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Equations for the density matrix of a two-level atom in the field of a standing light wave are 
solved quasiclassically. The adiabatic state representation is used and an allowance is made for 
the mixing of these states due to spontaneous emission and Landau-Zener transitions. The 
frictional force acting on an atom is found from this solution for a wide range of atomic and 
field parameters. In a strong field the friction is due to hysteretic effects in stimulated 
transitions. At low velocities this force exhibits a narrow peak which is not broadened by the 
field (adiabatic resonance). Coherent "shakeup" as a result of the Landau-Zener transitions 
causes the frictional force to have an oscillatory structure. 

1. INTRODUCTION 

We shall consider two types of problem. In the first we 
shall employ the quasiclassical method to solve the equation 
for the density matrix of a two-level atom in a field described 
by V, sinwt. Such equations are frequently encountered in 
nonlinear resonance optics when describing the behavior of 
an atom in the field of a standing light wave or in a bichroma- 
tic (two-frequency ) field. In the second type of problem the 
radiation pressure force acting on an atom in the field of a 
standing wave is obtained from the solutions over a wide 
range of atomic and field parameters. The second problem is 
very imp~rtant l-~ since resonant electromagnetic fields can 
influence significantly the translational motion of heavy par- 
ticles. 

The radiation pressure force in a strong field of a stand- 
ing wave was first calculated in Ref. 4 in a quasisteady ap- 
proximation. It was shown that, in addition to a gradient 
force, a particle experiences also a frictional force which de- 
pends on the sign of the detuning. The same problem was 
considered for weak fields in Refs. 5-9. The case of slow 
atoms was studied in Refs. 10-12. Moreover, a numerical 
solution of this problem was obtained in Ref. 13 for a certain 
range of parameters. 

In a strong field the main role is played by stimulated 
transitions which form two quasienergy atomic states. Spon- 
taneous relaxation mixes the states and gives rise to hystere- 
sis in the response of the system. The other source of mixing 
is represented by Landau-Zener transitions in the vicinity of 
field nodes. These transitions and the consequent interfer- 
ence effects were studied in Refs. 14 and 15 without 
allowance for relaxation. 

In the present paper (Sec. 4) we obtain a solution of 
equations for the density matrix allowing for both mecha- 
nisms for mixing of quasienergy states: noncoherent (spon- 
taneous relaxation) and coherent (Landau-Zener transi- 
tions). 

We shall show that in a strong standing-wave field a 
frictional force appears as a result of hysteresis of the gradi- 
ent force ("delayed" gradient force) and it may exceed con- 
siderably the spontaneous radiation pressure. Considered as 
a function of the velocity, it has a large-amplitude resonance 
at small velocities such that kv - y, where y is the line width. 

A strong field does not broaden this resonance, but simply 
alters its profile. This resonance appears in the case of a suffi- 
ciently large detuning; we shall refer to it as adiabatic. 

In Sec. 3 we shall use perturbation theory to show that 
an adiabatic resonance appears in the sixth order with re- 
spect t o  the field and that it is associated with the appearance 
of shifted components in the resonant fluorescence spectrum 
of an atom. 

In the range of high velocities and small values of the 
detuning the frictional force exhibits an oscillatory structure 
because of interference effects when an atom travels under 
the simultaneous influence of two potentials. The visibility 
of the interference pattern is determined by the competition 
between the spontaneous relaxation and the "shakeup" due 
to the Landau-Zener transitions (Sec. 5). 

2. PRINCIPAL EQUATIONS 

In a resonant inhomogeneous field E(r)exp( - iAt) (A 
is a small detuning from a resonance) an atom experiences a 
force 

where 2 is the dipole moment operator and p is the density 
matrix of the atom. For simplicity, the atom is assumed to 
have two levels and the level degeneracy as well as the field 
polarization are ignored. The magnitude of this force de- 
pends strongly on the spatial structure of the field. In a trav- 
eling wave 

E (r) =Eo exp (ikx) 

we obtain the familiar expression for the force2 

F=F,=rikyw (A-kv,) , w ( A )  =V:/ (AZ+y2/4+2V,2) ,  (2)  
Vo=dEo/h, 

where y is the rate of decay of the upper level and w is its 
population. The quantity Fis limited by the rate of spontane- 
ous transitions, and under saturation conditions ( w  z 1/2) it 
reaches its maximum value Fsp = fiky/2. 

