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The spectrum of anomalous dimensions of disorder fields (corresponding to "charge 
symmetry" ) in models of two-dimensional conformal field theory, which describe critical 
points in Zp -1sing models, is determined. It is shown that these models are related to the 
conformal theory with N = 2 extended supersymmetry. Exact "minimal" solutions are 
constructed for this theory. 

1. INTRODUCTION 2. DISORDER FIELDS IN TWO-DIMENSIONAL STATISTICAL 

A series of exact solutions in two-dimensional confor- 
mal quantum-field theory with cyclic global-symmetry 
groups Zp (p = 2, 3, . . .) was constructed in Ref. 1. The 
corresponding central charges in the Virasoro algebra2 are 
given by 

We shall use [Z, ] to denote all these models. The [Zp ] 
models contain the conformal "spin" fields a,, k = 1, 
2, . . . , p - 1 that transform in accordance with the repre- 
sentations 

Q O , ( X )  = - o ~ ~ ( x )  (1.2) 

of the groupZp , where fl is the generator ofZp , ap = 1, and 

Evidently these models describe "self-dual" critical points in 
the Zp -invariant generalizations of the Ising model.' 

The space of states constructed in Ref. 1 is generated by 
spin fields uk (x) and "disorder fieldsWp, (x), k = 1,2, . . . , 
p - 1, corresponding to the elements flk of the group Zp . In 
reality, the [Z, ] models are also invariant under "charge 
conjugation" C: 

where u,f ( x )  = up - (x). The global symmetry of a [Zp 1 
model is thus seen to contain the dihedral group D ,, of order 
2p (Ref. 3 ), generated by the elements ( 1.2) and ( 1.4). 
Hence, as explained in Section 2, the theory must contain 
disorder fields corresponding to odd elements of D,, . We 
shall call them C-disorder fields. In Section 3, we construct 
the C-disorder fields for the [Zp ] models, and determine the 
corresponding spectrum of anomalous dimensions. 

It is possible to construct a supersymmetric generaliza- 
tion of the two-dimensional conformal quantum-field the- 
ory.-A conformal theory with N = 2 extended supersym- 
metry is constructed in Ref. 7. We shall show in Section 4 
that this theory is simply related to the [Zp ] models. This 
enables us to construct an infinite series of exact solutions for 
N = 2 superconfirmal field theory, described in Section 4. 
Moreover, it is possible to produce arguments showing that 
this series exhausts all the "minimal" solutions of the N = 2 
superconformal theory with reasonable properties. 

PHYSICS AND FIELD THEORY 

Special fields, called "disorder parameters," have been 
successfully used in the analysis of different two-dimension- 
al statistical models (see Refs. 8 and 9).  Although the con- 
cept of thedisorder parameter (we shall use the phrasedisor- 
derfield) is now standard, it will be useful to present here the 
definition and general properties of such fields. To be specif- 
ic, we shall speak of a lattice system with nearest-neighbor 
interaction; an analogous definition can be introduced for 
other systems, too. 

Consider a two-dimensional statistical system with a 
discrete global symmetry group G. To each site x = (x,, x,) 
of a square lattice L, we assign a spin variable u(x) ,  which 
runs over the orbit of some (generally speaking, reducible) 
representation R of the group G. The pair Hamiltonian 
H(a,ol)  = H(a',o) is G-invariant: H(u,ul) = H[R (g)u, 
R(g)a l ]  for all gcG. Of course, the complete distribution 
function 

has the same property, where e, are the basis vectors of L, 
f l =  (kT)-', and Z is the partition function. The correla- 
tion functions are defined in a standard fashion: 

We now introduce the dual lattice Z, whose sites 
5 = (Z,), Z,) are the centers of the faces of the lattice L. We 
take an arbitrary, simple, directed contour y on L, and make 
the following change of the summation variables in (2.2): 

with arbitrary ~ E G .  In these expressions, A, (x, ) represents 
the part of the lattice L that lies outside (inside) the contour 
y. We then obtain 

( ~ ( x t )  . . o ( x M ) u ( x M + ~ )  . . . o ( x N )  ) 

