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The stability against two-dimensional perturbations of one-dimensional periodic envelope 
waves described by the nonlinear Schrodinger equation is investigated. Media whose transverse 
dispersion and nonlinearity have opposite signs are considered. Dispersion equations are 
obtained for long-wave perturbations of waves with an arbitrary Jacobi modulus and also for 
perturbations with arbitrary wave numbers in the weakly nonlinear wave approximation. A 
qualitative analysis of these dispersion equations is carried out with a view to elucidating the 
general characteristics of the stability problem for specific types of periodic waves, classifying 
the results obtained in previous investigations, and interpreting the numerical calculations. 
The conclusions, arrived at semi-heuristically by Zakharov (Zh. Eksp. Teor. Fiz. 53, 1735 
( 1967) [Sov. Phys. JETP 26,994 ( 1968) 1 ), that in the class of two-dimensional perturbations 
all types of periodic waves are unstable in media with an arbitrary nonlinearity sign is 
confirmed. The error in the results obtained by certain authors with respect to the one- 
dimensional stability problem for waves in media with positive nonlinearity is discussed. 

1. INTRODUCTION 

As is well known,' among the simplest steady-state so- 
lutions to the one-dimensional nonlinear Schrodinger equa- 
tion ( NSE)-nonlinear parabolic equation-are, besides 
solitons, the periodic (cnoidal) waves. The present paper is 
devoted to the problem of the stability of such waves. This 
problem was first investigated by Zakharov.' Subsequently, 
these investigations were continued by a number of other 
authors, including Rowlands and Infeld,'-"artin et al.,' 
and Pavlenko and Petvia~hvi1i.~-'I' 

Zakharov' considered the class of two-dimensional per- 
turbations in media with positive transverse dispersion and 
arbitrary nonlinearity sign. He arrived at the conclusion 
that, irrespective of the sign of the nonlinearity, all the peri- 
odic solutions to the NSE with a constant phase are unstable. 
His method (based on the variational principle) has been 
criticized by Vakhitov and Kolokolov. ' ' And Pavlenko and 
Petviashvilix-' ' have made assertions about the properties of 
periodic waves, that are at variance with Zakharov's result.' 
Since these assertions have not been refuted by Zakharov 
himself or anybody else, the impression has been created 
that the this result' is erroneous. This may explain why no 
mention is made of Ref. 2 in recent publications, including 
Ref. 12. 

In the present paper we use methods different from the 
method used by Zakharov,' and show that his result, though 
obtained in a rather heuristic manner, is in fact correct, 
whereas all the alternative assertions made by Pavlenko and 
Petviashvilix-"' are erroneous. 

A summary of the information that we have about the 
one-dimensional stationay waves under investigation here is 
given in Sec. 2. Also given in Sec. 2 are the basic equations for 
the perturbations. In Sec. 3 the perturbation dispersion 
equation is derived by the method of power series expansion 
in the small wave numbers, and this equation is analyzed in 

od of power series expansion in the small Jacobi modulus s2. 
The results of the investigation are summarized and dis- 
cussed in Sec. 6. 

2. BASIC EQUATIONS 

2. I. Stationary waues. We shall investigate the stability 
of the one-dimensional periodic waves described by the 
equation 

L,(P=O, (2.1) 

where p = p(P) is the amplitude of the envelope wave, 6 is 
the coordinate in the rest frame of the wave, and the operator 
L,, is defined by the relation 

L , = C ~ ~ / ~ ~ ~ + ~ + & I ~ .  (2.2) 

The parameter a = _+ 1 andB = + 1 are determined by the 
signs of the dispersion and the nonlinearity. 

F o r a =  + l a n d P =  I,asq(~),wecantakethefunc- 
tion I.'" 

(P ( g )  = B ,  cn (gig, s )  s c p , ,  b1=2lhsg,, g,= 1 2 ~ ~ - - 1 ( - " ~ ,  

(2.3) 
where cn is the Jacobi elliptic function and s' is the modulus 
of this function. For a = - 1 the modulus s' varies within 
the limits <s'< 1, whereas for a = 1 we have O<s' < f. For 
a = - 1 and B = 1 Eq. (2.1 ) possesses, besides (2.3);a so- 
lution of the form'.'" 

corresponding to the interval O(s2< I. 
In the case a = 1 and p = - 1 Eq. (2.1 ) admits the 

solution ' 

Sec. 4. In Sec. 5 the instabilities are investigated by the meth- with the modulus s' lying in the range O<s2< 1. 
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We call the waves described by functions p of the type 
(2.3)-(2.5) cn, dn, and sn waves respectively. 

