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A study is made of generation of microwave harmonics which form above a threshold intensity 
of a high-power electromagnetic wave incident on the surface of bismuth subjected to a strong 
magnetic field at liquid helium temperature. A theoretical model explaining this effect is 
constructed in the magnetohydrodynamic approximation. This model shows that an increase 
in the amplitude of an electromagnetic wave in bismuth creates an acoustic instability at the 
pump frequency and at multiples of this frequency. The threshold generation of harmonics is 
attributed to parametric excitation of hypersound. Experiments are reported in which a pump 
of 0.91 X 10'' Hz frequency was used to study the nature of the growth of the second harmonic 
power and the dependence of the threshold power of the incident wave on the temperature of a 
sample and the magnetic field applied to it. The experimental results are in agreement with the 
predictions of the theoretical model. 

1. INTRODUCTION 

The present authors discovered and investigated ex- 
perimentally in detail' the phenomenon of threshold genera- 
tion of harmonics of an electromagnetic wave of frequency w 
incident on the surface of bismuth subjected to a strong mag- 
netic field H. When a certain threshold power of the incident 
wave P: was reached, an instability appeared and resulted 
in growth of the second harmonic power P,, in a character- 
istic time of the order of a few microseconds, and the differ- 
ence between the powers P,, at the beginning and end of a 
pulse reached 20-30 dB. The nature of the instability was not 
finally determined in Ref. 1, although it was pointed out 
there that at threshold powers the amplitude of the electric 
field E, of a wave in the metal reached values at which the 
velocity of the transverse drift of carriers in the magnetic 
field v, = c(E,/H) became of the order of the velocity of 
sounds. Our aim will be to show that the threshold genera- 
tion of the second harmonic is due to an acoustoelectronic 
instability associated with parametric generation of hyper- 
sound at frequencies w, close to the frequency w or one of its 
multiples nw. 

Studies of nonlinear effects due to a high drift velocity u 
of carriers in bismuth were started by Esaki2 He observed2 a 
kink in the current-voltage characteristic of bismuth sub- 
jected to a transverse magnetic field H. This kink appeared 
in a field E in which this velocity became u = c ( E  /H) = s. 
The relationship between the Esaki effect and microwave 
nonlinear characteristics was discussed in Refs. 3 and 4. 

The threshold behavior of a nonlinear response of bis- 
muth was also reported in Refs. 3 and 5, but these experi- 
ments were carried out in weaker magnetic fields and the 
change in the nonlinear characteristics did not exceed 100%. 
It is not yet clear whether these effects are due to the same 
factors which are discussed below. 

It was shown in Ref. 4 that if a sample carrying a con- 
stant current was subjected also to an electromagnetic wave, 

the kink in the current-voltage characteristic was accompa- 
nied by a 20-30 dB increase in the power of the second har- 
monic P,, of the electromagnetic wave. An analysis of the 
experimental results showed that the second harmonic is 
generated as a result of the following processes: 

a )  an electromagnetic wave incident on a sample gener- 
ates sound at a frequency w, = w near the surface; 

b)  the sound of frequency w,,  because of an acousto- 
electronic instability induced by a constant current, is ampli- 
fied and converted into higher harmonics, particularly into 
the second harmonic; 

C)  a hypersonic wave of frequency 2w, traveling near 
the surface is converted back into an electromagnetic wave. 

The characteristic times of the transient processes ob- 
served in Ref. 4 in the course of generation of the second 
harmonic were of the order.of 1 psec, i.e., they were the same 
as the corresponding times in the Esaki effect6 and as in the 
threshold generation of harmonics,' and the enhancement of 
P,, in Ref. 4 was close to that reported in Ref. 1. Essentially, 
the characteristics of the process of harmonic generation 
were similar in the presence of a constant drift velocity v 
(Ref. 4) and in its absence, but in the latter case the process 
occurred at a higher amplitude of Em (Ref. 1 ) and this cir- 
cumstance was the stimulus for the investigation reported 
below. 

