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The Green's function is constructed in the leading logarithmic approximation for the vacuum 
Regge singularity in quantum chromodynamics, and is used to calculate the pomeron 
trajectory in the limit of high momentum transfer. A lower bound is found for its intercept. 

L INTRODUCTION 

It is well known that the behavior of the hadron scatter- 
ing amplitudes at high energies sll2%m and fixed momen- 
tum transfer Iql = ( - t)'I2-m is completely determined 
by singularities in the t-channel partial waves ( t )  on the 
complex plane of the angular momentum j (Ref. 1 ) . There is 
particular interest in the nature of the Pomeranchuk singu- 
larity in the channel with vacuum quantum numbers. This 
singularity is located near the point w =j - 1 = 0, in accor- 
dance with the very small rise in the observed total cross 
sections. 

In the leading logarithmic approximation ( LLA ) 
[g21n (s/m2) - 1, g 4 1, where g is the Yang-Mills coupling 
constant] of the SU(N) Yang-Mills theory, the Pomeran- 
chuk singularity (or, briefly, the pomeron) appears as a 
bound state of two Reggeized gluons. The corresponding 
partial waves have a fixed root siligularity at w = g2N(ln2/ 
.rr2) (Ref. 2 ) .  In quantum chromodynamics (QCD) corre- 

It will be convenient to use the representation of impact pa- 
rameters p ,  : 

x f.(pi, p o  pir ,  pa*) exptikpi+i(q-k)pa-tktpi*-l(qt-W)pr.l. 

( 3 )  
The expression for f, (q2) in ( 1 ) can then be written in the 
form 

x @' (pi, pr, 9 )  Q2(pi', PZ,, q) fm(~t ,  PI, Pi', Pz')r (4)  

where 
sponding to SU(3 ), asymptotic freedom ensures that the sin- 
gularity transforms into a set of Regge poles which accumu- Q1~'(pi ,  p,, q) = d2k Qi*'(k, q)e'br"q-h)~a, ( 5  

late to the right of the point w = 0 (Refs. 2 and 3).  Within this representation, (2 )  assumes the form 
the framework of the Reggeon diagram t e ~ h n i q u e , ~  these 
poles must be looked upon as bare. We shall calculate the 1 d2pt IDiL (pi, p%,q) = j d2p2 oi*'(pi,  pz, P) -0. (6)  
trajectories of the bare pomerons for large q and give the 
lower bounds for their intercepts, using the properties of the The function f, (p1p2) ~ f ,  (p1p2,p,. , p,, ) satisfies the fol- 
conformal invariance of the pomeron Green's function in lowing Bethe-Salpeter in LLA: 
L L A h n d  the renormalization group. 

We now recall the main results of LLA. The scattering oVtZV~afm(pt ,  PSI = (2n) '6 ' (pi~)  6 2 ( ~ 1 ~ e )  

amplitudes of colorless objects in QCD can be written in the (2n)'6'(p12) (V i+  Val% (pi, pz) 
following form in this appr~ximation:~ 

a+,- d2po 
d o  1p'a12 V2f*(pt, pa) 1 +via J -[ VSWPO. PI) - I poi '+ pn 

A ( s ,  t )  =is  -- sUf .  (9 ' ) .  t = - q 2 .  1 ~ 0 1 1 '  

0-7- 
z n ~  (1)  +v:J*[v:~~(P~,P~)-  l p i a l z  ~ : j ~ ( p ~ , p ~ ) ] } ,  

l ~ o r l '  I p o i l a + I ~ o ~ l 2  f u ( q 2 ) = j  d2k d2k' mi(k, p) @ ' ( k t ,  g ) f .  ( k .  k r ,  g ) ,  
(7 )  

where k ', k are the two-dimensional transverse components 
of the momenta of the exchanged gluons. The function 
f, (k,k ',q) can be interpreted as the t-channel partial wave 
for the gluon-gluon scattering amplitude with virtualities 
- k 2, - k 12, - (q - k )  ', - (q - k '12, where the gluon 

propagators are included in f, (k,kl,q). The functions 
k,q) characterize the internal structure of the colliding 

particles 1 and 2 and can be calculated from perturbation 
theory in some cases.3 By virtue of gauge invariance, we 
have3 

where VIs2 = d/dp,,, , po = p i  - pj.  When (7)  is iterated, 
the infrared and ultraviolet divergences in f, (q2) (4)  cancel 
out in each order of perturbation theory,3 so that the charac- 
teristic transverse momenta k, (the reciprocals of the im- 
pact parameters) of the virtual gluons in LLA are found to 
be of the order of the transverse momenta of quarks inside 
the colliding particles. In particular, for virtual photon scat- 
tering, we have 1 k, I - ( - pf ) 'I2, where pi  are the photon 
momenta. Hence, when LLA is valid, the running coupling 
constant g ( k ,  ) can be looked upon as a constant number 