We shall be interested in the case of a standing wave 
E ( r )  = E, sinkx, when the field intensity gradient has its 
highest possible value. In this case it is the stimulated transi- 
tions and delay effects caused by the spontaneous relaxation 
that play the main role in a strong field. 
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It is convenient to consider these effects in the time do- 
main using a system of coordinates moving at the velocity of 
the atom, v ~ v , .  Such a description is justified in many cases 
of practical importance when the velocity of a particle varies 
slowly in the interaction process. This condition is realized, 
in particular, when the kinetic energy Mv2/2 exceeds the 
potential energy of the interaction -dE,,. 

In the time representation (x = vt) the induced dipole 
moment is found by solving the equation for the density ma- 
trix of an atomp(t): 

(: + p b a )  V ( t )  = Vo sin cot, 
VP = ' o = kv, Vo= dEo/ti. 

- Pa6 - YPbt 

The indices a and b denote the ground and excited states. 
We shall consider an asymptotic (when yt) 1 ) periodic 

solution ofthe density matrixp(t + 2r /o)  = p( t ) .  In addi- 
tion to the obvious invariance under the substitution 
t+t  + 27r/w, the system of equations (3) is invariant under 
a translation equal to half the period r / o ,  accompanied by a 
simultaneous reversal of the sign of the off-diagonal ele- 
ments of the density matrix [ p, ( t  + a/@) = -p, (t) 1. 
Therefore, the asymptotic solution satisfies the "half-peri- 
od" condition 

The force ( 1) is directed along the x axis and in the 
coordinate system of the atom is given by 

2 dV 
F ( t )  a -- Re 

v dt 
In the case of the steady-state periodic solution the induced 
dipole moment 

can be represented in the form of two terms p ( t )  = p,(t) 
+ p ,  ( t), where 

p. ( t )  = i  z p 2 n + i  sin(2n+l) o t = ~ ( t ) f i [ v ~ ( t )  1, 

Here, 9, and 9, are certain functions of time which are 
determined by the instantaneous value of the field and have 
the period r/o. there fore,^, ( t )  represents the synchronous 
(phase-matched) part of the dipole moment which is gov- 
erned by the value of the field at a moment of time t, whereas 
the delayed part of the dipole moment p, ( t )  depends not 
only on V(t), but also on the derivative dV/dt. We must 

stress that we are speaking here of the synchronous and de- 
layed behavior ofp(t) relative to slow oscillations of the field 
at the Doppler frequency o = kv and not relative to fast opti- 
cal oscillations of the field. 

This division of the dipole moment gives rise to two 
characteristic terms in the optical pressure force: 

The forceF, is the total derivative of a periodic function with 
respect to time and it obviously vanishes when averaged over 
the oscillation period ?z/w. In the coordinate representation 
(vt = X )  this force is a gradient of some effective potential, 
F, = - au,,/a~. 

The delayed part of the dipole potential creates a fric- 
tional force Fr which cannot be represented as a time deriva- 
tive of a periodic function and which therefore does not dis- 
appear as a result of averaging over the field period. It  can be 
shown that the delayed (hysteretic) part of the force is an 
odd function of the detuning A and of the velocity v of the 
atom. 

3. FEATURES OF PERTURBATION THEORY IN THE CASE 
OF A STANDING WAVE FIELD 

The system of equations (3) rewritten in terms of the 
Bloch variablesp = p, and q = pbb - pa, becomes 

( - i )=-v ( t )  v=A+iyl2. 

We shall consider large values of the detuning from a 
resonance: 

and fairly general relationships among the parameters V,, w, 
and y. Then, Eqs. (7) and (8) can be solved by expanding 
them in powers of 1/A. In the first order in 1/A we obtain the 
synchronous part of the dipole moment p, ( t )  - V(t)/A, 
which gives the familiar expression for the gradient force in 
the case of weak saturation 

F,=-~U,,/~X, u,, --AP (x)lh. ( 10) 

The effective potential of Eq. ( 10) is governed by stimulated 
transitions and represents the Stark shift of the atomic levels 
in a resonant inhomogeneous external field. 

In higher order in l/A, we not only have small correc- 
tions to the effective potential -- ( VdA)2, (Y /A)~ ,  and (w /  
A)2, which we shall ignore, but also a frictional force. This 
force appears because of the delay effects associated with 
spontaneous emission. 

