE (24) and A&, (23) 
along with available experimental data. In spite of the crude- 
ness of the assumptions used to average the cross section, the 
results agree fairly well with the experimental findings (the 
agreement is considerably closer than for the Barker-Berry 
model1). We note that both our calculations and the experi- 
mental results imply that the sign of the shift is constant. 

It would be of great interest to experimentally verify the 

989 Sov. Phys. JETP 63 (5), May 1986 M. Yu. Kuchiev and S. A. Shemerman 989 



du/dEBdn,dns, arb. units 

AE, eV 

FIG. 4. Energy shift of the spectral line for autoionizing electrons as a 
function of the energy excess A E  of the incident electron above the exci- 
tation threshold (the atoms were excited by electron impact); s a n d  
k ( Z )  are defined in the text. a)2s,('S0) autoionization spectrum for 
He, r = 138 meV; experimental data from Ref. 18; b) 2s-'3s('S) auto- 
ionization spectrum for Ne, r = 95 meV; experimental data from Ref. 
19. 

change in sign of the shift AE predicted by Eqs. (19) and 
(22); this would probably be easiest for ion-atom collisions 
(2) .  For ion velocities that are not too small ( V, - 1 ), there 
is a high probability that the ion trajectory will be almost 
straight. It thus suffices to measure the spectrum of the elec- 
trons when the outgoing electron makes various angles 8 
relative to the incident beam. The above theory predicts that 
the spectral changes should be sensitive to 8. This is illustrat- 
ed in Fig. 5, which shows the electron spectrum calculated 
by Eq. ( 16) for excitation of the neon 2s-'3s' ( 'So) autoion- 
izing state by 40.3 keV incident protons (this energy was 
chosen so that the proton velocity was equal to the velocity 
of the outgoing electron). We see that the position and shape 
of the line are sensitive to 8. This result has a simple physical 
interpretation-the repulsion between the proton and the 
ion is most important for large 8 and causes the proton ener- 

FIG. 5. Calculated electron spectra (16) near the 2s-'3s('SO) autoion- 
izing state in Ne (excited by proton impact). 1) neglecting the interac- 
tion in the final state; 2, 3) predictions of Eq. (16) for several angles 
between the incident proton and outgoing electron: 2) 8 = 15 '; 3) 
8 = 120 '; 4) neglecting the proton-electron interaction (Barker-Berry 
approximation). 

gy to increase; for small 8, the proton-electron attraction is 
more important, and the proton loses energy. 

We note that our theory is invalid for very large 6 be- 
cause conditions (7)  are violated. In this case, the cross sec- . . 

tion is also sensitive to coherent processes involving the di- 
rect ionization atoms by protons, and in particular to charge 
transfer into the continuous spectrum." 

In closing, it is a pleasant duty to thank M. Ya. Amus'ya 
and G. N. Ogurtsov for helpful discussions of the above re- 
sults. 
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