2.2. Perturbations. To describe the perturbations of 
waves of the type (2.3 ) - ( 2 . 5 ) ,  we shall proceed from a NSE 
of the following form for the complex envelope T of the wave 
(cf. Refs. 1 and 13 ) : 

Here x is the coordinate on which the steady state of the 
wave depends (the longitudinal coordinate), y is the trans- 
verse coordinate, y  = + 1 is a parameter characterizing the 
sign of the transverse dispersion of the waves, and the mean- 
ing of the quantity 0 is given in Subsec. 2.1. The coordinate x 
is connected with the coordinate f ,  introduced in Subsec. 
2.1, by the relation 6 = A (x  - 2pt), where A a n d p  are real 
constants. Making in (2.6) the standard substitution 

we obtain 

where r = 2A ' t  and 7 = Ay. As in Ref. 13, we obtain 

f=cp(E)+u(E, q, r)+iv(E, q, T) ,  (2.9) 

wherep(() is determined by Eqs. (2.1 ) and (2.2) and u and 
v are real functions characterizing the perturbation of the 
steady state of the wave. From (2.8) it follows that the func- 
tions u and v satisfy the equations 

where the operator L,  is defined by the relation 

Ll=d2/ay+a+3bcpZ. (2.11) 

Following Refs. 3 and 4, we seek the solution to the 
equations (2.10) in the form 

(a, v)=[U(E), V(E)] exp (-ioz+ikZ+ik,q)+ C.C. (2.12) 

Here U ( 6 )  and V(() are periodic functions of 6, C.C. stands 
for complex conjugate, wand k ,  are the frequency and trans- 
verse wave number of the perturbations, and the quantity k  
has the meaning of the "mean" ( th  wave number of the per- 
turbations (in a different terminology, k  is the Bloch quasi- 
momentum). According to (2.10) and (2.12), the functions 
U and V satisfy the equations 

LoV=2i(oU-kV') +xZV,  

where the prime denotes differentiation with respect to 6 and 
K2=k 2 - + y k : .  

3. DISPERSION EQUATION FOR LONG-WAVE 
PERTURBATIONS OF PERIODIC WAVES WITH AN 
ARBITRARY JACOB1 MODULUS 

Assuming w, k, and k ,  to be small parameters, we solve 
Eq. (2.13) through a power series expansion in these quanti- 

ties. Proceeding in much the same way as Zakharov and 
Rubenchik do in Ref. 13 (see also Refs. 3 and 4) ,  we arrive at 
a biquadratic equation for w2, which we represent in the 
form 

where A and B connected with the wave numbers by the 
relations 

The expressions for the coefficients a, (i, k  = 1, 2, 3 )  are 
given in Appendix A. There we explain that the coefficients 
a, corresponding to the various types of waves are connect- 
ed by relations determined by the Jacobi transformations. 

Thus, the dispersion equation in the long-wave approxi- 
mation is characterized by the formulas (3.1 ) and (3.2 ) and 
the expressions for the a, given in Appendix A. It is essen- 
tially the same dispersion equation obtained in Refs. 3-6, but 
represented in a different form. We thus confirm the correct- 
ness of the dispersion equation obtained in Refs. 3-6. 

The formulas (3.1 ) and (3.2) and the expessions for the 
a, given in Appendix A indicate that, contrary to the asser- 
tions made in Ref. 9, the general problem of periodic-wave 
perturbation cannot be investigated with the use of the ener- 
gy method or any similar variant of the variational ap- 
proach. 

4. ANALYSIS OF THE DISPERSION EQUATION IN THE 
LONG-WAVE APPROXIMATION 

The dispersion equation (3.1) with relations of the 
form (3.2) for A and B allows us to investigate long-wave 
perturbations with arbitrary relation between k  and k ,  and 
for arbitrary s? Below we, however, limit ourselves to the 
analysis of certain limiting cases only. In Sec. 4.1 we shall 
consider longitudinal perturbations: k  #O, k ,  = 0; in Sub- 
set. 4.2, transverse perturbations: k  = 0, k ,  #O. In Subsec. 
4.3 we investigate oblique perturbations ( ( k , k ,  ) # O )  with 
s'< 1; in Subsec. 4.4, oblique perturbations with 1 - s'< I .  

4.1. Longitudinalperturbations. Let k ,  = 0. In this case 
we find from (3.1 ), (3.2) that 

Equation (4.1 ) was obtained by Rowlands:' Assuming 
s' to be arbitrary, Rowlands7 analyzed this equation numeri- 
cally, and thus showed that for all s' the cn and dn waves are 
unstable, while the sn waves are stable. In contrast, we shall 
show this analytically. 