=Rt (g) . . . R , ( g )  < o ( x t )  . . . O ( X M ) O ( X M + ~ )  . . . ( ~ ( ~ ~ ) ( p g ( 7 ) ) ,  
(2.4) 

where R, (g) acts on the field a(x,  1. We have assumed that - 
XI, . . . , X M E A ~ ,  XM+ ,, . . . ,xNEA,, and that the contour y 
is clockwise, as shown in Fig. 1. The factor q, (y) in (2.4) 
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FIG. 1. Directed contour y o n  a dual lattice 

arises from the transformation of the distribution function 
W under the replacements defined by (2.3). It is given by 

The - - product in this expression is evaluated over all the sides 
I d  comprising the contour y. Each such side crosses a given 
side I d  that joins neighboring sides xy and x I d ,  where 
xI€Ay, x~E&,  . 

We can associate a disorder field p, (@) with each ele- 
ment gcG. The quantity p, is given by a product such as 
(2.5), but now evaluated over some nonclosed simple con- 
tour @ joining the fixed site xO& to the site id. The choice 
of the point 2, is immaterial; we shall remove it to infinity: 
go = ( - co ,O). It is clear from (2.4) that the dependence of 
expectation values of the form 

on the shape of the contours y, i, is "weak." The correlation 
function (2.6) will change only under "nontrivial" deforma- 
tions, say, of the contour yk i, : yk i, -t y;ik,  for which the 
closed contour Sy, = y, ( y; ) - ' surrounds any of the points 
x , , i = 1 , 2  , . . . ,  M (i#k)  o r x J , j = M + l  , . . . ,  N.The 
transformation of (2.6) under these nontrivial deformations 
of the contours will be described below. 

Henceforth, the scaling limit of the statistical system 
under considerationlo will be implied. When long-range cor- 
relations are investigated, there is no point in distinguishing 
between the sites ofL and& the coordinates 2, and xJ can be 
regarded as continuous:'' i, +x,, xJ +xJ, xJeR2. Because of 
the above weak dependence of (2.6) on the shape of the con- 
tours, we can discard the arguments y, in this expression and 
write (2.6) in the form 

However, we must then recall that (2.7) is a multivalued 
function of the variables xi,  x,eR2 with a particular mono- 
dromy group. 

Expressions such as (2.7) must now be given an unam- 
biguous meaning. For the moment, we introduce the com- 
mon notation @, (x)  for the fields p, (x) ,  u(x) .  Consider 
the case where the N points xi,  i = 1, 2, . . . , N lie on the 
same straight line of "constant time:" xi = (l;li,7), where 
l;ll < 7, < . . . < l ; l N .  We shall adopt the convention that, 
with this choice of xi ,  the expression 

FIG. 2. Mutual disposition of the contours y ,x i  corresponding to the 
correlation function (2.8) .  

will correspond to the disposition of the contours yixi 
shown in Fig. 2. Here, we have associated the fictitious con- 
tours ykxk with the spin field u(x, ) as well [this may be 
viewed as the replacement a ( x )  +a( yx) p ,  (yx)a(x) ,  
where e€G is the unit element of G, which can also be an 
identity since p, --I is the unit operator]. When the disposi- 
tion of the points xi€R2 is arbitrary, the expression given by 
(2.8) is taken in the sense of continuous continuation." 

The fields p, , o are not, in general, mutually local, and 
the corresponding symbols p, (x) ,  u (x )  do not commute 
under the expectation value symbol. The following "single- 
time" commutation relations are readily evaluated: 

. , 

(PB(q1, 7)0(q2, z) =R(g)o(q2, d(pg(q117)7 q2'ql 

and 

(~h(qi,  ~)(pgr(q2, =(Pgr(qZ, ~pE:i~g~(ql, 9 r) lcr)29 

TJB,(rlll T)v&(qz, 7) =vetg*g,-t(rlz, a)vIPBt(r)t, 4 9  qi'rlz. 
(2.10) 

