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It is shown that an absolute instability of stimulated Rayleigh scattering may develop when 
oppositely propagating multimode uncorrelated beams travel in a nonlinear isotropic medium. 
For scattering at small angles this process may generate light beams with complex amplitudes 
which are the conjugates of the complex amplitudes of the exciting (pump) beams. A theory of 
this effect is developed allowing for the self-interaction of high-power optical radiation. 
Estimates are obtained to show that it should be possible to observe experimentally generation 
of conjugate beams in a medium with a thermal nonlinearity. 

1. Propagation of high-power optical radiation in an 
isotropic medium is known to be accompanied by stimulated 
scattering processes. Among those which have the lowest 
thresholds for long laser pulses are the Rayleigh, tempera- 
ture, and Brillouin scattering, and scattering in the wing of a 
Rayleigh line. l4 

Stimulated scattering processes exhibit specific features 
in the field of oppositely propagating light waves when both 
waves can participate in the simultaneous excitation of those 
perturbations of the refractive index of the medium which 
cause the scattering. Under certain conditions the intensity 
of the scattered light can grow exponentially with time, i.e., 
an absolute instability of stimulated scattering may develop. 
Such an instability is typical of, for example, stimulated Bril- 
louin backscattering in the fields of planar oppositely direct- 
ed  wave^.^.^ It is also known that an absolute instability can 
develop for other types of stimulated scattering in the fields 
ofplane (both parallel or almost parallel) oppositely direct- 
ed light  wave^.^-^ 

A study has also been made1' of the absolute instability 
in the field of two light waves with large gradients in their 
transverse cross section (multimode waves) in the case 
when their amplitudes are complex conjugates of one an- 
other." However, the possibility of absolute instability has 
not been investigated in the case of stimulated scattering in- 
volving arbitrary multimode light beams uncorrelated with 
one another over the transverse cross section. 

We shall show that the oppositely directed beams need 
not be complex conjugate for absolute instability in stimulat- 
ed scattering. We shall find the conditions under which per- 
turbations of the refractive index appear in a nonlinear medi- 
um and cause simultaneously both stimulated scattering and 
absolute instability of the waves, even though their trans- 
verse structures are not correlated with one another. We 
shall show that in the case of small-angle stimulated scatter- 
ing such effects may result in the generation of light beams 
with complex amplitudes which are conjugate to the com- 
plex amplitudes of the exciting (pump) beams. In stimulat- 
ed backscattering these effects can result in the transfer of 
energy from one light beam to another and can alter their 
frequency spectra. 

We shall concentrate our attention on the stimulated 

scattering of oppositely directed waves when the angle 
between the directions of their propagation is small. This 
case is interesting from the practical point of view because it 
is the codirected scattering that has the lowest threshold in 
the case of long (T, 2 10W7 s) pulses of wide-band laser radi- 
ation.'' 

2. We shall consider the qualitative pattern of the 
growth of instabilities in a medium with a cubic nonlinearity 
in the field of multimode light beams. We shall first consider 
the process of codirected stimulated scattering of light in the 
field of one light wave. In this case the interference between 
two waves-a strong pump wave ~ , t  and a seed wave E,+ 

traveling at an angle relative to one another-excites spatial- 
ly inhomogeneous perturbations (gratings) of the refractive 
index: 

The Bragg diffraction of the E,+ waves by the Sn' perturba- 
tions can sometimes result in the growth of the wave E;C 
within a nonlinear medium (convective instability). 