Using (A.2)-(A.4), we find 

The subscripts c, d and s attached tow' indicate the types of 
waves we are investigating. The remaining designations are 
explained in Appendix A. 
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It can be seen from (4.2) that, for all 0 <s2 < 1, the one- 
dimensional perturbations of the cn waves are characterized 
by two pairs of frequencies with complex w2,so that (Re w, 
Im w ) # 0. The corresponding instabilities may be called os- 
cillatory or "traveling" instabilities. Thus, our analytic for- 
mula (4.2) confirms Rowlands' numerical analysis3 It also 
confirms Pavlenko and Petviashvili's numerical calcula- 
tions'' pertaining to the case s2 > 0.5, but refutes their con- 
clusion, repeated subsequently in Petviashvili and Yan'kov's 
review article, l 4  that the cn waves are stable when s2 < 0.2. 
Therefore, it is clear that Petviashvili and Yan'kov's hypoth- 
esisi4 (see also Ref. 8 )  that the reason for the stability may be 
connected with the total integrability of the NSE is dubious. 

Further, it follows from (4.3) that the dn waves, being 
also unstable for all s2, are characterized by two pairs of 
frequencies with real w2 < 0, so that the corresponding insta- 
bilities are aperiodic. Finally, as can be seen from (4.4), the 
sn waves, unlike the cn and dn waves, are stable for all s2. 

For s2< 1 it follows from (4.2)-(4.4) that 

Notice that the second pair of purely imaginary dn-wave 
perturbation frequencies (4.6) are none other than the nega- 
tive square of the growth rate in the long-wave limit of the 
modulation instability of a monochromatic wave (see, for 
example, Ref. 15). As to the first pair of frequencies for such 
perturbations, their meaning will be elucidated in Sec. 5 in 
terms of the interaction of the Fourier harmonics of the dn 
wave. 

The cn- and sn-wave perturbation frequencies w, and 
w, are equal to each other when the corrections of the-order 
of s are neglected (see (4.5 ) and (4.7) ) . This is not surpris- 
ing, since in the corresponding approximation the two waves 
are characterized by functions of one and the same form, 
differing only in a <-coordinate shift. In the case of the sn 
wave a correction of the order of s is insignificant, which 
cannot be said of the cn wave: the instability of this wave is 
revealed precisely when allowance is made for such a correc- 
tion. This instability can also be interpreted in terms of the 
interaction of the Fourier harmonics (see Sec. 5 ) . 

For ( 1 - s2)  4 1 we find from (4.2)-(4.4) that (see Ap- 
pendix B) 

Taking account of (B.7) and (B.8), we conclude that in the 
case of the cn and dn waves 

where h is the soliton spacing. Using (4.8), (4.9), and 
(4.12), we observe that, as the soliton spacing increases, the 

growth rate of the cn- and dn-wave instabilities decreases 
exponentially: 

According to Petviashvili and Yan'kov,14 numerical 
calculations'' also indicate that the growth rate of the insta- 
bility of a periodic lattice of very sparsely distributed soli- 
tons is exponentially small. Noting this result, Petviashvili 
and Y a n ' k ~ v ' ~  claim that "this ... was to be expected," with- 
out explaining why. The formulas (4.13) confirm the nu- 
merical results obtained in Ref. 10, and furnish an analytic 
explanation for them. 

Let us note that Rowlands%lso considered the asymp- 
totic behavior of the growth rate of the cn-wave perturba- 
tions for s2--r 1. He arrived at the conclusion that in this case 
the growth rate decreases like (s,lns, )"2. This is an error: 
According to (4.8), it is not the growth rate, but Im(wC2) 
that decreases according to this law. 

4.2. Transverse perturbations For k = 0 we find from 
(3.1) that 

a,,'=- (142)  ykL2gi2s2vp/ (s?+ sZp2), (4.14) 

o d , ' = -  (If 2) ykL2gz2~h/ (A2-si2), (4.15) 

( l f 2 )  ykL2gs2s20pl(l-s2p2). (4.16) 

Here w + corresponds to even perturbations, w - to odd per- 
turbations. 

The formulas (4.14)-(4.16) indiciate that transverse 
perturbations of all the three types of wave are unstable no 
matter what signs the nonlinearity and the transverse disper- 
sion have (cf. Refs. 2 and 13). The even or odd perturbations 
are unstable, depending on the signs of these quantities. 

For s2< 1 we obtain from (4.14)-(4.16) the relations 

In the opposite limiting case, when s: < 1, 

Notice that the formulas (4.20) coincide with the re- 
sults obtained in Ref. 13 for a single soliton, and that the 
formulas (4.15), (4.18), and (4.20) for dn waves with 
y = - 1 are in qualitative agreement with the numerical re- 
sults obtained in Ref. 7. Let us also point out a certain para- 
doxical aspect of the expressions (4.18) for the squares of 
the frequencies of the transverse perturbations of dn waves 
with smalls2: neither of these two expressions coincides with 
the well-known formula for the square of the frequency of 
the transverse perturbations of a monochromatic wave. The 
causes of this paradox are elucidated in Subsecs. 4.3 and 5.2. 