In the next section we shall present a theoretical model 
constructed in the magnetohydrodynamic approximation 
ignoring the quantum effects. We shall use this model to 
calculate the attenuation of sound under electromagnetic 
pumping conditions and show that when a certain threshold 
amplitude of the electromagnetic wave is exceeded the sign 
of the attenuation is reversed, i.e., hypersound is amplified. 
Some consequences of this model will be compared later 
with our experimental results. The relevant experiments are 
described in the third section. To supplement the experimen- 
tal results in Ref. 1, we investigated the nature of the growth 
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of the harmonic power P, ,  in time and the dependence of the 
threshold power P:h of the incident wave on the temperature 
of a sample and on the magnetic field H applied to it. In the 
last (fourth) section we shall compare the theory and exper- 
iment. This comparison shows quite convincingly that the 
threshold generation of higher harmonics' is due to an 
acoustoelectronic instability of hypersound which appears 
when bismuth is subjected to a strong electromagnetic wave 
of microwave frequency. 

2. THEORETICAL MODEL 

We shall write down a coupled system of equations for a 
magnetized electron-hole plasma and a neutral lattice. We 
shall describe the plasma in the hydrodynamic approxima- 
tion and we shall allow for the interaction between the sys- 
tem of carriers and the lattice using the deformation poten- 
tial: 

div j=e div (nhvh-neve) =O, (3  ) 

a2~/dt"?VZu=p-l (Q.Vn,+QAVnh). (4)  

Here, me, v,, Q,, fie, and n, are the mass of electrons, their 
drift velocity, the deformation potential, a coefficient asso- 
ciated with electron diffusion, and the electron density, re- 
spectively; a similar notation is used for holes ( h ) .  The other 
notation is as follows: s is the velocity of sound; u is the lattice 
displacement; T is the relaxation time; they axis along which 
the acoustic wave is propagating is perpendicular to the 
magnetic field Hllz; the carrier dispersion law is assumed to 
be isotropic; the electron-hole plasma is postulated to be 
completely compensated. 

The validity of these equations is governed by the high 
intensity of the magnetic field: the cyclotron frequency f l  is 
less than the plasma frequency, but higher than all the other 
characteristic frequencies, fl>w> 1/r, and the cyclotron ra- 
dius R is less than all the other characteristic dimensions: 
qR 4 1 (q  is the wave vector of sound). In fields of this kind 
the velocity of a magnetoplasma wave in bismuth is V=: lo9 
cm/sec, i.e., V>s. We shall therefore ignore the wave vector 
k of this wave and assume that the electric field of the wave is 
homogeneous in space. 

For the sake of simplicity we shall henceforth assume 
that mh >me. Then, the ambipolar diffusion coefficient is 
D = D, = R f / 3 ~ .  Moreover, since the applied static mag- 
netic field is high, we shall ignore the magnetic field of the 
wave in Eq. ( 1 ). The validity of this simplification can be 
demonstrated by retaining the term with an alternating mag- 
netic field in the iteration process and comparing the values 
of the various nonlinear contributions: such a procedure 
shows that the nonlinearity is mainly due to the terms vVv in 
the equations of motion and nv in the equations of contin- 
uity. 

The system of equations ( 1)-(4) allows us to study the 
interaction of electromagnetic and acoustic waves. We shall 
be interested in acoustic instabilities in the presence of a 
strong electromagnetic wave. 

Iteration method 

We shall apply the method of iteration with respect to E 
and u to study the propagation of an acoustic wave u in the 
presence of an electromagnetic wave E and we shall find the 
attenuation coefficient of sound y under these conditions in 
order to understand better the physical nature of the interac- 
tion. 

The electric field in the system ( 1 ) consists of two parts: 
E = Em + E, , where Em is the field of an electromagnetic 
magnetoplasma wave traveling in the plasma and E ,  ap- 
pears in the presence of an acoustic wave because of the elec- 
trical neutrality conditions of Eq. (3 ). We shall assume that 

E nt =I/ 2 E ,e -iat , ~ = ' / ~ ~ ~ e x p  {i(qy-w,t)I, 

E u = ' / 2 E u o e x ~ { i ( q ~ - ~ 8 t ) ) ,  E,11+, c~llu~lly, Hllz. 
( 5  

We shall seek v , ,  and ne,h in the form of series in pow- 
ers of u and Em : 

