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The spectral and angular distributions for parametric x-ray radiation are found in the limit of 
extreme asymmetric diffraction. An expression is derived for the total number of photons 
recorded by a detector with a specified angular resolution. 

1. INTRODUCTION tal conditions in Ref. 10 because the x-ray diffraction there 

In Refs. 1-3 a novel Vavilov-Cherenkov mechanism Was highly asymmetric (see, e.g.7 Ref. 1 1 1. 
was proposed for parametric x radiation by relativistic In this paper we analyze a dispersion equation for PXR 

charged particles passing through a crystal. ~ ~ ~ ~ ~ d i ~ ~  to in the asymmetric diffraction limit and derive explicit for- 

~ ~ f ~ .  1-3, this type of emission occurs when the cherenkov mulas for the spectral and angular distributions and for the 

radiation condition total x-ray intensity. 

I -vn cos 6 4  ( 1 ) 2. SPECTRAL AND ANGULAR DISTRIBUTIONS 

( 4  = c = 1 ) and the Bragg diffraction condition 

are both satisfied. Here v is the velocity of the particle, 6 is 
the emission angle for a photon of momentum k and frequen- 
cy w, and T is a reciprocal lattice vector. Condition (2) re- 
quries that the refractive index n be greater than unity even 
for energies above a few refractive index n be greater than 
unity even for energies above a few keV (hard x-ray limit). A 
time-dependent theory of parametric x radiation (PXR) for 
perfect crystals was developed in Refs. 2-5 for Laue and 
Bragg diffraction, while the influence of block structure on 
the integrated PXR intensity was considered in Refs. 6 and 
7. 

Because (n - 1 ( =. 10-5-10-6 at x-ray frequencies, con- 
ditions ( 1 ) and (2) are consistent only for ultrarelativistic 
particles of energy' 

where m is the particle mass. If inequality (3 ) is not satisfied, 
the spectral density of the PXR drops as cc ( E  /Eth, )4 when 
the particle energy  decrease^.^ Rivlins made the interesting 
observation that Cherenkov x-ray emission should be possi- 
ble even for nonrelativistic particles ( v  4 1 ), because the 
crystal supports stationary Bloch waves which always have 
harmonics whose phase velocity is much less than the speed 
oflight. However, if (2)  [and therefore also (3) ] is not satis- 
fied, the amplitude of these harmonics is very low and the 
intensity of the Cherenkov x-rays excited by nonrelativistic 
electrons is therefore nearly zero (only 10-15-10-17 pho- 
tons per electron are generated over a photon absorption 
length) .9 Parametric x-ray radiation was recently observed 
experimentally,I0 and its kinematic properties (the reso- 
nance frequencies and the photon energies angles) were 
found to agree with the theoretical results.'-4 However, the 
explicit equations derived in Refs. 1-7 for Laue and Bragg 
diffraction do not yield a detailed description of the spectral 
and angular distributions of the XPR under the experimen- 

In the experiment in Ref. 10, electrons for energy 900 
MeV bombarded the edge of a diamond single crystal, and 
the yield of x-ray photons emitted normal to the incident 
electron beam was measured (Fig. l a ) .  The irradiated crys- 
tal was oriented with its (1 10) axis parallel to the beam, so 
that the x-rays emitted parallel to the beam were diffracted 
by the (100) planes of the diamond crystal and were record- 
ed by a detector (Fig. lb) .  (There was also another series of 
measurements in Ref. 10 in which the beam was parallel to 
the (100) axis.) The Bragg angle in this case was equal to 
45", i.e., the x-ray scattering geometry in the crystal differed 
from both the Laue and the Bragg configurations. This situa- 
tion has been referred to in the literature as transitional 
Laue-Bragg (or extreme asymmetric") diffraction. An ex- 
haustive theoretical analysis of asymmetric diffraction was 
recently given in Ref. 12 for the case of neutron scattering. 