904 Sov. Phys. JETP 63 (5), May 1986 0038-5646/86/050904-09$04.00 @ 1986 American Institute of Physics 904 



g [  ( -p2) 1'2] which, in principle, can be made as small as 
desired. 

In the next section, we shall examine in greater detail 
than in Ref. 5 the conformal invariance properties of the 
four-point Green's function f, (p,,p2,pl, ,p,, ). 

2. Conformal properties of partial waves in LLA 

It is convenient to introduce the complex notation for 
the transverse coordinates (xr,yr ),r = 1,2, lr,2': 

The six-parameter group of conformal transformations then 
corresponds to the bilinear transformationh 

We shall show that the Green's function 
f, ( P ~ ~ ~ , P ~ ,  ,p2, ) can be represented in LLA by a conformal- 
ly invariant form. To begin, let us consider this function in 
the Born approximation g = 0. The solution of (7)  is then 
the product of free-gluon Green's functions 

This solution is not invariant under the conformal transfor- 
mations. We note, however, that, instead of ( lo) ,  we can use 
the following conformally invariant expression: 

because this differs from ( 10) by a term independent of one 
of the coordinatesp,, p2, p l , ,  or p2, and, by virtue of (6),  
provides a zero contribution to f, (q2)  in (4). 

Moreover, the expression in ( 1 1 ) can be chosen as the 
bare term in the solution of (7)  because the integral kernel of 
this equation gives zero when acting on a function indepen- 
dent ofp, orp,. 

To prove the possibility that f, can be written in the 
conformally invariant form for arbitrary g#O, it is sufficient 
to verify the invariance of (7)  under the inversion transfor- 
mation 

~t+pi /  lipi12, P:+I~:/ lmp<12- (12) 

We now introduce the intermediate ultraviolet regular- 
ization in the dimensionality of space: d +d , +"po and set 
E = 0 after the transformationp + l/p. For example, we con- 
sider the following terms on the right-hand side of (7):  

The transformation pi + l/p, gives 

because the last two terms in the intermediate formula can- 
cel out. The separation of the factor lp, / 4 1 p 2 1 4  from the other 
terms in (7)  under inversion can be verified in a similar way. 

Thus, the solution of (7)  for a particular modification 
of the inhomogeneous terms [see ( 1 1 ) ] can be taken to be 
conformally invariant. In particular, the solution of the cor- 
responding homogeneous equation for f(p,,p2) for each 
eigenvalue w should generate an irreducible representation 
of the conformal group, normalized as follows: 

The function f(pl,p2) within the representation can be 
numbered by introducing the auxiliary functionp,. Because 
of translational invariance, f depends on p ,, and p,, alone. 
Since the representation is irreducible with respect to exten- 
sion and rotation, f must be a homogeneous polynomial in 
plo, p20 of degree d and in py,, pzo of degree d. Since the 
solution must have the same value after rotation through 27r, 
we have d - 2 = n, where n is an integer equal to the confor- 
mal spin. Finally, the invariance of the set of eigenfunctions 
under the inversions p,,, + l/p,,, 

-2d *-:a 
f (p,o, pzo) +f' (~10, p,o) =po po f p i  0 7 po~=llpo 

(16) 

establishes the form of these functions:' 

It is convenient to parametrize the quantum numbers d 
and d of the irreducible representation as follows: 

since the set of functions (17) is complete for real v and 
integral n. Henceforth, we shall use the following notation 
for these functions: 

where e is the complex unit vector: 

The functions ( 19) are the eigenfunctions of the two 
Casimir operators of conformal algebra: 

(pi2) 2a,d$n,v=h,,VEn*v, 
(piz*) Zdi*~Z*En~V=h,.-,En~v, (21) 

h,,v=i12- (iv-n/2)2, ~ ~ , - ~ = h : , ~ ,  
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and are also unaffected by conformal transformations of the 
form 

where a is an arbitrary complex number. 
The eigenvalues of the Casimir operators coincide on 

the functions E "'" and E - ", - " [see (2 1 ) 1. Moreover, these 
functions are not linearly independent. In fact, we have [see 
Eq. (A. 12) in the Appendix] 

where the constants b , ,  and a,,,  are given by (A.3) and 
(A.13). 