4.3. Oblique perturbations of waves with s2<1. Using 
(3.11, (3.21, (A.2),  and (A.4),  we find that whens2<1 the 
squares of the frequencies 
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correspond to oblique perturbations of cn and sn waves. 
These relations illustrate the transition from the formulas 
(4.5) and (4.7), which characterize the squares of the fre- 
quencies of the longitudinal perturbations of cn and sn 
waves, to the formulas (4.17) and (4.19) for the squares of 
the transverse perturbations of such waves. Using (4.22), we 
find that wf ceases to be complex and becomes real at k :/ 
k > 4/s2 in media with y = 1 and at k :/k > 1 in media with 
y = - 1. From (4.23) it follows that the frequencies w: re- 
main real for any relation between k and k, if y = 1, and are 
complex if y = - 1 and 

ItkL2/k2<4/s2. (4.24) 

Using (3.1 ), (3.2), and (A.3), we find that the oblique 
perturbations ofdn waves withs2 < 1 described by the disper- 
sion equation 

Setting here k, = 0 or k = 0, we arrive at the formula (4.6) 
or (4.18). 

Let us, using (4.25), follow the transition from (4.6) to 
(4.18) as the ratio k : /k ' increases. The second pair of roots 
of Eq. (4.6) are most sensitive to the presence of k, #O. 
These roots become modified at k 2 k '. In this case instead 
of the second equality in (4.6) we have 

This dispersion equation is well known: it describes the mo- 
dulation instability of a monochromatic wave with 
(k,k, ) #O in the case when y = + 1 and the stabilization of 
this instability at k ,  >k in media with y = - 1 (cf. Refs. 15 
and 16). F o r k  :/k ' lying in the interval (cf. (4.24)) 

instead of (4.26) we have 

ad2=-ykL2/2, (4.28) 

while the first pair of roots of (4.6) still remain the same. At  
the right boundary of the indicated interval, i.e., for 

the two pairs of roots are found to be of the same order of 
magnitude, and are, as a result, substantially mixed up with 
each other. Finally, at still higher k :/k ' values, when k :/ 
k 5 l/s4, the dispersion equation (4.25) reduces to theset of 
equations (4.18) for the squares of the frequencies, w:. . 

From the foregoing it follows, in particular, that in the 
case of strictly transverse perturbations (k = 0 )  the stan- 
dard formula (4.26) does not follow from Eq. (4.25 ) . This 
circumstance should, however, be regarded not as implying 
the inapplicability of the formula (4.26) when k = 0, but as 
resulting from the insufficient accuracy of the formula (4.2, 
which we derived without making allowance for the terms, 

like w4/k and k : / k  ', that are, within the framework of the 
long-wave approximation used by us, formally small. This 
will become clear from Subsec. 5.2, where we obtain the cor- 
responding generalization of the formula (4.25) by the 
method of power series expansion in sZ. 

4.4. Obliqueperturbations of waves with I -s2(l .  Using 
(3. I ) ,  (3.2), and (A.2)-(A.4), we find that for sf < 1 

Let us consider with the aid of (4.30)-(4.32) the transi- 
tion from the formulas (4.8)-(4. lo) ,  which characterize the 
longitudinal perturbations, to the formulas (4.20) and 
(4.21 ) for the transverse perturbations as k, /k increases. In 
the case of the cn wave the role of k, is important when k :/ 
k 5 &' I2 .  If 

then instead of (4.8) and (4.20) we obtain from (4.30) the 
equation 

The formula (4.34) indicates that the instabilities of cn 
waves with complex frequencies disappear when k : /  
k 2 > &3/?  - . In this case the perturbations remain stable right 
u p t o k : / k ' z . F o r k ~ / k l > ~ ,  (4.34) goesoverto (4.20), 
and describes the a periodic instabilities discussed in Sub- 
sect. 4.3. In contrast to the case of cn waves, the growth rate 
of dn-wave perturbations becomes sensitive to the presence 
ofk, only when k :/k ' 5 ~ .  In this case from (4.31) we have 

In contrast to the k, = 0 case, when the two branches of the 
dn-wave perturbations are unstable, only one of the pertur- 
bation branches remains unstable in thecase when k :/k ' > E 

(see (4.20) 1. 
As can be seen from (4.32), finite k,/k values play a 

role in the perturbations of sn waves with 1 - s'g 1 only 
when k, /k 5 1. One of the perturbation branches is then un- 
stable. As in the s'< 1 case in a medium with y = - 1, per- 
turbations with complex frequencies also occur when 
1 - s 2 g 1 .  