The "bypassing relations," determining the mono- 
dromy properties of the correlators (2.8), are particularly 
important. We shall write out these relations, using the sym- 
bol a,*@, to represent the continuous continuation of the 
correlation function (X@, (x,)@, (x,) Y )  (X, Y are any 
products of the fields @, ) in the variable x,  along a closed 
contour, taken clockwise once around the point x, (Fig. 3 )  : 

We note further that the correlation functions (2.7) are non- 
zero only wheng'g, . . . g, = e. Under the global symmetry 
transformations of G, the disorder fields p, transform in 
accordance with the rule 

u (5) +R ( h )  a (x) , (PAX) +(~h-*gh (4. (2.12) 

The scaling limit of the statistical system implies the 
existence of a critical point.' We shall refer to it as the G- 
critical point if the correlation length diverges at this point 
for all fields p,, ~ E G .  The theory then contains the confor- 
mal fields p, (x) .  The total (closed with respect to the opera- 
tor algebra2) space of fields IF}, describing long-range cor- 

FIG. 3. Contour participating in the definition of the symbol a:@, in 
(2.11 ) and below. 
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relations at the G-critical point, can be naturally expanded 
into the sum of subspaces 

{ F }  = @ {VP) (2.13) 
g=o 

where {p, ) contains all the fields arising under all the possi- 
ble "compositions" of the field p, and the spin field u. It is 
clear that the operator algebra2 satisfies the following "selec- 
tion rules": 

where the left-hand side represents the product (at different 
points) of any fields from the corresponding subspaces. It is, 
in principle, possible to give a detailed classification (in ac- 
cordance with the representations of the group G) of the 
mutual localization properties of the fields in each of the 
subspaces {p,) (this is done for a special case in Section 3. 
Here, we only emphasize that all the fields in {p, ) are mutu- 
ally local. 

We note one further property of the space {F} of the 
conformal field theory describing the G-critical point. If the 
group G contains a cyclic subgroup Zp (generated, say, by 
the element g,&, & = e ) ,  the subspaces IPg:), k = 1, 
2, . . . , p - 1 will include (nonlocal) fields with spins that 
are multiples of l/p. This property is readily derived from 
the above relationships, and is useful in the analysis of global 
symmetries in models of conformal field theory. 

3. C-DISORDER FIELDS IN MODELS [I,] 

A series of models of two-dimensional conformal field 
theory was constructed in Ref. 1. These models will be de- 
noted by Z , p  = 2,3, . . . . As already noted in the Introduc- 
tion, the consequence of "charge invariance" ( 1.4) is that a 
model [ Z ,  ] actually has a more extensive global symmetry 
group D ,, , i.e., the dihedral group of order 2p (Ref. 3 ). 
(From now on it is assumed thatp23.) Let R, = Rk , k = 0, 
1, . . . , p - 1; Rp = E '' denote the elements of the cyclic 
subgroup Z, EDzp, and let R k ,  k = 0, 1, . . . , p - 1 denote 
the "odd" elements of D,, , where R, = Cfik . In terms of 
this notation, the multiplication table for D ,, is 

QkQr=Q,+t, R~QL=RR+I,  

A model [Z, ] contains conformal spin field u, ( x ) ,  
k = l ,  2 , . . . ,  p - 1  (Ref. I ) ,  where each pair 
(a, ,u: ) (uk+ =up - , ) forms the basis of the two-dimen- 
sional representation of D ,, : 

where w is given by ( 1.3). 
There are also p - 1 disorder fields p, , k = 1, 2, . . . , 

p - 1, corresponding to the elements R, of the symmetry 
group (3.1 ) . According to (2.11 ), the fieldsp, are mutually 
local (this is due to the commutative property of the group 
zp ), but they are nonlocal with respect to a,. The bypassing 
relations 

pA*~l=o"p~ol (3.3) 
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are a consequence of ( 3.2). The transformations R, act on 
thep, in a trivial manner and, in the case of charge conjuga- 
tion C 

wherep: =pp - , . The anomalous dimensions of the fields4' 
and pk are found in Ref. 1, where the space of the fields 
{F,), which are closed with respect to the operator algebra, 
is also constructed. 