The delay effect in a traveling wave field gives rise to the 
spontaneous radiation pressure of Eq. (2),  which is directed 
along the wave vector and is less than F, . In a standing wave 
there is a contribution equal to the difference between the 
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forces of the spontaneous radiation pressure (2) for each of 
two waves traveling in opposite directions (counterpropa- 
gating waves) .69 Moreover, there is a contribution from the 
delay effect in stimulated transitions associated with the re- 
peated scattering of photons between two opposed light 
waves. This quantity can be called the delayed gradient 
force. The effects in question can easily be identified by the 
following simple procedure for solving the Bloch equations. 

In solving Eq. (8) it is sufficient to allow for the time 
derivative using perturbation theory 

\ - - ,  

Vo r dV .vV i d .  

The second term in Rep, where the substitution q z - 1 is 
made, represents the contribution of the difference between 
the spontaneous radiation pressure forces to the frictional 
force F,. The first term in Rep represents the gradient force 
[in particular, if q z  - 1, it is described by Eq. ( 10) ] and 
also the delayed gradient force. The latter can be found by 
calculating the delay effect in the population difference. 

Substituting Imp in Eq. (7) ,  we obtain the following 
equation for the function A(?) = - ~ ( t ) q ( t )  (Ref. 4): 

Integrating Eq. (12) subject to the initial condition 
A (  - 00) = 1,weobtain 

OI T 

Equation ( 13) is valid for arbitrary values of the saturation 
parameter ( V,JA)2 and will be used in Sec. 4. However, in 
the case of a weak field ( Vo (A), it simplifies greatly so that 
omitting small local corrections of the form [ V(t)/A 12, we 
find that q(t) is described by 

m 

It should be noted that the delay effect appears in q only in 
terms of fourth order and higher with respect to the field. 

The physical interpretation of the hysteresis is clearest 
in the adiabatic state representation and is discussed in Sec. 
5. Using Eqs. ( 14) and ( 1 1 ), we can find the optical pressure 
force averaged over the field period (the averaging proce- 
dure is represented by angular brackets) : 

( F r ) / 6 p  

The first term is associated with the spontaneous radiation 
pressure. If A > 0, it is positive and results in acceleration, 
whereas if A < 0, it results in deceleration of particles. 

In moderately weak fields, when the spatially depen- 
dent Stark shift exceeds the resonance width 

Vo> V,= (7 A)"', (16) 
the second term associated with the delayed gradient force 
becomes more important. Then, (P) vanishes not only for 
u = 0, but also for 

and if A > 0 and Iul < u,, it becomes the deceleration force. 
For sufficiently large field amplitude A > V, > A ( y/A ) ' I 6 ,  

the maximum value of the force I (F  ) 1 exceeds F, . The de- 
layed gradient force considered as a function of the velocity 
is dispersive with a characteristic width w - y .  At high veloc- 
ities w % y ,  the contribution of the delayed gradient force 
becomes small. This makes it possible to write down the in- 
terpolation formula for ( F , )  valid for arbitrary velocities, 
using only the assumption that A) V,,y: 

The force (17) considered as a function of the velocity ex- 
hibits resonances associated with the independent action of 
two opposed waves. These resonances are located in the 
range of high velocities w = + A, and if V o )  y they have the 
field width. Secondly, (10,) has a resonance in the range of 
low velocities w - y associated with the simultaneous action 
of two waves. A special feature of this resonance, which we 
shall call adiabatic, is the absence of field broadening. Figure 
1 shows schematically the force ( 17). 

4. QUASICLASSICAL SOLUTION OF EQUATIONS FOR THE 
DENSITY MATRIX 

As shown above, in the limit of slow atoms and strong 
forces the friction is governed mainly by the delay effect in 
stimulated transitions. We can generalize this result to the 
case of arbitrary saturation by obtaining a quasiclassical so- 
lution of the system of equations (3) for the density matrix 
of an atom subject to the condition 

Vo, A>oq 'I 9 (18) 
but for arbitrary values of the parameters Vo/A and w/y. 
This situation was analyzed in Refs. 14 and 15 ignoring 

\ FIG. 1 .  Dependence of  the average frictional force of  Eq. 
(17 )  on the velocity in the case when A > Yo> (yA)"*.  