5. INVESTIGATION OF THE INSTABILITIES OF PERIODIC 
ENVELOPE WAVES BY THE METHOD OF POWER SERIES 
EXPANSION IN sZ 

5.1. Perturbations of cn and sn waves. As in Sec. 3, here 
we proceed from equations of the type (2.1 3) for U and V, 
but now we substitute into these equations simplified expres- 
sions for L,, and L ,, which correspond to the approximation 
s 2 g  1. In this approximation we have for the corresponding 
types of waves the formulas 

975 Sov. Phys. JETP 63 (5), May 1986 V. P. Kudashev and A. 6. Mikhanovskil 975 



tp= (qe, rp.) =21hs (COS qCE, sin q&), (5.1) 

az 
L, = - + 1+3s2 [  "CO' 1. a g2  - I f  cos 2q.E 

Here the upper formulas pertain to cn waves and the lower 
ones to sn waves; and q, and q, denote 

Let us represent U and V in the form 

(U, V )  = (Urn, ITm) exp (imqt), 

where q = (q, ,q, ) and the summation is over all integral m. 
Taking (5.4) into account, we observe that, owing to the 
presence in Lo and L ,  of terms with cos 2q{, the mth har- 
monics are mixed up with the (m +_ 2) th  harmonics in the 
equations (2.13). Since the quantities q are close to unity, 
such intermixing is especially important for the harmonics 
with m = + 1. On the other hand, it can be verified that the 
coupling between these harmonics and all the rest is weak, so 
that the quantities U,,, and V,, with m # + 1 are small (spe- 
cifically, of the order of s' raised to some positive power) 
compared to U+ , and V +  , . Therefore, we limit ourselves 
to considering o i ly  the harmonics U +  , and V +  , . Then in 
the case of the cn wave we obtain from (2.13) the system of 
coupled equations 

while in the case of the sn wave instead of this system we have 

From (5.5) and (5.6) we obtain the dispersion equa- 
tion (3. l ), with A and B given by 

The formulas (5.7) with the upper ( - ) sign and q = q, 
pertain to the cn wave, while those with the lower ( + ) sign 
and q = q ,  pertain to the sn wave. 

In the case of longitudinal perturbations (k, = 0, 
x' = k ' ) ,  from (3.1) and (5.7) we obtain 

Thus, we have another proof of the incorrectness of 
Pavlenko and Petviashvili's result~~- '~)concerning the stabil- 
ity of the cn wave in the region of small s'. For k g s 2  this 
formula goes over into Eq. (4.5 1, which describes the longi- 
tudinal instability of the cn wave. It can be seen that this 
instability stabilizes at 

We find with the aid of (3.1 ) and (5.7) that the longitu- 
dinal perturbations of the sn wave are characterized by fre- 
quencies the squares of which are given by 

It can be seen that these perturbations are stable not only at 
small k, as follows from (4.4) and (4.7), but also at any k. 

In the case of transverse perturbations ( k  = 0) ,  from 
(3.1) and (5.7) we have 

o.2=kL2[k12- ( I f  2) ys2] 14, 

oS2=kL2 [kL2+ ( l f  2) ys2] /4 .  

It can be seen that the transverse long-wave instabilities 
mentioned in Subsec. 4.2 stabilize when 

- 

The first inequality pertains to the cn wave in media with 
positive dispersion, i.e., with y = 1, and to the sn wave in 
media with y = - 1, while the second inequality pertains to 
the cn wave in the case when y = - 1 and to the sn wave in 
the case when y = 1. 

5.2. Perturbations ofthe dn wave. For s' < 1 the function 
p, and the operators Lo and L ,  can be approximated by the 
expressions 

aZ S' s2 L o = - - -  s4 + - cos qg + - cos 2qg, 
ag-6 2 16 
a 3s2 3s4 (5.15) 

L1=-+ qz+-cos qg +-cos2qz, a" 2 16 

where 

Let us expand the functions U and V in Fourier series of the 
form (5.41, and let us limit ourselves to the consideration of 
the expansion terms with m = 0, + 1, and _+ 2. It can then 
be verified that the second harmonics U , , and V, , , which 
are important only at small k and k, values, are connected 
with the first harmonics U, , and V, , by the approximate 
relations 

Taking account of (5.17), we arrive at the following system 
of equations for U,,, V,,, U, , , andf V ,  , : 

It can be seen that, in the s = 0 approximation, this sys- 
tem of equations splits up into three, one of which corre- 
sponds to perturbations with ( U,, V,) #O, the second with 
( U,, V, ) #0, and the third with ( U- , , V- , ) # 0. In the case 
of perturbations of the first type we obtain from (5.18) the 
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well known generalization of the dispersion equation (4.26) 
for the modulation instability of monochromatic waves to 
the limit of large k and k, values (see, for example, Ref. 15) : 