In the presence of one more oppositely directed pump 
beam E; the convective instability may becomes absolute. 
We shall demonstrate this as follows. The opposed wave E; 

may, like the wave E,+, interfere with the weak wave E ;  in 
the course of its propagation and it may excite the refractive 
index grating 

These Sn * gratings may scatter not only the E$ waves 
which have excited the gratings, but also the E$ waves. Ob- 
viously, such parametric scattering of both waves, &,t and 
E; ,  by the Sn+ and 6n- gratings is most effective when the 
spatial structures of the gratings are identical. In this case a 
common grating of the refractive index perturbations 
6n = Snf + Sn- forms in the medium, which establishes 
feedback between the processes of stimulated scattering of 
the opposed waves. When the phase relationships satisfy cer- 
tain conditions, this feedback results in the generation of the 
E: waves (absolute instability of stimulated scattering). 
However, if the spatial structures of the Sn * gratings are 
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FIG. 1. Circles AA ', AB, and A 'B ' represent the geometric loci of the ends 
of the wave vectors of the scattered radiation which satisfy the conditions 
for an absolute instability in stimulated scattering when the pump wave 
vectors b+ and 16- are fixed [see Eq. ( 1 ) 1. The circle AA ' corresponds to 
the condition - k,+ = k; - kc, and the circles A 'B ' and AB corre- 
spond to the condition - k,+ = kc - k,. 

independent, parametric scattering is negligible and an abso- 
lute instability does not develop. 

We shall now consider when the spatial structures of 
Sn+ and Sn- are identical. In the case of plane waves the 
refractive index perturbations are harmonic functions of the 
coordinates. Therefore, the required conditions are equiva- 
lent to the conditions of the four-wave phase matching: 

For a fixed direction of propagation of the pump waves the 
condition ( 1 ) determines the direction of generation of the 
scattered waves. For example, in the case of the degenerate 
interaction JkZl ( = k it is found that when the pump waves 
have fixed wave vectors k$ and k, the geometric loci of the 
ends of the wave vectors of the scattered radiation k,+ and 
k; satisfying Eq. ( 1 ) are circles representing the intersec- 
tions of a sphere of radius k (Ewald sphere1*) by planes 
passing through the ends of the vectors k,+ and k; and per- 
pendicular to the vectors k,+ f k; (Fig. 1 ). These condi- 
tions apply to the interaction of two pairs of opposed waves. 
Similar four-wave phase matching conditions have been dis- 
cussed earlierI3-l5 for the codirected interaction of two pairs 
of waves. 

In the case of multimode pump beams E: a $0' ( r )  and 
seed waves E: a $: ( r )  with large transverse gradients the 
perturbations of the refractive index in a medium excited 
because of their interference have a complicated spatially 
varying speckle structure: 

The spatial structures of the gratings Sn+ and Sn- are iden- 
tical if 

It follows from the condition (2a) that the spatial gratings 
are identical (matched) when the pump beams are complex- 

conjugate: $; = (@$ ) *. In the field of such beams we can 
expect effective growth of the waves with mutually conju- 
gate wavefronts: $; = ($7 )*. It is this case that has been 
considered earlier in Ref. 10. We wish to draw attention to 
the possibility that an absolute instability can appear under 
conditions such that the backwards pump wave E; is com- 
plex-conjugate not with the strong wave but with the seed 
wave, i.e., we shall assume that the conditions of Eq. (2b) 
are satisfied: 

The condition (3) may be obeyed when the seed waves are 
not imposed, but form from the noise. In this case we can 
expect excitation of waves e: with spatial structures which 
are complex-conjugate to $0'. Seed waves with other trans- 
verse structures *: also interfere with &,+ and excite grat- 
ings Sii * , but the opposed waves are not scattered by these 
gratings so that the gratings grow much more slowly (in this 
case an absolute instability changes to a convective one). 

We shall consider in detail the instability of oppositely 
directed beams in the presence of perturbations with com- 
plex-conjugate wavefronts. At this stage we shall simply 
note that our discussion applies to the case of spatially local 
coupling between the interference fields (E,~)*E: 
+ (E; ) *E ;  and perturbations of the refractive index of the 
medium&+. We shall concentrate on this case. It is realized 
in processes such as transient stimulated thermal and Bril- 
louin scattering (when the waves interact at angles much 
greater than the divergence of the initial light beams) and 
also in the case of scattering in the wing of a Rayleigh line. 