W 
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spontaneous emission, and it was found that a convenient 
basis for the description of the state of an atom is provided by 
adiabatic solutions of the Schrodinger equation with the 
Hamiltonian (3 ) : 

The states $, and $, correspond to the motion of an atom 
experiencing potentials f U(x) = f f iA~ .  (x)/2; when the 
field is switched off, they reduce to the ground and excited 
states, respectively. If the detuning from a resonance is suffi- 
ciently large 

A A,= ( V o w )  "'<V0, (20) 

the adiabatic solutions ( 19) are valid for all values oft. In the 
case of a small detuning A 5 A,, the adiabatic approximation 
is no longer obeyed in narrow regions of width St - l/A, ( I/ 
w near the nodes of the field. In such regions of the closest 
approach of the adiabatic terms f U the mixing of the states 
$, and $, is strong, and this is described by a unitary Lan- 
dau-Zener transition matrix 

az 
x =, + arg I'(1-iE) -5 In ( e / % ) ,  

where r (x)  is the gamma function. 
The problem can be solved allowing for spontaneous 

relaxation by the following procedure. Far from the field 
nodes the density matrix can easily be found in the adiabatic 
state basis (19). In the vicinity of a field node the system of 
equations (3) is solved by the Landau-Zener method. 
Matching these results, we obtain a general solution forp ( t )  
over half the field period n-/w and we can then find the arbi- 
trary constants from the condition (4). 

Region far from a field node 

We shall consider specifically a time interval ?z/w with a 
field node at t = 0. For the values oft  not too close to a field 
node ( It I & l/A,) we shall go over to the density matrix in 
the adiabatic state representation ( 19) by a unitary transfor- 
mation S, ( t)  : 

p ( t )  =SA ( t )  pA ( t )  L+ ( t )  1 S* = ( U* ) -0' u 

d  
(22) 

- P - sA+ ( i p )  sA, 
d t  A--  - pi2 pii . 

In the equation forp, ( t )  we can ignore the terms which are 
proportional to uv and (uv) *, since they oscillate rapidly if 

( t 1 ) l/Ao and give rise to corrections of order y/eA 4 1. 
Then, the population difference A = pll - p,, and the co- 
herence B = p,, of adiabatic states are described by indepen- 
dent equations 

A general solution of these equations for the interval 
O<t<n-/w is 

1 

A ( t )  =Aoe-Mi(t)+G ( t ) ,  pi ( t )  = 5 ( I + f ) dt', 
0 

t 

dt' 
~ ( t )  = y  .I r n e x p  I p t ( t l )  - p i ( t )  1, (24) 

0 

B ( t )  =Boe-pa(t), 

The solution for the case when - n-/w < t < 0 differs only in 
the integration constants. 

Region near a field node 

We shall now consider a small region near a field node: 
It I - l/Ao 4 l/w, l/y. We can linearize here the interaction 
operator V(t) z V@t and simplify considerably the relaxa- 
tion operator 

where a, is the Pauli matrix. The above relationship means 
that we are ignoring the terms yp/2 and yq in the Bloch 
equations (7)  and (8);  these terms contribute small correc- 
tions of order yt( 1 to a homogeneous solution. The inho- 
mogeneous term y in Eq. (7)  should generally be retained 
because the difference q between the populations under 
strong saturation conditions is small and can be of the order 
of the contribution yt made by the inhomogeneous source. 

Then, in the vicinity of a field node the system (3)  be- 
comes 

The solution of the system is obtained using the evolution 
operaiorS(t) of the Schrodinger equation with the Hamilto- 
nian HL from the theory of the Landau-Zener transitions: 

t 

@ t =exp ( - i ~ ' / 2 )  @ ( t /2+iE/2,  t / 2 ;  i ~ ' )  , 7=A0t ,  

D2=-i ( A / 2 A 0 )  T exp ( - i? /2 )  (D ( i / z+iE/2,  3 / 2 ;  i z 2 ) ,  

where @(a,y;x) is the confluent hypergeometric function. 

Matching of solutions 

The solutions (22) and (26) for p ( t )  should be identi- 
cal in the regions of their overlap l/Ao 4 It I ( l/w, l/y. If 
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It I ) I/A,, the evolution operatorS(t) differs from SA (t) by 
the constant matrices 

a= {'I2 (l+R))lh exp(ix,), 
(27) 

b={'/2(l-R))'h exp[--i(x-x1)], 

xl=-'/2g In (2elg) Sarg I?('/,-i%/2). 

The matrices S * are related to the Landau-Zener transition 
matrix, Eq. (21 ), by 

Therefore, in the overlap regions the relationship between 
the solutions is 

pA (t) =S+o (t)  S*+. (28) 

The lower f signs refer to t?O. 
Equation (22) forp, in an overlap region can be simpli- 

fied retaining only the source 

d 7 7  PA-" - - SA+ (t) O~SA (t) - - 3 3 7  2 26 

"I dt' PA(t)=pA(+O)--cJ3 - 
2 1 e(tf)  ' 

Substituting Eqs. (26) and (29) into Eq. (28), we obtain the 

relationship between the constants of integration: 

pn (+O) =S+P (0) S++ 
m 

The integral on the right-hand side of this relation converges 
for t - l/A, and, therefore, the upper limit of this integral 
can be replaced with infinity. We then naturally have ~ ( t )  
~ ( 1  + ( 2 ~ ; t / ~ ) ~ ) " ~ .  