The perturbations with ( U,, V, ) $0 and 
( U- ,, V- , ) # 0 are described by dispersion equations simi- 
lar to (5.19) with k replaced by k + 2'12, i.e., dispersion 
equations of the form 

From (5.20) it follows that these perturbations, like the per- 
turbations with ( U,,Vo) #O, are stable at sufficiently large 
values of k and k :. But in the case when (k  ',k : ) ( 1 we find 
from (5.20) that 

which corresponds to certain variants of the modulation in- 
stability of a monochromatic wave. 

The Eqs. (4.26) and (5.21) constitute the required set 
of dispersion equations for the long-wave perturbations of 
dn waves with s2 + 0. According to (5.18), at finite values of 
s2 these dispersion equations become mixed, and are re- 
placed by the following dispersion equation, which is cubic 
in w2: 

46 (202+k2+yk12)  [ k 2 - ( a Z - y k 1 2 / 2 ) 2 / 2 ]  
+s4 (02+3yk12 /2 )  (02-yk12 /2 )  =O. (5.22) 

This equation justifies the assertion made at the end of Sub- 
set. 4.3 regarding the limits of applicability of Eq. (4.25). 
Now let us consider the perturbations with (w2,k : ) % k ', 
i.e., outside the limits of applicability of Eq. (4.25). Then 
limiting ourselves to the case of purely transverse perturba- 
tions (k = 0),  we find that Eq. (5.22) splits up into two 
equations, one of which, 

describes the even perturbations, while the second corre- 
sponds to odd perturbations, and coincides with the second 
equation in (4.18 ) . 

For y = 1 the quantities 0' satisfying Eq. (5.23) are 
real, one of them being negative, and hence corresponding to 
an instability. For k : <s4 this w2 is given by the first equa- 
tion in (4.18). Therefore, it remains for us to consider only 
the y = - 1 case. In this case we obtain from (5.23) the 
following expressions for the squares of the frequencies: 

The quantity D ' I 2  is purely imaginary for k, lying in the 
interval 

In this range of transverse wave numbers there are two types 
of transverse perturbations characterized by complex fre- 
quencies. The perturbations with k, < k,, are stable. Also 

stable are the perturbations with 

where k :, = 3s4/8. But if k, > k,, , then, as in the y = 1 
case, the roots m2 are real and different in sign, so that one of 
the perturbation branches is aperiodically unstable. For k : 
s s 4  the growth rate of this instability corresponding to even 
perturbations with ( U,, V,) = 0, is characterized by the sec- 
ond equation in (4.18 ), i.e., coincides with thegrowth rateof 
odd perturbations. 

The foregoing enables us to understand the numerical- 
analysis results of Martin et pertaining to even trans- 
'verse perturbations of dn waves in a medium with y = - 1. 
These even perturbations with complex frequencies and 
wave numbers lying in the interval (5.26) are similar to the 
traveling instabilities found by Martin et al.,' while the 
aperiodic instability of the even perturbations with k, > k,, 
noted above is similar to one found by these authors7 

6. DISCUSSION OF THE RESULTS 

We have obtained formulas, (4.2), (4.5), (4.8), (5.8), 
and (5.9), that indicate the long-wave longitudinal instabil- 
ity of cn waves and the stabilization of this instability as the 
wavenumber increases. In contrast to the cn waves, sn waves 
are stable (within the framework of the assumptions made!) 
against longitudinal perturbations with any wavelengths. 
This follows from Eqs. (4.4), (4.7), (4. lo), and (5.10). 
Longitudinal long-wave perturbations of dn waves, like 
those of cn waves, are also unstable at arbitrary s' values. We 
have obtained expressions for their growth rates: the formu- 
las (4.3), (4.6), and (4.9). 

These transverse perturbations of cn and sn waves can, 
according to the formulas (4.14), (4.16), (4.17), (4.19)- 
(4.21), and (5.8)-(5.12), grow in the case of arbitrarily 
small wave numbers, but stabilize at sufficiently large wave 
numbers. The picture for the transverse instabilities of dn 
waves is somewhat more complicated. In this case perturba- 
tions that grow only when the wave numbers are not too 
small also develop (see Eqs. (4.15), (4.18), (4.20), and 
(5.24)-(5.28)). 

In considering oblique perturbations, our primary aim 
is to determine the characteristics of the transition from lon- 
gitudinal to transverse perturbations. These characteristics 
are connected with the replacement of unstable perturbation 
branches by stable ones, and vice versa, and also with the 
disappearance and appearance of perturbation branches 
with complex frequencies (see the relation (4.22)-(4.24), 
(4.27)-(4.29), (4.33)-(4.35), and (5.21 ). 