Substituting the eigenfunction E "*" ( 19) into the right- 
hand side of the homogeneous equation (7),  we can readily 
calculate the corresponding eigenvalue (see Ref. 3) : 

1 

(v, n) = LC j A ~ s ~ ~ n ~ - i ~ / z  
2s" i-x cos(v1nx)-11. (24) 

The completeness condition for the functions E "," has 
the following form: 

+m + m  

which can be verified by multiplying (25 ) by E ".P* ( p i  ,p, ) 

and then integrating with respect topI ,p2  using the orthon- 
ormalization relations [see formula (A. 16) in the Appen- 
dix]. We note that (25) is valid in a certain generalized 
sense. This can be used only when the left- and right-hand 
sides can be integrated with sufficiently well-behaved func- 
tions [see (6) ] .  

Expanding the solution of (7) in terms of the complete 
set offunctions ( 19) and using (24) and (25), we obtain the 
following explicit expre~sion:~ 

where, by definition, the crossed integral sign represents the 
ordinary integral for n # + 1 and the integral in the sense of 
the "principal value", 

for n = + 1. The substracted term 2p(O)/ l~l  appears be- 
cause the corresponding contribution to f, is proportional to 
the quantities E 's0(p,0,p20), and the solution of (7)  is de- 

fined to within these terms [see (21) and (24)], where, be- 
cause of (6),  this ambiguity does not affect f, (q2) in (4).  

The function given by (26) is conformally invariant and 
therefore depends on the two anharmonic ratios [see ( 11 ) ] : 

To investigate the region of small momentum transfer, 
it is convenient to rewrite (26) in the mixed representation: 

(29) 
where 

The constant b,,, is given in the Appendix [see (A.3 1. Us- 
ing (A. 1 ), we can consider the region of small q: 

x sin [2v in 1 qp 1 +n (arg q  - arg p) + - 6 ( n  2 V, I 

6 (n, v)  =6 (n, v)  -n. (31) 

Thus, when q2-+0,  the function f 2 has singularities of the 
form (q/q*) "*(q2)2iv, where Y = v(w,n) is determined from 
the solution of (24). Nevertheless, (3  1 ) allows the passage 
to the limit q = 0 (Ref. 3 : 

To conclude this section, let us discuss the singularities 
of the partial wave (29) in thew plane, which determine the 
asymptotic behavior of the scattering amplitudes. These sin- 
gularities arise because the moving poles Y = (v,n) in the 
upper and lower half-planes clamp the contour of integra- 
tion with respect to Y for some w = w, when Y = 0. The 
position of these root singularities can be found from (24): 
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In particular, the leading singularity lies at w = w, = (g2/ 
g ) N l n 2  (Ref. 2) and give rise to a power-type rise in the 
total cross sections in the range in which LLA is valid. The 
other singularities lie at the point w, = 0, w2 = - (g2/ 
p2)  N( 1 - In 2)  ... . The singular part of the partial wave 
(29) behaves in the following way near the point w = w,: 

faq (P, P') l a+00 

where 
OI 

Formula (34) contains a logarithmic divergence for 
9-0. This is essentially a manifestation of the fact that, 
when q = 0, the nature of the singularity is different for 
W-a,, i.e., f: ( ,-,o - (w - w0) - I J 2  (Ref. 3 ) .  The behavior 
of the partial wave in the intermediate region, 
( W  - wo)ln21qpl- 1, can be found from (31): 

The result given by (26) will be examined in the next 
section from the point of view of the Wilson operator expan- 
s i ~ n . ~  