Similarly, matching of the solutions at t < 0 gives the 
relationship betweenp, ( - 0) andp(0). We thus obtain the 
following relation between the constants of the general solu- 
tion (24) to the left and right of a field node: 

where $ ( x )  = d lnr(x)/dx. 
It therefore follows that the "shakeup" experienced by 

an atom near a field node establishes an effective boundary 
condition (3  1 ) for the adiabatic solution. The first term on 
the right-hand side in the first equation of the system (3 1 ) 
represents a coherent perturbation due to the Landau-Zener 
transitions, whereas the second term is due to incoherent 
transitions caused by the spontaneous relaxation. 

Using Eqs. (31 ), we continue the solution by half the 
field period .rr/w and use the "half-period" condition (4) to 
find the constants of the adiabatic solution (24) 

(1-R2) (ch p2+ cos 2cp) ( G + r  IA] g/2Aa2) - RZ(G sh pz- (ny l A l / a o 2 )  sin %) 
Ao = - 

(1-132) (i-e-@I) (ch pz+cos 2q1) + Rz(i+e-fill sh pz 

~ , 2 = p , ( ) ,  G=G(n/m), 
n/u 

The function B(t)  will not be needed later, which is why the 
fairly complicated expression for B, is not given. 

Equations (22), (24), and (32) represent the solution 
of the problem formulated above and they describe the den- 
sity matrix of an atom under the quasiclassical conditions of 
Eq. (18), allowing for spontaneous emission and for the 
Landau-Zener transitions. 

5. FRICTIONAL FORCE IN A STRONG FIELD 

It follows from Eq. (22) thatp(t) contains three terms. 
One of them, proportional to A(t),  exhibits no fast time os- 
cillations. The other two, proportional to B(t)  and B *(t),  
oscillate at a high (Rabi) frequency. 

In calculating the radiation pressure force we can ig- 
nore these fast oscillations. Then, Fis determined only by the 
function A and is of the form (x = vt) 

The function A allows both for the delay due to spontaneous 
emission and for coherent "shakeup" which an inner state of 
an atom experiences on passing through a field node. 

Quasisteady conditions 

If A +A,, the probability R of a Landau-Zener transi- 
tion is exponentially small, the function g=. - (1/12{ ') is 
also small, and we have A,-G/( 1 - e ), so that Eq. 
(24) for A(t) can be represented in the form 

This is identical with Eq. ( 13) if we allow for periodicity of 
the function E (t) .  In the case of slow atoms w 4 y the delay 
timeisshort (r-l/y(l/w) a n d ~ ( t  - r)  in&. (34) canbe 
expanded in powers of 7. This expansion is valid for all val- 
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ues of t if the condition w/y< 1 is satisfied in the case of 
moderate saturation, whereas in the case of strong satura- 
tion we need a more stringent condition w/y ( A/Vo < 1. 

If we confine ourselves to terms of the zeroth and first 
order in w/y, we obtain 

due, A A 
F g = - x ,  U,,=--.ln[I+~~(x)], 2 

These expressions are in agreement with the results of Refs. 
10-12. The gradient force is determined by the logarithmic 
potential: if V, k A, the depth of modulation is Sue, -fiA 
and it rises slowly (logarithmically) as a function of the 
field. The frictional force F, represents the delayed gradient 
force. In the case of weak saturation (yA< VE <A2) it is 
identical with the results of perturbation theory ( 15). When 
saturation is close to unity ( Vo- A), the value of F, has a 
characteristic scale F, -+ikAw/y. In the case of strong satu- 
ration ( Vo)A) the frictional force is strongly inhomogen- 
eous in space and its local maximum located near a field 
node exceeds ( F , )  by a factor Vo/A. The expressions in Eq. 
(35) are valid in a wide range of values of the detuning A,, 
y (A < V;/y. Outside this range we generally have to allow 
for the contribution of the spontaneous radiation pressure 
force. lo-'' 

In the case of fast atoms y <w < A2/v0, retaining in Eq. 
(34) the terms of the zeroth and first order in y/w, we obtain 