3. We now provide a quantitative description of an ab- 
solute instability in the field of oppositely directed multi- 
mode light beams. We adopt the simplest model and consid- 
er a layer 0 < z  < l of a medium with a local inertial 
nonlinearity in which the refractive index perturbation in- 
duced by the electric field E of a light wave is described by 
the equation 

where r, is the relaxation time of the perturbations and n, is 
a nonlinear coefficient dependent of the properties on the 
medium. For example, in the case of stimulated thermal 
scattering of type 11, when Eq. (4)  describes a perturbation 
of the refractive index due to isobaric (constant-pressure) 
thermal expansion of the medium, we have 

where p i s  the absorption coefficient of light; c, is the specif- 
ic heat of the medium at a constant pressure; p, is the unper- 
turbed value of the density; x is the thermal diffusivity; A is 
the characteristic spatial scale of the interference pattern of 
IEI2. 

Let us assume that spatially coherent beams E+ and E- 
are incident from both sides of this layer. In the quasioptic 
approximation the total electric field in the layer can be rep- 
resented by 
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E= (~012) [e+ exp (iot-ikz) +e- exp (iotfikz) f c.c.1, 

where E+ and E-  satisfy the equations 

subject to the boundary conditions 

e+(z=O, r,, t)  =%+(O)$o+(O, r J f +  ( t ) ,  

e-(z=l, r,, t) =a0-(1)$0-(1, r d f -  (t). 

Here, no is the homogeneous part of the linear refractive 
index of the medium and Sn, is the inhomogeneous part; v is 
the velocity of light in the medium; y3 and f are the normali- 
zation functions representing the spatial and temporal struc- 
tures of the beams E+ and E-; V: = a '/ax2 + a '/ay2; r, 
= xdr + YoY. 

If the characteristic width Ao of the spectrum of the 
pump wave and the divergence 8 of this wave at the entry to 
nonlinear medium satisfy the condition Ao(8 '/v)zn 5 n/2 
(wherez, is the characteristic nonlinear interaction length), 
then the spatial coherence of the radiation does not change 
during propagation in the nonlinear medium. The solution 
of Eq. ( 5 ) can then be found in the form 

where the functions $: (z,r, ) describe how the transverse 
structures of the waves E * vary in space during their linear 
propagation [the functions y3$ satisfy Eq. (5) when the 
right-hand side is equated to zero] and the functions $ * 
describe formation of new modes (transverse structures) or- 
thogonal to $: (in the sense of an integral over the trans- 
verse cross section of the nonlinear interaction region): 

We shall assume that the structures of the beams E,+ 

and E; are uncorrelated: ($$ $0 ) = 0. It follows from 
qualitative considerations in Sec. 2 that in a field of uncorre- 
lated opposed pump beams the concurrent interaction of 
these beams with seed waves may give rise to an absolute 
instability. The beams E: which are then generated have the 
spatial structures $: that satisfy Eq. (3). Hence, we can 
identify in the functions b * $ * the projections on (+$ ) *: 

The functions $* represent the difference between the 
modes$* and ($:)*: ($,+(+z)*) =0. 

We shall also assume that the interaction of the opposi- 
tely directed waves is unimportant compared with the codir- 
ected interaction. The situation arises, for example, in pro- 
cesses such as stimulated thermal scattering because of the 
difference between the diffusion spreading times of the re- 
fractive index perturbations: small-scale (with a period 
A = r / k )  excited by the interaction between oppositely di- 
rected waves and large-scale [ A  = (k8)-'1 responsible for 

opposed pump waves are mutually orthogonal. In this case 
Eq. (4) becomes 

Using the expansion of the fields E * given by Eqs. (6)  and 
(7),  we shall describe the refractive index perturbations S n  
satisfying Eq. (8)  by 

(9)  

where the complex coefficients p(z,t) represent the ampli- 
tudes of the refractive index perturbations excited by indi- 
vidual spatially inhomogeneous structures of the light 
beams. 