To find the PXR intensity, we note that far from the 
crystal the diverging electromagnetic wave emitted by the 
crystal may be regarded as spherical, and the number of pho- 
tons (radiation intensity) of frequency w and polarization 
s = a, n- along the direction f2 = k/k is given by the for- 
mulaI3 

which can be derived classically or by using quantum elec- 
trodynamics. ~ e r e e *  = 1/137, and v--v(t) and r= r ( t )  are 
the velocity and position vector of the charged particle. The 
radiation field EL; ' is the exact solution of the homogen- 
eous Maxwell equations for the scattering of a plane wave 
e, exp/(ikr) of unit amplitude by the crystal (e, is the polar- 
ization vector of the photon); it is given asymptotically as 
the sum of the incidenct plane wave plus a converging 
spherical wave. If one knows the solution EL,+ ' of the homo- 
geneous Maxwell equations, where EL: ' describes the pho- 
ton scattering by the crystal and reduces to an ordinary di- 
verging spherical wave at infinity, the field EL; ' can be 
found from the r e l a t i ~ n ' ~ . ' ~  
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FIG. 1. Geometry of the incident electron beam (e - ) ,  
crystal, and detector ( D ) ;  b) Diffraction geometry for the 
radiation field EL: '. 

(+I * EL-) = (E4 ,  ) . ( 5 )  the wave solutions on the crystal surface: 

We thus obtain the familiar system of equations" 
Ai = 

, (2g*~o+~o') (7at-~x+gz) , A2=1-A*, 
(gr-g:) 1270 (70'--77) +27o (gi+gz) + x o * l  

( ~ ' l o " - i ~ ' )  EL' - C ~ * E ~ - ~ ) ,  = 0, 
(6) (11) 

(-) - (K,'/co'- I - ~ ~ ' )  ~ 6 1 :  - C.xX'En. -0, A,,=A,A,, A,=- (2gPb,S.x,') /xrC,, yo'=k'N/o, 

with complex-conjugate polarizabilities X, and x,, for the [krl 
e,,=- , en=- 

I [krl l I 
I 9 ew=ea, field EL- ) in the crystal for the case of two-wave diffraction. 

HereK, = K + r a n d C ,  =e,e,. 
ern  = 

I (k+r)eol 
The tangential components of the wave vectors must be 

continuous at the crystal/vacuum interface; we allow for I (k+r) e,l l ' 

this in the usual way by setting (To simplify the notation we have omitted the polarization 
subscript s = a, a from the roots g, of the dispersion equa- 

K=k-ogN, (7) tion.) Equations (9)-( 1 1 ) completely specify the eigen- 
where (kl = k  = o and the vector N is normal to the crystal states EL; ' of the electromagnetic field in the asymmetric 
(N = -e,). Wealsowrite diffraction case and can be used to calculate the PXR inten- 

The condition for the linear system (6) to be solvable leads 
to a dispersion equation that determines the possible values 
ofgin (7): 

where b =  -2y0, c=4yoyr, d=2y0(a+x ,+ ) ,  e=xZ2  
-CfIxT12+ax$ (wesetx:=x?). Equation (9) issimi- 

lar to the dispersiori equation whose roots were found in Ref. 
12. Only two roots of Eq. (9) give wave vectors (7) which 
describe waves that decay as a function of depth z, and this 
fact will be important in what follows; we denote them by 
K,, wherep = 1,2. We will also see that for at least one of 
the differential waves, the wave vector K, = K, + T has a 
positive projection on the normal N to the crystal 
(K, N > 0). When joining the wave solutions at the crystal/ 
vacuum interface one must thus consider the refracted wave 
with wave vector k' propagating in the vacuum along the 
surface of the crystal. The amplitudes 

a 

of the waves EL- ) in the crystal can be found by matching 

sity. 
Since by definition PXR is generated by a uniformly 

moving charged particle, we set r ( t )  in Eq. (4)  equal to 
r, + vt, where r, = (0, y, z)  is the position vector for the 
point at which the particle enters the crystal (Fig. la) .  Since 
the particle makes a small angle with the X axis, the distance 
vT traveled in the crystal is zL, where L is the thickness of 
the crystal along the X axis. If we neglect the interference of 
the radiation fields emitted by the particle moving in the 
vacuum and inside the crystal, we get the final expression 