4 cos aK (sin a )  
C, = s ina=  [ I+ ( - ) 2 ] h ,  (36) 

n ( l+cosa )  ' 

4 K (sin a )  [E (sin a )  + cosZ aK (sin a) ] c,=?-%- - 1. 
1 + cos a 

Here, K and E are complete elliptic integrals. The effective 
potential differs from the adiabatic potential U only by a 
constant factor Cg, which is proportional to the difference 
between the populations of the adiabatic states. The param- 
eter yC,/w represents the magnitude of the hysteresis. At 
low values of V,/A the probability of spontaneous transi- 
tions is low, so that Cg zz 1 and C, z 1/2( V,,/A16 in agree- 
ment with the formulas ( 10) and ( 15) obtained from pertur- 
bation theory. In the strong saturation case (V,$A) the 
populations of the adiabatic states equilibrate: 

Therefore, the amplitude of modulation of the potential and 
the average friction force saturate to within logarithmic 
terms in a strong field. 

When the field is strong ( V,/A 1 ), we can obtain sim- 
ple expressions for the average force in two overlapping ve- 
locity intervals: 1) w/y) A/V,; 2)  w/y< 1. In the first inter- 
val the values of T close to t are important in the integral of 

Eq. (34), so that to within logarithmic terms the average 
frictional force is given by 

Ifw ) y, this agrees with Eq. (36). In the velocity interval A/ 
V, <w/y < 1 the frictional force depends weakly (logarith- 
mically) on the velocity: 

2hkA 
<F,>=- - sign v ln (38) 

n 
It is clear from Eq. (37) that the width of an adiabatic reso- 
nance on the w scale is governed by the value of y even under 
strong saturation conditions. In other words, there is no field 
broadening of a resonance and only the profile is altered 
compared with the case of a weak field described by Eq. 
(15). 

In the second velocity interval (w/y < 1 ) the average 
frictional force depends on the parameter yA/V@, which 
governs the competition between the processes of spontane- 
ous relaxation and growth of the field near a node. Calcula- 
tions yield 

m 

If PY exp[ f~ arctg y-P arctg (x+y) ] 
[ I+ ( x i  y) 2 1  'b 

(39) 
The asymptotic form of the function Q( 8) is 

We can easily see that Eqs. (37)-(39) are identical in the 
velocity range A/ V, <w/y < 1. In the case of very slow atoms 
when w/y <A/Vo, Eq. (39) is identical with the result of 
averaging of Eq. ( 35 ) over a field period. 

Therefore, in a strong saturating field the frictional 
force is described always by Eqs. (37) and (39) irrespective 
of the atomic velocities. The force then obeys (Fr ) a u in the 
range w/y < A/4 Vo, rises logarithmically with the velocity 
when A/4 V, < w/y < 1, reaches a maximum on the order of 
fikA In ( V,/A), and falls as l/u when w/y > 1. 

Hysteresis 

A qualitative understanding of the hysteresis may be 
gained by considering the weak saturation case ( V,<A). 
The population of the adiabatic state I/, is then close to unity 
p1 = ( 1 + A ) / 2 =  1, and the population p,, = ( 1 - A)/2 
of the state I/, is small and satisfies, in accordance with Eq. 
(22), the following equation 

An atom in the state I/, has a potential energy U> 0 when 
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A > 0 and is subject to the gradient force of Eq. ( 10). In the 
case of motion in the positive direction to the left of a field 
antinode the atom is decelerated by this force, whereas to the 
right it is accelerated. The probability of a transition to the 
state q2 as a result of spontaneous emission is proportional to 
V and peaks in the region of a field antinode. After such a 
transition an atom moves in a potential - U, which now 
decelerates its motion to the right of a field antinode. The 
decay of the populationp,, occurs at a constant rate y. If an 
atom returns to the initial state y5, in the region of a field 
node, then after a period 7i/o the deceleration is a maximum. 
Therefore, forward and reverse spontaneous transitions 
between adiabatic states have different spatial (temporal) 
localizations and a situation typical of hysteretic phenomena 
is observed. 

The sign of the potential Uis reversed for negative val- 
ues of the detuning and there is a corresponding change in 
the sign of (F?) .  

It should be noted that spontaneous transitions between 
the adiabatic states $, and $, govern the shifted components 
in the resonance fluorescence spectrum of atoms in an exter- 
nal field. In the case of an atom at rest the intensities of these 
components are the same; this is a consequence of the law of 
conservation of energy in the scattering processes. The ap- 
pearance of the frictional force during the motion of an atom 
relative to a standing field implies breakdown of the symme- 
try between the shifted components. Obviously, if A > 0, 

when a particle is decelerated by the delayed gradient force, 
the intensity of the anti-Stokes component is greater than 
that of the Stokes component. 