3. Anomalous dlmenslons of composite operators for /+ 1 

Let us consider the asymptotic behavior of (26) in the 
range 

Two nonoverlapping regions are then significant in the inte- 
grals with respect top,, namely, Ip,,, I - Ip,,. I - Ip,.,, I and 
[pol I - IpI21, which provide the same contribution [see 
(A.l) ,  (A.121, (A.13)]: 

wherep,, = (p,, + p2, )/2. If we close the integration con- 
tour on the poles in the lower half-plane, we obtain the repre- 
sentation off, in the form of a sum. If we now introduce the 
auxiliary field p ( p )  and write the Green's function (26) in 
the form 

we can interpret the resulting sum as the representation of 
the four-point Green's function 

which arises when the Wilson operator expansion is used.8 
The dimension of the field p ( p )  is then the same as the ca- 
nonical dimension ( d ,  = 0) .  This follows from a compari- 
son of the general conformally invariant expression7 for the 
three-point Green's function with the result for our case [see 
(19)l:  

where v, (w ,n)  is a solution of (24). 
Let us now elucidate the connection between the 

On,, (p,,) in (39) and the gauge-invariant operators O(x) 
constructed bilinearly from the strengths G,, and their co- 
variant derivatives D, . 

It is precisely these operators that provide the principal 
contribution to the asymptotic behavior of the scattering 
amplitude in LLA. 

At high energies, the colorless objects with momentap,, 
p,, which consist of quarks, interact with one another 
through their gluon fields A,. Integration over the quark 
degrees of freedom leads to the appearance of two gauge- 
invariant factors in the functional integral over A,.  For sim- 
plicity, let us consider an Abelian group. In LLA, these two 
factors are then constructed from the product of the follow- 
ing Lorentz components: HF;, (x,),  HFuF,, (x , )  and 
&F;, (x,, ), d;F u2,p (x,, ), respectively, and the scattering 

amplitude is expressed in terms of the four-point Green's 
function 

2 I 

The Wilson expansion can now be used to write the 
function Gin factorized form, involving integration over the 
spins j = 1 + w of the intermediate composite operators. 
The following operator of twist 2 is an example: 

f i l . . . P j  ,,, i -2 i=n,+l 

where the symbol S stands for symmetrization in the Lor- 
MI. .+)  

entz indices p, ...p, and with the trace subtracted off. The 
coefficients Cnl are fixed by the condition for the irreducibi- 
lity of the tensor (42) under conformal  transformation^.^ 

The expansion for the operator product P$F;,~, (xi, ) 

907 Sov. Phys. JETP 63 (5), May 1986 L. N. Lipatov 907 



( i  = 1,2) includes different Lorentz components of the ten- 
sor (42). The simplest is the contraction of (42) with the 
vector p2 in each index: 

where we have used the fact that, in LLA, each term in (42) 
provides the same contribution apart from the sign. 

When the Mellin transform is applied to (41), the de- 
pendence on the longitudinal components of the coordinates 
xi disappears and we have 

I I ~,, . : . ,~,~-a, :a~a~,~ a,. f.(pl, pz7 pie, pzl), (44) 

where the derivatives act on the corresponding arguments. 
We note that, from the point of view of the representation 
(4), the appearance of the differentiations on the right-hand 
side of (44) is due to the fact that the functions @' and a2 are 
proportional to the derivatives with respect to each of the 
impact parameters because of gauge invariance. This en- 
sures that (6)  is satisfied. 

Comparison of (38), (41), and (44) leads to the con- 
clusion that the following connection between the fields of 
the four- and two-dimensional theories can be made after the 
Mellin transformation: 

Here and in what follows, we are considering a non-Abelian 
model. 

A comparison analogous to (45) in the case of the oper- 
ator (43) yields 

where we use the notation introduced above [see (39) and 
(4011. 

The matrix element of (40) can readily be calculated in 
the free theory: 

where we have neglected terms that provide no contribution 
because of ( 6). When the interaction is turned on, the anom- 
alous dimension of the operator (42) is, in our approxima- 
tion [see (19), (24). (39), (40)] 
yoo=2-doo=l-2ivoo=Ng2/n20+ (Ng2/h20) ' 2b  (3) + . . . . 

(48 
This results agrees with exact two-loop calculations of yo, in 
which the correction -g4 contains only a first-order pole at 
the point w = 0. 

In the general case, the following operators have a non- 
zero anomalous dimension in LLA: 

where Cnln2 are determined by considering the conformal 
invariance. 