In accordance with what we said in the Introduction, 
we investigated the instability of only the simplest steady- 
state solutions to the NSE. The stability of the steady-state 
solutions of a more general form has been investigated by 
Infeld and Ziemkiewich.' 

In the paper by Pavlenko and Petviashvili"' it is hypoth- 
esized that the long Langmuir-wave trains observed by Anti- 
pov et a1.I7 correspond to cn waves with s2 < 0.2. This point 
of view"' was based on the incorrect conclusion of these 
authors noted above that such waves possess one-dimension- 

977 Sov. Phys. JETP 63 (5). May 1986 V. P. Kudashev and A. B. Mikhanovskl 977 



a1 stability for arbitrary values of the wave numbers of the 
perturbations. But these waves are stable only against per- 
turbations with k k s. Since in the case in questions charac- 
terizes the wave amplitude (i.e., s z q , ) ,  we can expect that 
only wave trains with relative length 15 l / p  will be one- 
dimensionally stable. 

APPENDIX A 
Expressions for the coefficients a ,  and the use of the 
Jacobi transformations 

To the three types of functions q, investigated by us (see 
(2.3)-(2.5)) correspond the three sets of coefficients a, in 
the formulas (3.2), so that 

where the superscripts c, d, and s indicate that we are dealing 
with cn, dn, and sn waves. The quantities a; are given by the 
relations 

allc= (pz+slz/s2) 2/gi2~z, 

alzc= [ (p+slZ/sz) '- ( l - p ) z ~ ~ z / ~ z l ~ l z / ~ Z ,  
(-4.2) 

azzC=gl2si'/s6, alsc=-pv (pZ+sl21sZ) isZ, 
az3c=glzslz(3vz-pz) /2s4, a33c=-3g12p2v2/~Z. 

Similarly, for the case of dn waves we have 

Finally, in the case of sn waves we obtain 

In (A.2)-(A.4) we use the following notation: 

where K(s )  and E ( s )  are the complete elliptic integrals of 
the first and second kinds. 

Notice that above, when using the elliptic Jacobi func- 
tions cn, dn, and sn, we assumed that their modulus s' does 
not fall outside the limits ofthe interval O<s2< 1, and that the 
argument is real. By going beyond these assumptions, and 
using the real and imaginary Jacobi transformations, we can 
describe all the three indicated types of waves by some single 
function, obtain the dispersion equation for the wave charac- 
terized by this function, and then construct by means of re- 
designations effected according to the rules indicated below 

tions, we can express the functions p, and q,, we have intro- 
duced [see (2.3) and (2 .5)]  in terms of q,, [see (2 .4)]  as 
follows: 

It is found that all the changes that occur in the dispersion 
equation when we go over from the case of a wave of the type 
(2.4) to the case (2.3) amount to the replacement of the 
matrix of coefficients a:', by the matrix af  , the replacement 
being effected according to the following rules: 

I t  can be verified directly that the system of equations (A.3) 
goes over into (A.2) when such a replacement is made. 

A similar transition from the a$ to the a;, can be ac- 
complished according to the following rule. First, we must 
make the substitutions 

s2-+sI2. sIZ-+s2, g22-tg32, A+sZp, x---s20. (A.  11 ) 

Second, we must change the signs of a , ,  and a,,.  The latter 
step must be taken because of the fact that the equations 
(2.13), which correspond to a waveofthe type (2.4), reduce 
to the analogous equations for a wave of the type (2.5) when 
we go over from a real to an imaginary argument (6-ig), 
from real to imaginary wave numbers ( k  - ik, k,  - ik, ), and 
f romwto  -w  (w- -w). 

APPENDIX B 
Cnoidal waves for s2- 1 

In the limiting case 1 - s'< 1 (i.e., for s," 1 ) the func- 
tions p, and p, [see (2.3) and (2.4) ] describe a set of enve- 
lope solitons located sufficiently far apart at distances from 
each other of the order of 

Cnoidal waves of this type are also called a periodic lattice of 
very sparsely distributed solitons. As to the function p ,  (see 
(2.5) ) it corresponds to a set ofalternating-sign wave trains, 
with each train having a length of the order of 1/A ( a  set of 
kinks). For s'- 1 we have [see (A.5) ] 

p+h, v+h/3, x+h/3, p-t l ,  a+2h/3. (B.2) 