We shall consider the interaction of the beams a$ $5 
and a,+ ($8 )* with the gratings (proportional to p ,  and 
p2 ) they excite on the assumption that the influence of the 
remaining terms of the expansions of Eq. (8)  and of the 
corresponding gratings (proportional t o p  * ) on this inter- 
action is negligible. This hypothesis is typical of the mode 
theory of stimulated scattering.'"" The main condition for 
validity of this assumption is that the nonlinear interactions 
in the characteristic diffraction spreading length of one mi- 
croinhomogeneity of a pump beam be weak: z, 
a (k8 ') (2,. Applying the mode theory approximation 
to waves with an average intensity constant over the trans- 
verse cross section, we obtain 

where 

g=n,klnozp, oO=( lgO*I4) ((I$o* I=))-', 
ot=<Igo+$o-12> ((90*12>)-t. 

In the case of strongly inhomogeneous beams we have 
uo = 2, whereas for plane waves we have oo = 1 and o, = 1. 

The initial condition for the system (10) is the absence 
of the refractive index perturbations at t = 0, i.e., 
Sn (r,0) = 0, and the boundary conditions for the complex 
amplitudes of the electric fields are 

We shall also assume that the amplitudes a: differ from 
zero in the planesz = 0 andz = I, but their "seed" values are 
small: a,+ (z = 0) (A +, a, (z = I )  ( A  - . 

4. We shall first study the case of steady-state scattering 
when the duration rp of the light pulse is much greater than 
the relaxation time 7, of the refractive index perturbations. 
The expression for the amplitudes of the refractive index 
gratings can then be written in the form 

the codirected stimulated scattering. The &atidgs with the pof =gzp ( lao* 12+ I air 12), 
period r /k  may also be suppressed if the polarizations of the pl=gzp ( l+~oz , )" [  (ao+)'ai++ (ao-) 'at-], 
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where Sw is the frequency mismatch between the interacting 
waves E: and E: . 

The system ( 10) has three independent first integrals: 

C,=Iao+lV+l+l" Cc,=(ao-IV+laI-lz, 

[we have introduced here a coefficient representing the con- 
version of a pump wave into a scattered wave: R = a, (O)/ 
A +]. Using these integrals we can reduce the system (10) 
considered in the steady-state approximation to equations 
for the modulus I V I and the phase @ of a function 

These equations are 

where 

The boundary conditions for the system ( 12) at z = 0 are as 
follows: 

I V(0) la=lRI'(celA+]-'-1RI7, 

The solutions of the system ( 12) subject to the boundary 
conditions ( 13 ) are 

I V(z) ['==28D exp [mBG/Z (1+m2)] 

x{l+De exp [2aGBz/l(l+a2)])-', 

where 

B=[ (C,-CJ2/4(A+ I'+(RIz]'", 

D=[B+'/,(C,-C,) I A+]-'+(Rla] I V(0)-'. 

An analysis of the above solution shows that in the case of a 
positive mismatch Sw an increase in the coordinatez near the 
boundary z = 0 increases the amplitude and phase of the 
function V and, consequently, the complex amplitude p,. 
This results in conversion of the pump energy into a scat- 
tered wave (R SO). The solution given by the system ( 14) 
and the second boundary condition (at z = I) can be used to 
find the conversion coefficient R and the frequency mis- 
match Sw. We shall introduce the notation 

ao;* (l)/a;, (1) -Ro,I exp (icpo,l). 

[In the case of a specularly reflecting boundary the coeffi- 
cients R , ,  exp(ip,,  ) represent the reflection coefficients of 
the pump and scattered waves.] Then, the boundary condi- 
tions at z = I become 

I V(1) J'=RZR2F(Ro, Ri, qo-qi), 

@ (1) -@ (0) =H (Ro, Ri, cpo-qt) 
+In [ 1 V(1) ( ' / I  V(O) 1'1 (l+a2) (0o-a,)/2a, 

where 

It follows from Eqs. ( 12)-( 14) that 

RoaF(1+D2)-'(1+D2 exp [2uGB/( l+a~ 
-exp [2aGBl(1+az) I (Cz(A*l-'-I RIz), (15) 