The two-dimensional operator 0, ( p )  on the right- 
hand side of (39) and (40) is associated with a particular 
projection of the operator (49) after passing to the Mellin 
transformation: 
n 

where e is the two-dimensional light-like vector 
e = (el + i e 2 ) / o .  

Conformal and scale invariance then yield 

where 

vr (n) =-i ('I2([ nl +i)  +r-'Izy-, r ) ,  (52) 

and y,,, is the anomalous dimension of the operator (49) 
which can be found from (24) in the form of a series expan- 
sion: 

(53) 
The solutions (52) of (24) for different r can be looked 

upon as the values of a single analytic function on different 
sheets of a Riemann surface. It is therefore natural to com- 
bine the quantities in (49) into families containing operators 
of different twist. The reason for this unification can be the 
approximate invariance of the theory under generally con- 
formal two-dimensional  transformation^.'^ It is clear from 
(52) and (53) that this property is satisfied only in the sin- 
gle-loop approximation y -g2. The breaking of the general 
conformal invariance is apparently due to the fact that the 
energy-momentum tensor is not traceless in transverse 
space. 

4. Trajectory of the bare pomeron in QCD 

We shall now use the above results to find the trajector- 
ies j(q2) of the bare pomeron in QED for large q2, and the 
lower bound for its intercepts. The derivation is based on the 
idea that if, in accordance with experiment, we suppose that 
the trajectory of the bare pomeron is close to unity, i.e., 

the effective coupling constant 

kz 2 n, (55) 
as (k) =g2(k)/4n=4n/P2 In>, fi2=1i-- 

(nj is the number of flavors) turns out to be small: 

so that the LLA equations are valid (with one modification) 
for the evaluation of the pomeron trajectory. 
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Let us begin with small values of q2: 

q2<A2. (57) 

It will be convenient to use the mixed representation [see 
(30) 1. For sufficiently small p such that 

we can seek the solution of (7)  in the form [see (A.l)  ] 

We shall confine our attention to the n = 0 case, since it is 
only for zero conformal spin that the singularities off, ap- 
pearforw>O [see (33)l .  

The function (59) is a solution of the Bethe-Salpeter 
equation (7) in the mixed representation, but only v satisfies 
(24) which, in our case (N = 3, n = 0),  we write in the form 

where a, = g2/4n-, and 
1 

Equation (24) for the function (59) has the form 

In accordance with (55), to take asymptotic freedom into 
account, we can replace the constant a, in (62) with a vari- 
able guantity: 

Another method is to use the renormalization group 
equations. Equation (60) is then solved for v: 

where each solution corresponds to the anomalous dimen. 
sion (52) of some local operator. The renormalization group 
equation for the matrix element $ (p) is constructed from 
(64) in a standard manner: 

where the constant a, must be replaced with the running 
constant (63 ) . Let us rewrite (65) in the form: 

and compare it with (62). The Bethe-Salpeter equation (62) 
may be looked upon as an analog of the Schrodinger equa- 
tion of a mechanical system in which the stationary Hamil- 
ton-Jacobi equation is identical with (66). Clearly, the 
"quantization" of the renormalization group equation (66) 
is not single-valued because d /d In Ip I and a[ ' -In Ip I do not 
commute. Equation (62) is one variant of this quantization. 
To determine the order in which the noncommuting opera- 

tors appear on the right-hand side of (62), we must calculate 
the corrections in LLA. However, in the region defined by 
(56), a, (p)  as given by (63) is quasiclassical, so that this 
order is unimportant. Equations (62) and (65) are then 
equivalent except at the "turning points." 

The solution of (65) for small enoughp is 

r=ln ( I'p I A),  a, (r) =-4n/2Bzr, (67) 

where it is assumed [see (48)]  that 

i.e., we select the solution that decreases asp-0. 
As r increases, the imaginary part of ,y- ' [w/a, ( r )  ] 

decreases and, when r > r,, where [see (33) ] 

the function becomes real, which means that we have 
reached the cut of anomalous dimension (48). Equation 
(62) becomes simpler near the turning point (69): 

and can be solved in terms of Airy functions: 

which enables us to find the phase q, = n-/4 in the quasiclas- 
sical solution below the turning point: 

It is important to note that this phase does not depend on w. 
It is convenient to transform (72) to the new variable of 
integration v': 