In the notation of (2.13), this space is given by the sum 

(we are assuming that po =I). Moreover, in accordance 
with the arguments put forward in Section 2, C-disorder 
fields @, , k = 0, 1, . . . , p - 1 should be present in [Z, 1, 
where these fields correspond to the odd elements R ,  of the 
group D2,. These fields will be constructed below, and we 
shall thereby describe the complete space cf fields 

for the [Zp 1 model. We shall use p, to denote any fields in 
the subspaces {@, 1, where pk , k = 0, 1, . . . , p - 1 formp- 
component multiplets with identical conformal dimensions 
(A,X). By virtue of (3.1 ) and (3.2), the fields pk are nonlo- 
cal with respect too, , p k  ; the corresponding bypassing rela- 
tions are 

A [Z ,  1 model has infinite-dimensional symmetry de- 
scribed by the algebra of "para-Fermion" currents $, ( z ) ,  
qk ( 2 )  , k = 1,2, . . . , p  - 1 (Ref. 1 ), where a and Z are com- 
plex coordinates in R2: 

The fields $, (z) and q, (Z) are looked upon as the products 
(suitably regularized-see Ref. 1 ) 

and have conformal dimensions (A, ,0) and (O,Ak ), where 

are equal to the spins of these fields. The current algebra 
$, (z) is determined by the operator expansions1 

where z,, = z, - z,, $: = $,, - , , $,=I, T(z) is the corre- 
sponding component of the energy-momentum tensor, the 
"structure constants" are 

(kl+k2) ! (p-kt) ! (P-kz) ! 
Cbg,ks = (3.11) 

k,!kz! (p-k.-k,) !p! 

and the sum k,  + k2 in (3.10) and (3.11 ) is understood to be 
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taken over the modulus ofp. Here and below, we concentrate 
our attention on the field $k (z), bearing in mind the fact 
that the analogous relationships are valid for the current 
gk (Z) . The bypassing relations follow from ( 3.8 ) : 

The double bypassing relation 

which follows from (3.12), shows that the product 
zAk$, (z )p ,  (0,O) is a two-valued analytic function ofz with a 
root branch point z = 0. This enables us to write the corre- 
sponding operator expansion in the form 

0 

where A , , ) / 2 p I ~ { @ l  - ) are certain new C-disorder fields. 
The formula given by (3.14) is the definition of the opera- 
tors A '!',,, , n = 0, 5 1, + 2, . . . , acting in the space 

By virtue of (3.12), we can also write the expansions 

which show that the operators A satisfy the relations 

where V k )  are the unitary matrices U $ )  
- - k 2 +  k l ~  - , - , , , ,  which can be written as the powers 

By analogy with (3.14), we can define the operators A $: in 
terms of contour integrals: 

where the symbol $, represents integration over the closed 
contour y, taken twice around the point z = 0. 

We must now find the commutation relations for the 
operators A A::. We shall confine our attention to those rela- 
tions that will be useful below. Consider the double integral 

The first two factors in (3.19) ensure that the integrand is 
single-valued on the two-sheet covering of the complex plane 
of the variablez, (and 2,) with the branch point z, = 0 (cor- 
respondingly, z, = O), so that the integration contours 
shown in Fig. 4 are actually closed. The multiple integral 
(3.19) can be reduced to repeated integrals in two different 
ways. In the first case, (3.18) is used to evaluate first the 
integral with respect to z, and then, similarly, the integral 

FIG. 4. Contours of integration y ,  and y, in (3.19). 

with respect to z,. In the second method, we evaluate these 
integrals in reverse order. To do this, we must first deform 
the contour y ,  so that it lies inside y, of Fig. 4, and we must 
take into account the contribution of the polesz, = z, on the 
first and second sheets of the integrand in (3.19). The resi- 
dues at these poles are determined by the expansions (3.10). 
By equating the results obtained by these two methods of 
integration, we obtain the required relation 

1 (k -1)  (;I) 
m - (22a~~k,1~((,"~~)1261,1~f 2 - z a ~ ~ k - ~ , 1 e i ~ ( n + m ) l ~ ~ l i  )qil, 