Here, n,, is the equilibrium electron density; n"' and v"' are 
quantities of the first order of smallness; n"' and v"' are 
quantities of the second order of smallness, etc. We shall find 
the attenuation coefficient of sound y under conditions of 
electromagnetic pumping by starting from Eqs. ( 1 ) and (2)  
and using Eq. (3)  to find an expression for the carrier den- 
sity, which is proportional to the amplitude of sound and to 
the square of the electric field of the electromagnetic wave: 
d3' a E, 'u .  Iterating with respect to E,  and u, we can show 
that the main contribution to comes from the term 

where n::', is that part of d2' which is proportional to 
exp{i[qy - (w, - w)t]). It satisfies the equation of contin- 
uity 

d - ( 2 )  ( 2 )  n,'?, 4- div(n~f'vm+n,,v,,-,+DVn,.-,) = 0, ( 6 )  
d t 

where u::', is defined by analogy with n::)- ,, whereas nh:) 
is that part of n"' which is proportional to u .  This is due to 
the fact that in the absence of diffusion, i.e., in the absence of 
the last term in Eq. ( 6 ) ,  we have n"'+ w in the limit w, +a. 
The rise of nx', and, consequently, the rise of d3) are both 
limited only by the diffusion term: 

Substituting n'3' into Eq. (4)  we find that the attenuation 
coefficient of sound is given by 
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(p is the density of the investigated bismuth crystal and E, is 
the Fermi energy). The index 2  indicates that the calculated 
term obeys y, a v i  a E i. It follows from Eq. (8 )  that if 
w, < w ,  then the coefficient in question becomes negative 
y, <O: amplification of sound becomes possible and an 
acoustic instability may occur in the presence of pumping. 
Naturally, this can occur only if 1 y,l is greater than, for ex- 
ample, the pump-independent part yo of the electronic atten- 
tuation of sound. 

The structure of Eq. (8)  is similar to the results ob- 
tained in Ref. 7 when a quantum-mechanical analysis is 
made of the k # 0 case. 

The process of iteration with respect to Em and u makes 
it possible to identify the mechanism of the interaction of 
electromagnetic waves traveling in a magnetized electron- 
hole plasma with acoustic waves in a neutral lattice sur- 
rounding the plasma, but it does not work if u, -s, which is 
true in the experiments on the threshold generation of har- 
monics in bismuth.' However, if the pumping is homogen- 
eous so that k = 0, the system ( 1 ) - ( 4 )  can be solved without 
the requirement of the smallness of E, and u, ,  simply as- 
suming that u is small. 

Solution for finite values of Em 

We shall seek this solution in the form 

Here, (u,,n,) is the solution of the system for Q, = Q, = 0. 
Since k = 0, the functions vo and no are proportional to E, 
for any value of E,.  However, the corrections v ,  and n ,  are 
proportional to Qd 'u /8y2 .  For convenience, we shall assume 
that Em = E,cos wt. We shall adopt a moving coordinate 
system: 

g=y- (u,/o) sin (ot) . ( 9 )  
In this system Eqs. ( 1 ) and ( 2 )  for v ,  and n ,  yield the follow- 
ing equations for electrons and holes: 

The term n,, div v ,  is ignored in Eq. ( 1 1  ). An acoustic wave 
described by Eq. ( 5 )  transform in this coordinate system 
into 

u q = ( ~ o / 2 ) e ~ ~ ( i q ~ ) e x ~ { i [ - o d t +  (qvO/o)sin a t ] )  ( 12) 

If there is no sound, i.e., if u,, = 0, then the .carrier is immo- 
bile in the new coordinate system. The problem reduces to a 
calculation of the response to a complex acoustic field of Eq. 
( 12). This problem has been solved, for example, in Ref. 8. 

We shall now find the current which appears in the co- 
ordinate system ( 9 )  in response to a perturbation 

uP (g, v) = 3 uq (g, t )  etvl dt ,  
(2n)" -_ 

and we shall then use Eq. ( 1 1  ) to determine also the Fourier 
component of the carrier density n ,  ( q , v )  in this system. Re- 
turning next to the old coordinate system, we obtain the 
Fourier component of the carrier density in a coordinate 
system at rest: 

where J,  (x) is a Bessel function of order n, and 

n/a 

g a l  - j C (qR sin 0 )  sin 0 d0, 
0 

g =(qR)' /3  for q R ~ l .  