41) 

where v( r )  is given by (64). When 

we have 

v ( r )  *v0m0.637, 

We note that Y = vo corresponds to a solution of the equa- 
tion ~ ( v )  = 0,  i.e., when (74) is satisfied, the term propor- 
tional tow can be neglected (62). We shall assume that (62) 
remains independent of w for w ( 1 if a, (r)  - 1, which im- 
plies that perturbation theory is invalid. The asymptotic be- 
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havior of the solution as we leave this region should then be where v(r,) is determined from (64): 

where the phase r7 is determined by the interaction at large Equations ( 82) and ( 83 ) are valid if the following in- 
distances and, by definition, tends to a finite limit when equalities can be simultaneously satisfied for certain r [see 
w -0. (SO)] 

The mixing of the logarithmic derivatives of the func- 
w h ( q 2 ) G i 2 n - ' l n ~ . ( r ) ,  a . ( r ) < a . ( r 0 ) ~ ~ 1 .  tions (73) and (77) in the region (74) leads to the quantiza- (84) 

tion of the spectrum of Regge poles on thew plane: 

where the quantity a is given by (76). Without loss of gener- 
ality, the parameter 7 can be regarded as lying in the region 
- 1/4<7<3/4 for sufficiently small qZ. We then obtain the 

following inequalities for the intercepts of the poles 
(78),which condense from the right to the point o = 0: 

(79) 
We recall that (78) and (79) were derived on the assump- 
tion that the ok were so small that the following two inequal- 
ities became compatible for some range of values of r: 

o & ~ ( O ) a . ( r )  ==12n-' In 2a,(r) ,  
a, (r )  <I .  (80) 

It is clear from (79) that the inequalities (80) can readily be 
satisfied for parametrically large k. The conditions in (80) 
can be satisfied only approximately [0.4 < 3a, ( r )  < 31 for 
the leading pole corresponding to k = 0. 

The numerical size of the nonlogarithmic terms -af in 

The numerical value of the lower bound for the inter- 
cept of the bare pomerons obtained from (82) and (83) is 
somewhat lower than that in (79) [for a, (r,) = 0.2, we 
have min w,-0.31. 

We must now consider large momentum transfers 
( - qZ) '")A. In the regionp - l/q, where the running cou- 
pling constant is fixed by a, = a, [ - ln(q/A) 'IZ 1, the solu- 
tion of the homogeneous equation in the mixed representa- 
tion is given by (30). Its asymptotic behavior forp 4 1/q and 
n = 0 can be obtained from (A. 1) in the Appendix: 

where the phasea(0,v) is given in (A.2) and the spectrum of 
the values of vk is obtained from the set of equations (82) 
and (83), which arises from matching the functions (73) 
and (85) forp- l/q: 

(621, which at least in principle can be calculated, would The corresponding frequency spectrum is given by (83): 
enable us to find its range of validity, i.e., the upper bound 
a, (r , )  for the effective coupling constant: lo, (9') =a1 (q2)x  ( ~ ' 1 .  (87) 

a. ( r )  <a. ( ro ) .  (81) For In ( lq ( /A)  + a,, we can neglect the phase 6 ( 0 , ~ )  in 
(85), and (86) then yields vk+O, i.e., the set of Regge poles 

The matching of (77) and (73 at r = ro gives us expressions is approximately simulated by a moving cut with the trajec- 
more accurate than (78): tory 

The table lists the trajectories w = wk [a(q2)  ] (87) for 
a (qZ)  < 1 when@, = 11 - (2/3)nf= 9. 

TABLE I. 
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Thus, for large values of q2 andp -p' - l/q, inclusion of 
asymptotic freedom will modify the pomeron Green's func- 
tion (29) as follows: 

+- 
faq (p, pl) = 2 $- (I$ '' (pf))* E: vk  (p) 

n=-m k 

where the trajectories w; (q2) are given by (87), generalized 
(for n #O)  in accordance with (24), which leads to a depen- 
dence of vk on n. 

We have thus calculated the Green's function (89) of 
the bare pomeron within the framework of QCD. The next 
step would be to construct the Reggeon diagram technique4 
and hence find the parameters of the renormalized Pomeran- 
chuk singularity. Conformal invariance would enable us to 
reduce the solution of the set of equations for the vertex func- 
tion and the pomeron Green's function to a purely algebraic 
problem of finding the anomalous dimensions of the com- 
posite operators for w -0 (see Section 3 above), since the 
three-pomeron vertex is fixed by this invariant to within a 
constant factor. 