Landau-Zener transitions 

If A 5 A,, then the expression for the force contains new 
functions of the parameters of the problem which include 
both a smooth dependence on the velocity of a particle, 
which enters via the parameters o /y  and A/A,, and a sharp 
dependence, which is due to the quasiclassical phase 
p- V,/w% 1. The latter circumstance has the effect that a 
change in the velocity gives rise to oscillations of the optical 
pressure force and their period is 6v/u-w/V,< 1. The de- 
pendence of the force on the phase p is due to an interference 
effect which occurs when an atom is traveling under the si- 
multaneous influence of two adiabatic potentials _+ U ( x ) .  
The interference effects are considered in Refs. 14 and 15 
under the conditions of pure coherent interaction with the 
field (i.e., ignoring spontaneous relaxation). 

In the case of noncoherent interaction the "visibility" of 
the interference structure is governed by the competition 
between the processes of spontaneous relaxation and 
"shakeup" in the Landau-Zener transitions. 

Since the saturation is strong for A - A,, the main con- 
tribution to (Fr ) comes from vicinities of field nodes and can 
simplify greatly the general expression for the frictional 
force. In a wide range of velocities u/y$ A/V,, we have 

4 y  (1-R2) (In A+g/2) (Ifcos 2rp/ch 3p) -t (nRZ/2) sin 2cplch 3y (Fr>=- - -1 +, (42) 
rc (I-R2) th y (Ifcos 2cpIch 3p) -tR2 th 3p 

The quantity A which occurs in the above expression has the 
same meaning as in Eq. (37). If R = 0, Eq. (42) becomes 
identical with Eq. (37). 

We shall now consider the typical behavior of (F,)  for 
finite values of R.  

In the case of slow atoms (A/ V,, & w/y & 1 ) the param- 
eter p is large so that the dependence on the phase p disap- 
pears from Eq. (42) and there are no interference effects. 
Consequently, the average force is described by the expres- 
sion 

2AkA 
(FJ=-  - sign ~ ( (1 -RZ)  (In A+g/2)-nw/y). (43) 

n 

If 1 - R is very small, then the main role is played by the 
logarithmic term which differs from the quasisteady-state 
expression (38) by the factor 1 - R 2 .  In the case of small 
values of the detuning (A < A,) we have g z c  + Inf and the 
frictional force 

(44) 
regarded as a function of A changes its sign at A = A,. 

The interference effects begin to appear when 3,u 5 1. 
We shall consider the case of fast atoms when y/w 4R, so 
that the "shakeup" as a result of the Landau-Zener transi- 
tions is not small and is not balanced by relaxation. Then, we 
obtain the following formula from Eq. (42): 

4 [In (8Vo/A) +g/2]cosz c p f  '/2n62 sin cp cos cp - } fi2=3RZ/2 (1-R2). 
cosZ q+s2 

We can see that (F,) is a rapidly oscillating function of the } (46) 
velocity which changes sign. The nature of the oscillations cos2 cp+6' 
depends on the value of the parameter A/A,. 

If A/A, 2 1, then with the logarithmic precision we ob- If S2 =+ R g 1, the value of (F,) as a function of the veloc- 
tain ity has narrow peaks ( A  > 0)  or dips (A < 0)  near the points 
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wherep = ~ ( n  + 1) .  This is the condition for a multiphoton 
resonance with respect to w in a strong field ( Vo%A)w) 
subject to an allowance for the adiabatic behavior at field 
nodes (Landau-Zener resonance14915)." The width of the 
peaks or dips is 6v/v -wR /V,( 1 and their relative ampli- 
tude is of the order of In( VdA). At a resonance point the 
force changes its sign and is equal to fiyA/2v. The frictional 
force of Eq. (46) averaged over rapid oscillations is identical 
with the quasisteady-state expression (36) containing the 
renormalized coefficient C,.  At low values ofR there is natu- 
rally no renormalization. 

In the range of small values of the detuning ( A  ( A,, i.e., 
S2) 1 ) we can ignore the logarithmic term in Eq. (45), so 
that 

Near a resonance (A 4 A,) the general expression for 
the force (45) simplifies considerably for arbitrary veloc- 
ities: 

Ifw S y, then Eqs. (47) and (48) naturally become identical. 
We can see that if A (A,, then the nature of the force 

changes qualitatively and its sign is opposite to the quasi- 
steady-state result of Eq. (36). 