2aH=ln[FRoel(Cs~A+~-z-~R~e) 1. 
An analysis of the relationships (15) shows that there is a 
threshold or critical value G,, (or a corresponding value of 
the pump intensity, since [A + 1 * a G ) ,  below which no pump 
energy is converted into energy of the scattered wave 
(R = 0): 

Gc,--['Is 1n1F+2H IIH (1-Roa). (16) 

Then, the frequency mismatch of the interacting waves be- 
comes 

So,, = (27,H) -' In F .  (17) 

In the case of linear specular reflection by thez = I boundary 
(R, = Ro, p, = p, = 0) the expression for the threshold 
simplifies to 

where Nis  an integer. The dependence G,, (R,) is plotted in 
Fig. 2. The minimum threshold G,, = 7.5 corresponds to 
R ~ 0 . 3 .  We shall show later that conversion of the pump 
energy into energy of the scattered radiation (when R $0) 
the scattered wave initially grows exponentially with time. 
Therefore, G,, represents the threshold of an absolute insta- 
bility of stimulated scattering. 

A specularly reflecting rear boundary need not be pres- 
ent for pump energy to be converted into scattered wave 
energy. It follows from Eq. ( 16) that in the absence of a 
mirror (R, = 0), we find that for any ratio of the intensities 
of the opposed pump beams the expression for the threshold 
of such conversion becomes 

FIG. 2. Dependence of the threshold or critical gain G,, on R,, which is 
the ratio of the amplitudes of the pump waves at the z = I boundary of a 
nonlinear layer. 
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The dependence of G,, on R, is analogous to that shown in 
Fig. 2. It should be pointed out that if G >  Gc, (R #O), then 
two scattered beams are generated and they are conjugate to 
the oppositely directed pump beams. 

When the pump intensity exceeds the threshold for gen- 
eration of such beams, the coefficient of conversion to the 
scattered wave rises rapidly [see Eq. ( 15 ) ] from (R 1' = 0 at 
G = Gc, to its maximum value 

for G) G,, . 
It follows from Eq. (18) that in the case of specular 

reflection we can expect total transfer of the pump energy to 
the scattered wave (when R, = R,  = 1 and p, - p, = r/2, 
we have IR I:,, = 1). 

It follows from the above discussion that under steady- 
state conditions the intramodulation perturbation of the re- 
fractive index (proportional to p: ) due to the interference 
between the components of the pump waves with one an- 
other does not affect the conversion of pump energy into 
scattered wave energy. 

5. Under transient conditions (T, 5 T, ) the dynamics of 
the wave interaction depends strongly on the degree of mu- 
tual correlation of the spatial structures of the pump radi- 
ation. This is due to the fact that the intramodulation pertur- 
bations of the refractive index with complex amplitudes 

give rise to additional transient phase corrections to the in- 
teracting waves: 

Then, the period of the interference pattern proportional to 
(a,+ )*a,+ + (a; )*a, varies with time, which results in 
dispersal of the scattering gratingp,. 

For constant pump wave intensities la$ I* = ] A  + l 2  and 
la; 1' = / A  - I 2  the system ( 10) reduces to 

The dispersal of the scattering grating described by the sec- 
ond term on the left-hand side of the equation forp, is absent 
in the following cases: 1) when the spatial structures of the 
oppositely directed beams are completely correlated so that 
u, = 0,; 2)  when the intensities ofthe pump waves are equal, 
R = 1; 3 )  under steady-state conditions t /T, ) 1 when an 
intramodulation grating remains constant in time. In the 
case of dispersal of the gratingp, a study of the system (20) 
for the stability ofp, a V a  exp(At + i h t )  gives the follow- 

ing dispersion equation (which is valid when R 6 # 1 ) : 

Substituting A = 0 in Eq. (21), we can obtain expres- 
sions for the threshold values G,, and Sw,,, which can easily 
be shown to be identical with Eqs. (16) and (17). 

Above the threshold the total growth rate of the scat- 
tered wave is given by 

i.e., when the threshold is exceeded the scattered radiation 
grows exponentially with time (absolute instability). 