In analyzing the stability of waves with s'- 1 we find it 
also useful to represent the cnoidal waves in the form of a 
superposition of solitons (in the cases of cn and dn waves) or 
kinks (in the case of sn waves). This type of representation is 
characterized by the formulas (cf. Refs. 19 and 20) 

the dispersion equation for the  other two types of waves. 
According to Ref. 18, the real and imaginary Jacobi 

qc=2's-'o, (-1) sech o1 (E-nh.) , 
transformations connecting the functions of interest to us 
have the form ~ = 2 " 0 2  sech 02 ( E - n b ) ,  (B.4) 

(A.6) q1.=2~s-~o, (-1)" th o, (\-nh,). (B.5) 

(A'7) where the summation is over all integral n ranging from 

where C = K ( s , )  + iK(s). Taking account of these equa- - co to + co, 
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oi=ngi /2K(s , ) ,  h i=2K(s)  /gi ,  i=1, 2, 3, (B.6) 
the quantities gi being given by the formulas (2.3)-(2.5). 
According to (B.3)-(B.5), the quantities h,  and h, have the 
meaning of intersoliton separation; h,, that of a kink length. 
In accordance with (B.6), for sZ -+ 1, these quantities are giv- 
en by the relations 

where A is given by the formula (B. 1 ) . Equations (B. 1 ) and 
(B.7) allow us to express the parameter 1 - s2 in terms of the 
intersoliton separation (or in terms of the kink length): 

These equalities were used in Sec. 4. 

'V. I. Karpman, Nelinelnye volny v dispergiruyushchikh sredakh (Non- 
linear Waves in Dispersive Media), Nauka, Moscow, 1973 (Eng. 
Transl., Pergamon, Oxford, 1975). 

'V. E. Zakharov, Zh. Eksp. Teor. Fiz. 53,1735 ( 1967) [Sov. Phys. JETP 
26,994 ( 1968) 1. 
%. Rowlands, J. Inst. Math. Appl. 13, 367 (1974). 
"E. Infeld and G. Rowlands, Z. Phys. B 37,277 (1980). 
'E. Infeld, Pis'ma Zh. Eksp. Teor. Fiz. 32,97 ( 1980) [JETP Lett. 32, 87 
(1980)l. 

%. Infeld and J. Ziemkiewich, Acta Phys. Pol. A 59, 255 (1981). 
7D. U. Martin, H. C. Yuen, and P. G. Saffman, Wave Motion 2, 215 
( 1980). 

'V. P. Pavlenkoand V. I. Petviashvili, Pis'ma Zh. Eksp. Teor. Fiz. 26,3 13 
(1977) [JETP Lett. 26,200 (1977)l. 

'V. I. Petviashvili, in: Nelineinye volny (Nonlinear Waves), Nauka, 
Moscow, 1979, p. 5. 

"'V. P. Pavlenko and V. I. Petviashvili, Fiz. Plazmy 8,206 ( 1982) [Sov. J. 
Plasma Phys. 8, 117 ( 1982)l. . 

"N. G. Vakhitov and A. A. Kolokolov, Izv. Vyssh. Uchebn. Zaved. Ra- 
diofiz. 16, 1020 ( 1973). 

"V. E. Zakharov in: Osnovy fiziki plazmy (Basic Plasma ed. A. A. Gileev 
and R. S. Sudan, Physics), North Holland, Vol. 2, Amsterdam (1982). 

"V. E. Zakharov and A. M. Rubenchik, Zh. Eksp. Teor. Fiz. 65, 997 
( 1973) [Sov. Phys. JETP 38,494 ( 1974) 1. 

I4V. I. Petviashvili and V. V. Yan'kov, in: Voprosy teorii plazmy (Prob- 
lems of Plasma Theory), Vol. 14, Energoizdat, Moscow, 1985, p. 3. 

IsB. B. Kadomtsev, Kollektivnye yavleniya v plazme (Collective Phe- 
nomena in a Plasma), Nauka, Moscow, 1973. 

IhV. E. Zakharov, Zh. Prikl. Mekh. Tekh. Fiz. 2, 80 (1968). 
I7S. V. Antipov, M. V. Nezlin, E. N. Snezhkin, and A. S. Turbnikov, Zh. 

Eksp. Teor. Fiz. 76, 1571 (1979) [Sov. Phys. JETP 49,797 ( 1979)l. 
I'M. Abramowitz and I. Stegun (eds.), Handbook of Mathematical 

Functions, Dover, 1964 (Russ. Transl., Nauka, Moscow, 1979). 
"A. A. ZaTtsev, Dokl. Akad. Nauk SSSR 272, 583 (1983) [Sov. Phys. 

Dokl. 28,720 ( 1983)l. 
"'G. B. Whitham, IMA J. Appl. Math. 32, 353 (1984). 

Translated by A. K. Agyei 

979 Sov. Phys. JETP 63 (5), May 1986 V. P. Kudashev and A. B. Mikhallovskil 979 