8 

e20 (ve,.) 
N,,. = 

4n2 I A,, e r p  (-K,"';) l p [ e r p  (-i~&) -11 I 
p= 1 

for the frequency-angle probability density (4)  for x-ray 
emission. Here K;I, = Im K,, u w;' (g;' is the imaginary part 
of the root g, = g; + ig;', g,">O), and the radiation coher- 
ence length 

is equal to l/q,, where q,, is the longitudinal momentum 
transferred to the crystal. [We note that only the fields with 
wave vectors K, contribute in ( 12), because I, =: - w- ' 
for waves with K, and thus remains finite, unlike ( 13) . I  

Analysis of (12) shows that N,,, is greatest if 
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Re q, = 0; this condition leads to a dispersion equation ( 1 ) 
for PXR in a crystal,13 where cos 8 = K:,v/lK:,vl is the 
cosine of the angle between the vectors K:, and v, 
K, = K:, + iKk , and n = w -' IK:, I is the refractive index 
for waves with wave vector K:, = k + T - wg;N: 

Because of the exponentials exp ( - KiZz)  in ( 12) 
(they describe the absorption in the crystal for x-rays emit- 
ted normal to v ) ,  N,, decreases for largez. We recall that z 
is measured from the point at which the charge particle en- 
ters the crystal (Fig. la) .  If the radius of the incident beam is 
2 I,,, = 1/2KiZ, the absorption depth for the x-rays, then 
the total x-ray yield normal to the beam will depend on the 
spatial distribution of the particles, in contrast to the radi- 
ation in the forward direction. 

Since the x-rays are emitted at small angles relative to 
the normal N, we can write 

Q=N cos 84-6, (15) 

with 6 = (it, ,a,, ), 8 4 1, for the unit vector f2 = k/w along 
the direction of emission. 

We first consider the simplest case when the velocity 
vector v of the particle is strictly parallel to the surface of the 
crystal: v = (u, ,0,0) (Fig. l a ) .  According to (7)  and ( 131, 
the coherence length in this case is real-valued and indepen- 
dent of the root g, of the dispersion equation: 

Moreover, the expression I l(e - L" - 1 ) 1 in ( 12) tends to 
27r6( l / l )  as L + a,, where S(x)  is the Dirac delta-function. 
The probability density ( 12) for emission of an x-ray photon 
is thus equal to 

2 

We stress that in contrast to the situation in Refs. 1-4, the x- 
ray intensity is proportional to the total thickness L of the 
crystal rather than to the photon absorption length. 

Because of the 6-function in the right-hand side of ( 17), 
the longitudinal momentum transferred to the crystal van- 
ishes: 

Thus, if the natural modes of the crystal are described by the 
dispersion equation (9) ,  the mode that is radiated during 
PXR will be determined by the additional condition ( 18), 
which reduces by one the number of independent parameters 
in the coefficients of Eq. (9). For example, ( 18) and the 
condition v = vex lead to 

for the x-ray frequency, from which we obtain 

a=-2 (1-v cos e )  =- (m2/EZ+.8.2), (20) 

for the parameter a = - ( 2 k ~  + r)*/w2 characterizing the 
mismatch from precise Bragg diffraction ( k  + T ) ~  = 02;  

here the Lorentz factor E /m = ( 1 - u2) -11' of the particle 
is 3 1. Because a defined by (20) and the real part 
xo= -wi/w2 of the polarizability are both < 0 far from the 
absorption line, the real part of the coefficient 
d = 2y0(a + x:) in the dispersion equation (9)  does not 
vanish (here w, is the electron plasma frequency of the crys- 
tal). This implies that of the various solutions of (9) consid- 
ered in Ref. 12, only 

x o *  c * z l x Z 1 2  g - - - I -  I - 2yo 2yo(xo'+a) 

g,=y,+ (y,2+xo8+u)" (22) 

satisy the condition ( 18) for PXR. We note that the roots g, 
and g, describe waves that decay with distance in the crystal 
(along the Z axis). Indeed, the imaginary part of (21) is g; 
zx:/2yO > 0. To calculate the imaginary part of g, in (22), 
we must recall that by ( 19) and (20), (2  + a )  < 0, so that 
g; = [ - ( y: + a + X; ) ] ' I 2 .  We also observe that the re- 
fractive index ( 14) is greater than unity for g; given by (2 1 ), 
(22) and a by (20) : 

nl= (l-a) 'L>i,  nz= (i-y:-a)lh>1. 