This derivation is based on Eq. ( 4 . 6 )  from Ref. 8 and on an 
expansion of exp (iz sin w t )  in terms of Bessel functions. We 
shall be interested in the Fourier components n ,  ( q , v )  at the 
frequency of sound 

We shall discuss these cases separately. 
1 .  Substituting v = w into the argument of the delta 

function in Eq. ( 13) ,  we find that only the terms of the series 
with n' = n differ from zero: - 

The sum ( 14) contains resonance terms at frequencies 

os=no .  ( 1 5 )  
Since the coefficient of w, in ( 15) is unity, the processes 
described by the series ( 14) can be called one-phonon. Sub- 
stituting Eq. ( 1 4 )  into the equation of the motion of the 
lattice ( 4 ) ,  we obtain the attentuation of an acoustic wave 
( 5 )  for an arbitrary amplitude of an electromagnetic wave: 

e 

( 1 6 )  
If o, -- w and ~ ( w T ,  Eq. ( 16) reduces to 

At low electromagnetic wave amplitudes such that v,  /s( 1 

878 Sov. Phys. JETP 63 (4). April 1986 Vitkalov et a/. 878 



and for qR4 1, the second term in Eq. ( 17) reduces to the 
usual expression for the attentuation of sound due to interac- 
tion with carriers.' The first term then reduces to Eq. (a), 
which is the additional attenuation proportional to the 
square of the amplitude of the electric field of the pump wave 
E i .  

2. Substituting in the argument of the delta function the 
relationship v = - w,, we find the condition for the so- 
called two-phonon parametric decay (dissociation) pro- 
cesses: 

wherep photons decay into two phonons with opposite mo- 
menta. Ifp is odd, then among the terms of the sum ( 13) that 
do not vanish because of the condition ( 18), there is none 
which is a resonance term and which becomes infinite in the 
limit g / r 4 .  Ifp is even, there is such a term: n' = n =p/2. 
Therefore, under strong pumping conditions the usual para- 
metric resonance at w, = w/2 is relatively weak and the con- 
tribution of the process of Eq. ( 15) at w, = o to the instabil- 
ity increment at the frequency a, is of the same order as the 
contribution of the process of Eq. ( 18) at 2w, = 2w. In view 
of the same dependence on the parameters of the problem, it 
is difficult to distinguish these two mechanisms experimen- 
tally so that we shall use Eqs. ( 16) and ( 17) in any subse- 
quent comparison of the theory and experiment. 

According to Eq. ( 16), near each of the multiple fre- 
quencies nw (n = 1,2, ...) there is a narrow frequency inter- 
val Aw =g/r = (qR ) 2/3r, where the sum contains one nega- 
tive term and the absolute value of this term is of the order of 
r/(qR) *. Amplification of sound can occur in this frequency 
interval provided not only that the whole sum is negative, 
but also that y,* (w, ) exceeds the attenuation of sound due to 
phonons y,, (w, ). By way of example, we shall consider a 
frequency interval w - g/r  5 w, < o near the pump frequen- 
cyw. Ifv, -s,w, ~ w ) l / r , q R ( l ,  thenthefirstterminEq. 
( 17) is wr(qR) -' times greater than the second because yUm 
<O. A comparison of the value of y, calculated using the 
known parameters of bismuth with the value of y,, deduced 
from the experiments on second sound (Ref. 9),"shows that 
the inequality 

is very probably satisfied. 
The occurrence of Bessel functions in Eqs. (16) and 

( 17) reflects the circumstance that in the case of instability 
of amplification of sound we need to transfer energy from an 
electromagnetic to an acoustic wave. This process occurs 
most effectively when the amplitude of carrier oscillations 
under the influence of an electromagnetic wave is of the or- 
der of the wavelength of the sound being amplified. 