The author is indebted to V. V. Anisovich, A. P. Bukh- 
vostov, B. Z. Kopeliovich, and V. S. Fadin for useful discus- 
sions in the course of this research, and to D. Paton, C. 
Llewellyn-Smith, B. Weber, R. Rivers, C. Sachrajda, and 
other participants in theoretical seminars at British scientif- 
ic centers for their interest in these results. 

APPENDIX 

We shall now derive the mathematical formulas used in 
the main text. First, we show that, for small q, the function 
E?"(p) (35) is given by the following asymptotic formula: 

(A. 1) 

where 

It is implied in ( A S )  and (A.6) that the parameter v 
has infinitesimal imaginary components that ensure that the 
integrals converge. 

We now transform to a new integration variable z such 
that R =pz/2. We then have 

where 

depends only on the modulus of n. The constant Cis readily 
calculated by using the Wick development of the contour of 
integration with respect toy ( z  = x - t-a, z* = x + trp): 

The last integrals can be expressed in terms of I'-func- 
tions, which yields 

where where b,,, is given by (A.3). By transforming to radial vari- 
eia(n,v) - - 2-8iv r(-2iv+ I n 1 + i )  + '  1 1  1 )  ables, we can readily evaluate (A.6) : 

r(2 iv+Inl+I)  r ( - iv+( ln l+l ) /2)  n/2 

r (-iv+ 1 n 1 /2) ,2q (p) = 1 p 1 %($) ( 5) 1 pq21 aivei8(n*v) , (i4.11) 
X -- 

I'(iv+ln1/2) ' (A.2) 

1 where the last factor is given above [see (A.3)]. Using 
b,,, = n3 

I 24iv (A.4), (A. lo),  and (A. 1 I ) ,  we finally arrive at (A. 1). 
- iv+lnl/2 We must now prove that 

( - i v + ( l + n ) / 2 )  I'(iv+ln(/2) 
X . (A.3) En."(pto, pzo) 

r ( iv+( l+ ln1) /2)  I'(-iv+lnl/2) . . 

bn " 0 '0  Let us subdivide the integral in (A. 1 ) into two terms = 1 J dzpEnSv (p,., p,..) ( pooe I -'+"'( c) ' , (A. 12) 
corresponding to the regions of integration R -p and R - 1/ an,v p0.0 

4: where 
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The fact the right- and left-hand sides of (A. 12) are propor- 
tional follows from considerations of conformal invariance. 
Hence, all that we have to do is to find the proportionality 
constant. Integrating (A. 12) with respect to the variable 
(p, + p2)/2 with the weight expC - i"2(p,o + pzo)q and us- 
ing [see (A.6) and (A. 11 ) ] 

(A. 14) 

we can rewrite (A. 12) in the mixed representation: 

It is readily verified that, when (A. 1 ) is used, (A. 15) is 
actually valid for q p 4 1, which ensures its validity for any q 
and p. 

Next, we show that the orthonormalization condition 
for the functions E "." (p ,,g,,) is 

f b n , ~  I poo. 1 -'-"' (~OO,/PO~*)  "6,,-,6 (v+ p) . (A. 16) 

The functional dependence on p,,, p&, and m, ,u on the 
right-hand side of (A.16) follows from considerations of 
conformal invariance. It is sufficient for our purposes to ver- 
ify the constant factors a , ,bn , ,  (A.3) and (A.13). Let 
p, = l,p,. = 0 and let us introduce the new integration vari- 
ables p and A, defined by 

(A. 17) 

Since the dependence on A, A * in the expressions for E ".'and 
E "+ can be factored: 

we can integrate with respect to A andp: 

(A. 19) 

where, in the last transformation, we use (A.7), (A.8), and 
(A. 10). Thus, the constant factor in the second term on the 
right-hand side of (A. 16) is, in fact, equal to b , ,  . To verify 
the constant factor in the first term, we integrate both sides 
of (A. 16) with respect top,, . From the left-hand side, we 
obtain [see (A.5) and (A.10)] 

On the right-hand side of (A.16), only the first term pro- 
vides a contribution and, by virtue of (A. 13), the results of 
integration are the same, i.e., (A.16) is proved. 
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