The threshold character of the PXR results from the fact 
that when the particle velocity (energy) decreases, Eq. ( 18) 
is satisfied for lower frequencies ( 19). If the radiation wave- 
length exceeds the interatomic distance ( A  > 2do), diffrac- 
tion cannot occur and the refractive index no = ( 1 + X; ) 

for the x-rays satisfies the usual inequality no < 1 rather than 
(14). 

Since gp $g;' while Ig, 1 4 Ig,l for y, - Ix0I 'I2, we may 
neglect the term with ,u = 2 in the right-hand side of ( 17) 
because of the factor exp ( - wgiz); moreover, the root g, is 
negligible compared to g2 in the remaining expression with 
the amplitude A,, . We then get the result 

for the spectral and angular distribution for parametric x- 
ray radiation. Integrating (23) with respect tow and using 
the defining property of the 6-function, we obtain 

for the angular distribution, where the frequency wo is given 
by (19). 

The coefficient C, is given by 

Since 28, ~ 1 ~ / 2  for extreme asymmetric diffraction, the 
PXR is polarized normal to the diffraction plane: 

If the particle moves at a small angle 0 to the X axis, we can 
write 
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v=v cos 8%+ve (26) 

for the velocity, where 0 = (8, ,8, ). In the case considered 
above, 8 = 0; however, it is clear that all of the previous 
arguments remain valid for 0 = (8, ,0) #O--only expres- 
sion (19) requires modification, in accordance with the 
equality o = VT( 1 - vk/o). 

At first glance it may appear that the situation might 
change with the z-component v, = 8, of the particle is non- 
zero, because the coherence length ( 13) then depends on the 
root g, , so that instead of condition ( 18 1, which decreases 
the number of independent parameters in the coefficients of 
(9),  we get the additional constraint 

v (kfz) -o+og,,'8,=0 (27) 

on g; from the requirement that Re ( 1/1, ) = 0. Although 
(27) must now be solved simultaneously with the dispersion 
equation (9),  a detailed analysis reveals that nothing is real- 
ly changed-as before, the real part of the renormalized co- 
efficient d in (9)  can never vanish, and Eqs. (2 1 ) and (22) 
therefore remain valid for the roots of the dispersion equa- 
tion for the radiated wave. The distributions (23)-(25) 
found above thus remain correct. 

We also observe that the above formulas describe PXR 
from a charged particle in any type of periodic material, in- 
cluding artificial materials. 

3. TOTAL NUMBER OF PXR PHOTONS 

We now use (25 ) to calculate N i ,  the total number of 
PXR photons recorded by a detector with a specified angu- 
lar resolution 6d = a/R, where a is the length of the detector 
and R is its distance from the source; N 2 is the quantity that 
was measured experimentally in Ref. 10. 

Integrating Eq. (25 ) over the angular variables, we get 
the expression 

(28) 

where wo is given by ( 19) and 

6; = m 2 / E Z - ~ o ' .  (29) 

We note that according to (25), the PXR intensity for a 
given reflection falls off quite slowly ( a 1/6) as the radi- 
ation angle 6 increases. The result (28) thus shows that N i 
is sensitive to the angular dimension 6, of the detector even 
when 6, ) i f / .  In this respect PXR differs from the other 
emission mechanisms for relativistic particles, for which 
there always exists an effective radiation angle a,, with the 
property that the radiation intensity saturates and is inde- 
pendent of 6, for 6, > a,, . 

Finally, we discuss how multiple electron scattering 
and the mosaic structure of imperfect crystals affect the 
properties ofthe PXR. Among other things, elastic electron- 
atom scattering alters the angle between the X axis and the 
particle velocity v, while the direction of the vector T varies 
from block to block in the crystal. These factors change the 
coherence length given by Eq. ( 18). If the electron trajector- 
ies and the rotational angle distribution of the individual 

blocks in the crystal are statistically independent, we can 
average over them (using, e.g., the technique considered in 
Ref. 13) and obtain an approximate expression for N 2 of the 
same form as (28) but with 6; given by 

instead of (29); here F ,  the mean-square rotation angle of 
the individual blocks, is comparable in order of magnitude to 
the square of the block-structure parameter; c i s  the mean- 
square angle for multiple scattering. We can estimate 
from the formula 8 = EEL ( E  ' L ,  ) -' valid for a homo- 
geneous medium, where E, = 21 MeV and L, is the radi- 
ation length. Under the experimental conditions in Ref. 10, - 
6 ; ~  - x;, ) 6,2, SO that multiple scattering of electrons in 
the crystal had little effect on the total PXR intensity. The 
mean-square rotation angle F of the individual blocks in 
Ref. 10 was also much less than -x;, SO that the block 
structure of the crystal also had little influence on N 2. 