2 
(3.20) 

where the c,,,,~ are given by (3.11 ) 

and the constants D ::lo, are the coefficients of the power 
expansion 

m 

The other relation that will be useful to us below is obtained 
considering the integral 

by the same method, and has the form5' 
m 

r 

where a = 1 + 2 / p ,  
xP  ( n )  ==n2/8-- (p-2) /16p, (3.25) 

and the L, are the generators of the conformal transforma- 
tions forming the Virasoro algebra: 

[L,, L,] = (n-m)L,+,+ [ (p-1)/16 (p4-2)  I (n3-n) 6,+,, ,. 
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The C-disorder fields p, in IF} include "invariant 
fields" @, satisfying the equations 

A$: (Dl-0 for n>O. (3.27) 

As usual (see Refs. 1 and 2), the existence of these invariant 
fields follows from the condition for a lower bound on the 
spectrum of anomalous dimensions of the theory. The opera- 
tors A hk) act on the field @, as (p Xp) matrices: 

A? Q,=A::! @,,, (3.28) 

where A f = s,, , since yj0 = 1. In general, the theory may 
contain a number of such invariant fields (we shall see below 
that this is actually the case forp>3). When this is so, we 
shall denote them by @:" and the corresponding dimensions 
by (A,,) 9 A,,, 1. 

The anomalous dimensions of the fields @(") in the 
models [Z, ] can be determined with the aid of (3.20) and 
(3.24). Consider, to begin with, (3.20) with n = m = 0, 
q, = @. Using (3.27), this relation reduces to 

2 [ ~ ( k ) ~ ( t ) + ~ ( f i ) ~ ( k )  ]@ 

where u'+" is given by (3.16) and A'k) are the matrices 
(3.28). Equations (3.29) must be looked upon as a set of 
equations for the matrix A',) . The solution of this system 
can be written in the form 

where the numbers y, must satisfy the equations 

and the matrix B is given by 

whose explicit form will not be necessary for our purposes. 
Because of (3.16), the above numbers satisfy the condition 

y~=y;-r. (3.33) 

If we now introduce the generating function 

we find that (3.31) reduces to the differential equation 
which has the elementary integral 

f (4 = (I+Z) (~+'1) /2  (Iv2) (P--uI) /~ .  (3.35) 

It is thus clear that (3.3 1) has solutions satisfying (3.33 ), 
provided 

Consider now (3.24). Substituting p = @ and 
n = m = 0, we obtain 

{4A("A")-22a [((p+2)/p)A-x (0)] U-')@=O, (3.37) 

where A is the dimension of the field @ and x is given by 

(3.25). Substituting (3.30) and (3.36), we obtain the spec- 
trum of dimensions of the invariant C-disorder fields @("' in 
the [Z ,  ] model: 

A(,)= [p-2+(p-2~)~]/16(p+ 2 ) ,  s=O, 1, 2, . . .4p/2, 
(3.38) 

Let [a'"' 1, represent the space of fields spanning all the 
possible independent monomials of the form 

The space [@(" I], corresponds to an irreducible represen- 
tation of the algebra (3.20), ( 3.24). The fields comprising 
this space have dimensions of the form A,,, + N / 2 ,  N = 0, 
1,2, . . . . The space of C-disorder fields in the [Z ,  ] model 
(p<3) will be written in the form 

where [p/2] represents the integral part ofp/2. 
As an example, consider the [Z,] model. It is well- 

known' that this model describes the critical point of the 
Potts three-position model,' and is equivalent to a definite 
"minimal model" of the conformal field theory (see Ref. 2). 
Figure 5 shows the "table of  dimension^"^ for this minimal 
model. All fields corresponding to the cells in this table are 
classified in accordance with the representations of the alge- 
bra of the para-Fermion currents (3.16). This classification 
is described in Ref. 1 for the even sector. The odd sector 
(unshaded cells in Fig. 5) contains the fields @'O', @'I' 
(A,,, = 1/8, A,,, = 1/40), and their immediate "descen- 
dants" (3.39) A _ @"' and A- ,,,@"' with dimensions 
A,,, + 3/2 = 13/8 and A, + 1/2 = 21/40 (it can be shown 
that A -  ,,,@'O' = 0).  