Figure 2 shows the dependence of the frictional force 
( F r )  on A and w calculated using Eqs. (24), (32), and (33), 
and also by numerical integration of the Bloch equations. 

FIG. 2. a )  Dependence of the average frictional force on the detuning 
from a resonance for V,/y = 100 and k v / y  = 0.3. b) Dependence of the 
average frictional force on the velocity of an atom for V,/y = 100 and A/ 
y = 30. The continuous curves represent numerical solutions of the Bloch 
equations, and the dashed curves are calculations based on Eq. (32); open 
circles give the quasisteady-state solution of Eq. (34).  

6. CASE OF FAST ATOMS 

We shall now consider the case of a small detuning and 
fairly fast atom: 

7, A < u  (49) 
without any restriction on the relationship between V, and 
0. 

The solution of the equations for the density matrix can 
be found using perturbation theory with respect-to y and A in 
the basis of diabatic states in which a rigorous allowance is 
made for the interaction with the field when y = A = 0 
(Refs. 17 and 18). Let us assume that p ( t )  
= S( t )p( t )S  + ( t ) ,  where 

Then, the equations for A ( t )  = p, ,  -p22 and B(t)  = p,,, 
wherepG (i, j = 1,2) are elements of the matrixp, become 

and they can be solved subject to the "half-period" condition 
A ( t  + 7T/W)  = - A ( t ) ,  B(t + T/W) = B * ( t ) .  In the lowest 
order in A and y, we have18 

where J ,  is a Bessel function. 
The expression for the average force obtained after inte- 

gration by parts using the system (50) can be represented in 
the form 

In the lower order in y and A we can drop the last term, and 
use Eq. (5 1 ) for B. As a result, we obtain 

In a strong field (V,%w), this expression is identical with 
Eq. (47). 

7. CONCLUSIONS 

Therefore, the adiabatic state representation and 
allowance for mixing of states by spontaneous relaxation and 
the Landau-Zener transitions makes it possible to obtain a 
very informative solution of the Bloch equations in a wide 
range of the parameters of the problem. An analysis given 
above shows that there are three characteristic regions of the 
parameters in which the nature of these solutions changes 
qualitatively. This is shown schematically in Fig. 3. In re- 
gion I the frictional force is governed primarily by the differ- 
ence between the spontaneous radiation pressure forces in 
the case of two opposed waves. In region I1 the delayed gra- 
dient force predominates and it is described by a quasi- 
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We shall conclude by noting that the above solution of 
the Bloch equations can be used also to study other problems 
in nonlinear resonance optics. 

The authors are grateful to L. N. Shchur for his advice 
and to A. Tsvetnov for his help in the numerical calcula- 
tions. 

"In a weak field q = a A / h  these resonances also coincide with the 
Doppler structure.16 In a strong field their positions and widths change 
considerably, and this why we shall call them the Landau-Zener reson- 
ances. 

FIG. 3. Characteristic regions of solutions of the Bloch equations: I )  weak 
stimulated transitions V, (yA) 'I2; 11) quasisteady-state region A > A,, 
where the solution is described by Eq. (13); 111) Landau-Zener transi- 
tions with A 5, A,, where the solution is described by Eqs. (24) and (32). 

steady-state solution and when the detuning is sufficiently 
large ( A  > ( Voy) 'I2) there is a narrow peak (adiabatic reso- 
nance) in the velocity interval kv 5- y. If A > 0,  this force 
decelerates particles. The force reaches its maximum value, 
as can be seen from Fig. 2, for A -0.2 V, and w - 0.3y and it is 
then of the order of I ( F , )  I,,, -0.1 kdEo. Recently the basis 
of adiabatic ("dressed") states has been used also to analyze 
the frictional force in the quasisteady-state case.19 The re- 
sults obtained agree with those given above. 

Since the slow-atom limit (w 4 y )  for which results are 
obtained in Refs. 10-12 is of special interest, we note that in 
the case of strong saturation ( V,% A )  these results are valid 
in reality subject to a more stringent condition w / y  4 A/VW 
Finally, in region I11 the Landau-Zener transitions give rise 
to coherence between adiabatic states and the density matrix 
p exhibits oscillations with the Rabi frequency. Consequent- 
ly, the frictional force considered as a function of the velocity 
is oscillatory and is due to the Landau-Zener resonances. 
These features can be seen most easily in the case of fast 
atoms w 2 y. 
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