We used Eq. (28) with 6; given by (30) to quantita- 
tively describe the experimental results in Ref. 10, where the 
electron beam was incident on the edge of a diamond single 
crystal (Fig. l a )  and the beam diameter was less tthan the 
photon absorption length I,,, = (ox;)-'. The factor 
exp ( - ox0"z) in (28) can therefore be replaced by unity. 
The comparison of the experimental and theoretical results 
carried out in Ref. 10 showed that the theory of parametric 
x-ray radiation in the extreme asymmetric case yields results 
to close agreement with measurements. 

'V. G. Baryshevskii and I. D. Feranchuk, Zh. Eksp. Teor. Fiz. 61, 944 
(1971) [Sov. Phys. JETP 34, 502 (1971); Zh. Eksp. Teor. Fiz. 64,760 
(1973)l 

2V. G. Baryshevskii and I. D. Feranchuk, Izv. Akad. Nauk BSSR, Ser. 
Fiz.-Mat., 2, 102 (1973). 

3V. G. Baryshevskii and I. D. Feranchuk, Dokl. Akad. Nauk BSSR 18, 
499 (1974). 

4G. M. Garibyan and C. Yang, Zh. Eksp. Teor. Fiz. 63, 1198 (1972) 
[Sov. Phys. JETP 36,631 ( 1972) 1.  

'V. G. Baryshevsky and I. D. Feranchuk, J. Phys. q4, 913 (1983). 
61. D,  Feranchuk, Izluchenie Ul'trarelyativistskikh Elektronov v Kristal- 
lakh (Radiation from Ultrarelativistic Particles in Crystals), Doctoral 
Dissertation, Belo. Gos. Univ., Minsk (1975). 

'A. M. Afanas'ev and M. A. Aginyan, Zh. Eksp. Teor. Fiz. 74, 570 
(1978) [Sov. Phys. JETP 37,300 (1978)J. 

'L. A. Rivlin, Pis'ma Zh. Eksp. Teor. Fiz. 1 ,7  (1965) [JETP Lett. 1,79 
(1965)J. 

9V. G. Baryshevskii, I. Ya. Dubovskaya, and I. D. Feranchuk, in Proc. 
Eighth Conf. on Interaction of Charged Particles with Crystals, Izd. 
MGU, Moscow ( 1976), p. 195. 

I0Yu. N. Adishchev, V. G. Baryshevskil, S. A. Vorob'ev, eta/.,  Pis'maZh. 
Eksp. Teor. Fiz. 41,295 (1985) [JETP Lett. 41,361 (1985)l. 

"A. V. Andreev, Usp. Fiz. Nauk 145,113 (1985) [Sov. Phys. Usp. 28,70, 
f 1985)l. 

l 2 v 1  M.'i(aganer, V. L. Indenbom, M. Vraha, and B. Chalupa, Phys. 
Status Solidi A 71, 371 (1982). 

I3V. G. Barysehqkii, Kanalirovanie, Izlucheniye i Reaktsii v Kristallakh 
pri Vysokikh Energiyakh (Channeling, Radiation, and Reactions in 
Crystals at High Energies), Izd. BGU im V. I. Lenina, Minsk ( 1982). 

I4V. G. Baryshevskil, A. 0. Grubich, and Ngo Dan Nan, Zh. Eksp. Teor. 
Fiz. 72,2034 (1977) [Sov. Phys. JETP 45, 1068 (1977)J. 

"2. G. Pinsker, Rentgenovskaya Kristallooptika (X-Ray Crystal Op- 
tics), Nauka, Moscow ( 1982). 

Translated by A. Mason 

936 Sov. Phys. JETP 63 (9, May 1986 Baryshevskil et aL 936 