4. THE 2, MODELS AND CONFORMAL FIELD THEORY WITH 
N=2 EXTENDED SUPERSYMMETRY 

A two-dimensional conformal field theory with N = 2 
extended supersymmetry is proposed was Ref. 8. The finite- 
dimensional extended superconformal symmetry is genera- 
ted in this theory by four local  current^:^' T(z), S(z)  , S + (z) , 
J ( z ) .  The Fermion currents S(z)  and S + (z) have spin 3/2 
(i.e., conformal dimensions 3/2, 0 )  and the boson currents 
J ( z )  and T(z) have spins 1 and 2, respectively. The field 
T(z) is equal to the corresponding component of the energy- 
momentum tensor of the theory. The generator algebra is 
determined by singular terms of the operator expansions 

FIG. 5. Table of dimensions in the minimal model describing the critical 
point of the three-position Potts model". Shaded (unshaded) cells corre- 
spond to even (odd) sector. 
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T  ( z , )  T  ( z , )  = L / 2 C " ( ~ i z )  -'+2z12-'T ( ~ 2 )  +zi2-'Tr ( ~ 2 )  +O ( I )  
(4. la)  

T ( z i ) l ( z z )  = z ~ , - ~ J ( z , )  +z12-'J' ( ~ 2 )  +O (I), (4. lb)  

T ( z , )  S(') ( z , )  =3 /2~iz -zS(a)  ( zz )  +zi~-'S("" ( 2 2 )  4-0 ( I ) ,  ( 4 . 1 ~ )  

J ( z l )  J (z , )  = (c"l l2)~ ,z -~+O ( I ) ,  S'"' ( z , )  S'a' ( z , )  =o ( z , , )  , 
(4. ld )  

J ( Z , ) S ( ~ )  ( z Z )  =i/zazlz-'S(a) ( z , )  +O ( I ) ,  (4. le)  

+ z , , - ~  [I' ( z 2 )  +2T (z , )  ]+0 ( I ) ,  (4. lf)  

where z,, = z, - z,, the primes represent differentiation 
withrespecttoz,,a = f ~ , s '+"=S ,S ' - "=S+ ,andO( l )  
and O(z,,) represent regular parts of the expansions of the 
indicated order as z,,-+O. These terms are completely deter- 
mined by the singular terms written out in (4.1 ) (see Ref. 
13). The numerical parater Z. in (4.1 ) is equal to the central 
charge of the corresponding Virasoro algebra (4. la) .  It fol- 
lows from the structure of the operator expansions (4.1) 
that the generator algebra of the N = 2 extended supercon- 
formal symmetry has two obvious automorphisms (apart 
from the trivial one) 

Of course, we also have the automorphism R ;, = RIRII,  
which is a combination of (4.2a) and (4.2b). Hence, it may 
be expected that the field theory with the symmetry (4.1 ) 
contains fields [and associated representations of the alge- 
bra (4.1 ) ] of the following four types: 

(a)  Neveu-Schwarz fields 4 (the corresponding sector 
of the space of fields will be denoted by {NS) are local with 
respect to all three currents S, S +, 5." The following opera- 
tor expansions are valid: 

n--m 

where +{NS). They define the operators SF: ,,, and Jn , 
n = 0, f 1, f 2, . . . , acting in the space {NS). These oper- 
ators satisfy the commutation relations given in Ref. 8. The 
invariant fields @E{NS) satisfy the equations 

s,,(~?/,@=J,+,@=o for n>O (4.4) 

and can be classified in accordance with the charge Q: 

According to (4.le), the fields S'") (z) have the charge 
Q = a/2. The fields @, S '?,,, @, S- ,,,S 2 ,,, cP form a su- 
permultiplet and can be combined into a "superfield," as 
described in Ref. 8. 