Dispersal of the gratingp, reduces the increment repre- 
senting an absolute instability. Let us consider, for example, 
the case of transient ( t  /T, < 1 ) stimulated scattering of mul- 
tirnode uncorrelated opposed light beams (0, = 2, a, = l ) .  
In this case a stability analysis of the system (20) gives the 
following dispersion equation which is different from Eq. 
(21): 

G {RoRi sin (qo-q , )  +i[ l+RoRi cos ~ c p o - ~ i )  I )  

It follows from Eq. (23) that the scattered wave increment is 
again described by Eq. (22), where 

Gc,= [RoRi sin (qo-9, )  I-'. (24) 

The relationship (24) shows that under transient conditions 
there is no absolute instability in the case of simple reflection 
by a mirror (ifp, = p ,, then G,, + cc, ). An absolute instabil- 
ity is possible, however, if the phase corrections to the pump 
and scattered waves due to reflection at the z = I boundary 
are different, i.e., if po+p, .  In this case because of the con- 
stant phase mismatch (p, - p, # O )  between the interfer- 
ence patterns proportional to (a: ) *a: and (a; )*a; the 
combined scattering grating does not disperse completely. 
The best conditions for an absolute instability in stimulated 
scattering are obtained for p, - p, = 7r/2 (selective reflec- 
tion of optical waves from a mirror) . I '  

We shall point out one more case in which an absolute 
instability may be realized as a result of multimode pumping 
under transient conditions. Let us assume that a specularly 
reflecting boundary (R, = R,, p, = p,) is located at a large 
distance L from a nonlinear medium. Then, the boundary 
conditions at the boundary z = I, allowing for the finite time 
T = 2L /c  which light requires to travel a distance 2L, be- 
come 

ao- (1, t )  =Roao+ (1, t -r )  , al- ( 1 ,  t )  =Riai+ (1, t-r) . (25 

A stability analysis of the system ( lo),  subject to the bound- 
ary conditions (25) at the boundary z = I, in the case when 
R, = R,  and p, = p, then gives the following dispersion re- 
lationship: 

Hence, in the case of low values of 7 we can obtain expres- 
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sions for the total growth rate of the scattered radiation in- 
tensity: 

Therefore, our analysis demonstrates that an absolute insta- 
bility may develop in stimulated scattering of opposed multi- 
mode beams when they propagate in a nonlinear medium. 

6. In Secs. 4 and 5 we have considered the process of the 
interaction between beams with spatial structures satisfying 
the relationships of Eq. ( 3 ) .  However, in addition to the 
components $: of the seed radiation satisfying Eq. ( 3 )  at 
the boundaries of a nonlinear medium, we have included also 
the orthogonal components *:. We now consider whether 
self-matched amplification in a field of two oppositely di- 
rected multimode beams can occur in the case of such or- 
thogonal structures. This is possible if the projection (inte- 
gral over the cross section) of a grating Sii + on a grating Sii- 
in an arbitrary z = const plane differs from zero and if the 
sign of this projection is constant along the z axis, i.e., if 

has a constant sign. In the case of multimode beams with $2 
and t+b; and *,+ and *;, when the inhomogeneity statistics 
can be regarded as Gaussian, the projection of the grating 
6n + on Sn - can be represented by 

Since 

it follows that in this case we have 

Consequently, in the case of a beam with the $,+ structure 
and one with the *; structure we cannot expect amplifica- 
tion in the field of the two pump waves simultaneously. This 
means that in the case of the components *,+ we can have 
only an independent convective instability for each of the 
pump waves. 

Under steady-state conditions (7, / r ,  % 1 ) the gain rep- 
resenting a convective instability of the wave $,+ in a pump 
field $2 is governed by the quantity G [see Eq. ( 12) 1. Com- 
paring it with the growth rate of Eq. (22), which governs an 
absolute instability of the beams in the presence of the per- 
turbations a,+ ($; ) *  and a ;  ($2 )*, we find that if 

the rate of growth of the conjugate component exceeds the 
rate of growth of the perturbation uncorrelated with the 
pumping. 