(b)  Ramond fields I. These are denoted by XE{R , ) and 
are local with respect to the current J (z ) ,  but not local with 
respect to S and S +. In this case, we have the bypassing 
relations (see Section 2) 

Operator expansions of the form (4.3b) are valid for fields 
XE{R ,) but, instead of (4.3a), in this case we have 

S'.) ( z )  x (0,O) = z z"-"CX (o ,o)  , 

where the operators S f ' ,  n = 0 ,  + 1, f 2, . . . satisfy the 
commutation relations 

where L, are the generators of the Virasoro algebra and 
{ . . . ) represents an anticommutator. The invariant fields 
XE{R , ) satisfy the relations 

s,,('"x=I,x=o for n>O (4.9) 

and, as in case (a ) ,  can be classified in accordance with the 
charge: 

JJ'Q) = QX'Q) . 
(c) Ramond fields 11. It is convenient to combine fields 

corresponding to the automorphisms R ,, and R ;, into the 
single space {R,,), labeling them only with the index 
E = + 1. The fields TE{R ) are nonlocal with respect to the 
currents S, S +, J ,  but satisfy the bypassing relations 

The operator expansions replacing (4.3), in this case have 
the form 

co 

where S s, = E(  - "S,,,, . The operators Jn + ,,, , S,,, , act- 
ing in the space {R ,, ), satisfy the commutation relations 

[In+%, Jm-'b I =  (c"/l2) (n+'/2) 6n+m, 0 ,  (4.12) 

{S,, , ,  Smlz+}= (n -m)  sin2 [ n ( n - m ) / 2 ] J ( n + m ) ~ ~  
+2 cosyn  (n-m) /21  [L(n+m)lz+(c"/24) (n2-1)6n+m, 01. (4.13) 

The invariant fields YE{R ,, ) obey the equations 

Sn12Y=J,-lI,Y=0 for n>O, (4.14) 

where&; Y = (2A - Z./12) YE and A is the dimension ofthe 
field YE 

We shall show below that there is a series of minimal 
solutions in N = 2 superconformal field theory that corre- 
sponds to the values 

F P = ~ P /  ( p f 2 )  (4.15) 

(p = 2, 3,4, . . .) of the parameter Z., and we shall calculate 
the corresponding spectra of anomalous dimensions of the 
invariant fields @, X, Y. Models in this series are simply 
related to the [Z ,  1 model described in Section 3. 

We now introduce a free massless Bose field 
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@(z,Z) = cp(z) + @(.TI, defined by the two-point functions 

<cp(z)cp(O)>=-Zlgz, <q(Z)q(O)>=-ZlgF,  

< c ~ ( z ) r P ( o )  )=o (4.16) 
(multipoint functions are calculated in accordance with 
Wick's rule). 

The component 
T o  ( 2 )  =-'I& : dz@iq : ( z )  (4.17) 

of the energy-momentum tensor of this free theory forms a 
Virasoro algebra with central charge c = 1. Consider the 
"composite" theory, containing the [Z ,  ] fields with certain 
p = 2, 3, . . . , and the above field @ (4.16), which does not 
interact with [Zp I .  We shall use T, (z) to denote the energy- 
momentum tensor in a [Z ,  ] model, and cp to represent the 
corresponding value ( 1.1 ) of the central charge. The energy- 
momentum tensor of the composite theory is given by the 
sum 

T ( z )  =Tp ( 2 )  +To ( z )  (4.18) 

and, of course, satisfies the operator expansion (4. l a )  with E 
given by (4.15), since Ep = cp + 1. We also introduce the 
fields 

J ( 2 )  = (Zp/24)  "9,cp(z), (4.19a) 

S ( z )  = (2Zp/3)'bq1 ( z )  : exp {ip,rp ( 2 )  1 :, (4.19b) 

S+(z)  = ( 2 c " p / 3 ) ' b q i + ( ~ )  : exp {-ippcp(z) 1 :, (4 .19~)  

where $,(z) and $,+ (z) are the corresponding para-Fer- 
mion currents in a [Z ,  ] model (see Section 3 )  with spins 
A, = 1 - l/p, and the index 

pp= [ ( ~ + 2 ) / 2 ~ 1 ' ~  (4.20) 

in (4.19b) and (4 .19~)  is chosen so that the fields S(z)  and 
S + (z) have spins 3/2. It is readily verified [using (3.10) 1 
that the fields (4.18) and (4.19) satisfy the operator expan- 
sions (4.1 ) with E given by (4.15). These composite theories 
are thus seen to have the symmetry (4.1 ) for eachp = 2, 3, 
4, . . . , i.e., they are models of N = 2 superconformal field 
theory. 

If we know the structure of the space (3.5) of a [Z ,  ] 
model, described in Ref. 1 and in Section 3, we can readily 
construct invariant fields in the superconformal theory. 
Without going into details, we now reproduce expressions 
for the anomalous dimensions [and charges (4.5)] of the 
invariant fields in all sectors. 

(a)  The charges (4.5) of the invariant field in the space 
INS} are given by 

There is a series of invariant fields @t'{NS}, s = 0, 1, 
2, . . . < 1/2(p - (91) with charge (4.21 ) and dimensions 

s=0 ,1 ,2  ,... ~ ~ / ~ ( p - ( q l ) .  (4.22) 
(b) The space {R ,} is generated by the invariant fields 

X kf:, a = + 1 with the following dimensions and charges: 

A;:'= I/,+[ ( I q 1 +2s+1)'- (qSa) 2 - 1 ] / 4  ( p + 2 ) ,  (4.23 
where q and s run over the same values as in (4.21) and 
(4.22). 

(c) The invariant fields p" comprising the space 
{ R  ,, } have the dimensions 

We now turn to the general case of conformal field the- 
ory with the symmetry (4.1 ). If we suppose that p is real 
(but not necessarily an integer), we can look upon (4.15) as 
a parametrization of E and (4.19) as the definition of the 
field p, c,, c,+ . It then follows from (4. l d )  that p(z)  is a free 
Bose field (4.16). The fields c ,  (z), c,+ (z), defined in this 
way, generate an algebra of para-Fermion currents which, 
for integer values of p, is identical with (3. lo), as already 
explained. Whenp > 0 and not an integer, this algebra does 
not close, as in (3.101, but contains an infinite number of 
currents t,bk, $:, k = f 1, f 2, . . . f oo and, beginning 
with a certain k, the dimensions of the field $, become nega- 
tive. This enables us to consider that the above series of mod- 
els withp = 1, 2, 3, . . . and dimensions (4.21)-(4.24) ex- 
hausts all field theories with N = 2  extended 
superconformal symmetry (4.1) with 2 ~ 3 .  

''It is implied, of course, that the scaling transformation x, - K 1 x j ,  
ir, +I\-'?, ( A S  1 ) has been carried out and that a suitable renormaliza- 
tion of all fields has been introduced." 

"The continuity of the correlation functions (2.8) is, of course, unimpor- 
tant in this context (in particular, all that we have said is meaningful in 
lattice theory, too). The condition we have adopted defines the mutual 
disposition of the contours yx, corresponding to (2.8) to within "tri- 
vial" deformations. 

3'Here and henceforth, E represents the unit element of the group, and I is 
the unit operator of field theory. 

4 ' ~ h e  dimensions of the field pk are the same as those of 0,. In general, 
[Z, ] is self-dual, i.e., all the relations are invariant under the replace- 
ment uk -pk .  Apart from the s~mxgetry (1.2), th_e models are then 
invariant under the "dual" groupZ, : ilpk = okpk , nuk = uk (Ref. 1 ). 

 e elations (3.20) and (3.24) (and the analogous relations in Ref. 1) 
provide us with an example of an infinite-dimensional associative alge- 
bra with quadratic defining relationships. We note that a finite-genera- 
ted algebra of this type is considered in Ref. 12. 

''1n additicn to these 'zght" currents, there are, of course, also the "left" 
currents T(Z), S(Z), S +(T), J ( Z ) .  Because of the (usually assumed) P- 
invariance 2-2, the relationships involving left currents will not be writ- 
ten out explicitly. 

"It is implied that, in conformal field theory, all fields are local with 
respect to the energy-momentum tensor. 
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