Under transient conditions (rp /T, < 1 ) each multi- 
mode pump wave is separately stable against perturba- 
t i o n ~ . ' ~ ~ ~ ~  Therefore, in this case the absolute instability 

dominates in the case of two oppositely directed multimode 
beams. 

In the case of a plane pump wave the gain in the case of 
convective transient stimulated scattering is described by 
the expression (2Gt /T, ) I". Consequently, the condition for 
the gain of an absolute instability of a plane wave to be 
greater than the gain of a convective instability under tran- 
sient conditions is 

In determining the conditions for the components of the 
scattered radiation conjugate with the pump waves 
I$,+ = ($$ ) * ] to dominate the uncorrelated components 
$? at the exit from a nonlinear medium we must allow for 
the difference of the seed values of these components. It is 
known (see, for example, Ref. 18) that among all the types 
of noise in stimulated scattering of multimode pump radi- 
ation with a divergence Band a diameterd the fraction of the 
power of the component which is conjugate with the pump- 
ing is ( 8  /@, ) -2, where 8, is the divergence of a single-mode 
beam with a diameter d .  Therefore, at the exit from a nonlin- 
ear medium the structures conjugate with the pump waves 
may be distinguishable against the background of the other 
types of stimulated scattering noise only if the difference 
between the total growth rates of absolute and convective 
instabilities exceeds the value of ln(B /8, )2. 

7. We shall discuss the possibility of experimental ob- 
servation of the effect predicted in the present study. We 
note that the adopted model corresponds to several nonlin- 
ear mechanisms. One of the possible mechanisms is a ther- 
mal nonlinearity in a light-absorbing medium. The thermal 
nonlinear coefficient of liquids (acetone, alcohol, etc.) is de- 
scribed by the expression 

g = (0.3-0.8) [cm2/mW] /? [cm-']/T, [sec], 

where T, is the relaxation time for backscattering (rrb 50 
nsec) . The relaxation time of the refractive index perturba- 
tions caused by heating of the medium when light is ab- 
sorbed is T, = A2/x. In the case of large-scale gratings 
[A cc (k8) -'I responsible for the codirected stimulated 
scattering this relaxation time can be quite long (for exam- 
ple, if 8=. lop2 rad, we have 7, =: 5 X s) .  Therefore, in 
the case of light pulses of 10-8-10-4 s duration such a grat- 
ing is transient and the absolute instability threshold is given 
by Eq. (24). 

For codirected stimulated scattering of multimode 
pump beams a significant intensity of the scattered radiation 
can be expected only if the coefficient of its exponential 
growth exceeds the value ln(8 /8, )'. This condition deter- 
mines the minimum energy density of the pump radiation at 
which it should still be possible to observe the effect. If 8 / 
Od = 30 and rp/rr 4 1, this energy density is given by 
w z 5Gc, /gl. In the case of a layer of a medium with a ther- 
mal nonlinearity ( 01 ~ 0 . 0 5 ,  r, z 50 nsec) and selective 
(p, - p, = 77/2) reflection from a specular boundary when 
the critical increment of the effect given by Eq. (24) is 
G,, z 5  and the reflection coefficients obey R i z 0 . 2 ,  this 
energy density amounts to 50 J/cm2. 
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This value of the energy density necessary for the obser- 
vation of scattered radiation structures conjugate with the 
pump radiation indicates the possibility of observing of this 
effect. However, one should point out that the need to satisfy 
very specific conditions for realization of the effect (such as, 
for example, selective reflection by a specular boundary) 
and the possibility of competition from other nonlinear ef- 
fects (such as optical breakdown) are the reasons why there 
have yet been no reports of experimental realization of gen- 
eration of conjugate structures in codirected stimulated scat- 
tering of oppositely directed light beams in real liquids and 
gases. Moreover, such effects have been already achieved in 
the case of the so-called photorefractive n~nlinearity.~'  The 
relevant experiments have been carried out using cw radi- 
ation and the appropriate t h e ~ r y , ~ '  different from the theory 
in the present study, has been developed in the approxima- 
tion of steady-state process. 
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