3. EXPERIMENTS 

We studied experimentally the amplitude and time 
characteristics of the second harmonic 20 generated as a 
result of interaction of an electromagnetic wave of frequency 
w / 2 ~  = 9.1 x lo9 Hz with bismuth subjected to magnetic 
fields of H- 10-80 kOe. We used the experimental setup 

FIG. 1. Schematic diagram of the experimental setup: 1 ) bismuth sample; 
2)  apertures; 3 )  sample holder, acting also as a screen; 4), 6 )  coupling 
apertures; 5 )  resonator; A, and A ,, are attenuators tuned to the frequen- 
cies w and 20; F,, is a second harmonic filter; I is a ferrite isolator; M is a 
magnetron; G is a synchronization pulse generator; Sis a superheterodyne 
detector; BA is a Boxcar-162 analyzer. 

shown in Fig. 1. A magnetron M generated microwave radi- 
ation in the form of rectangular pulses (pulse duration 2-10 
psec, repetition frequency 16 Hz), which reached a rectan- 
gular resonator 5 along a waveguide after passing through an 
aperture 4. A calibrated attenuator A,, an isolator I, and a 
system of filters F,, which absorbed the stray second har- 
monic signal generated by the magnetron itself were placed 
between the magnetron and the resonator. A sample 1 was 
pressed against an aperture 2 in the resonator and was there- 
fore part of its wall. The resonator was tuned to the TE,,, 
mode of frequency w, so that only the tangential components 
of the electric and magnetic fields were experienced by the 
sample. The radiation of frequency 2w was coupled out 
through an aperture 6, passed through a calibrated attenua- 
tor A ,, , and was received by a superheterodyne detector S 
(intermediate frequency 200 MHz) in a band 10 MHz wide. 
The detector signal was applied to a Boxcar 162 analyzer and 
an oscilloscope. The experiments were carried out at tem- 
peratures 4.2-12 K in magnetic fields up to 80 kOe. 

It is known1' that magnetoplasma waves with a spec- 
trum w = xHk, where k is the wave vector and x -  lo4 
cm-sec-'-Oe, propagate in bismuth subjected to a strong 
magnetic field at helium temperatures1' and the velocity of 
such waves in a field of H = lo5 Oe reaches V = w/k = lo9 
cm/sec, whereas the direction of propagation is along the 
normal to the illuminated surface of a sample. Our experi- 
ments were carried out in two configurations: klH (using 
the aperture 2 in the side wall of the resonator-see Fig. 1 ) 
and kllH (when the aperture was in the bottom of the reso- 
nator); several bismuth single crystals of different shape 
(disk, plate, rod, parallelepiped) were used and the orienta- 
tions ofthe symmetry axes relative to the illuminated surface 
were varied. We shall report the results for two samples: 

1 ) Bi- 1, a plate of 17 X 6 X 0.4 mm dimensions with the 
C, axis along the normal to the wide face (k lH configura- 
tion); 
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FIG. 2. Profile of the second harmonic pulses generated in sample Bi-2 
using different pump powers; T =  4.2 K, H =  55 kOe, HIIC,, E, (IC,, 
kllv, IIC,. An increase in the power of the incident wave compared with 
the power P, for the lower curve is shown on the right and additional 
attenuation in the receiving channel is shown on the left. 

2) Bi-2, a parallelepiped of 1 1 x 9 x 13 mm dimensions 
with the bisector C, ,  binary C,, and trigonal C, axes oriented 
at right-angles to the faces to within 3" (both configura- 
tions). 

The results obtained for other samples were similar. 
Figure 2 demonstrates a gradual change in the profile of 

the P,, pulses on increase in the pump power P, . The lower 
curve was obtained at a prethreshold incident power of 
P, --PC. When the threshold was exceeded by a small 
amount, a rapid growth of the second harmonic power took 
place at the end of a pulse. A further increase in the pump 
power shifted the onset of such a growth process toward the 
beginning of a pump pulse. A comparison of the lower and 
upper curves in Fig. 2 demonstrated that the increase in the 
pump power by 15 dB increased the second harmonic power 
P,, not by three orders of magnitude, as expected in the 
quadratic regime, but by more than seven orders of magni- 
tude. 

A qualitative analysis of the pulse profile, representing 
the time dependence of the second harmonic power P,, , is 
given in Fig. 3. The moment t = 0 corresponds to the begin- 
ning of the pump pulse. We can see that the increase of P,, 
with time was initially exponential and this was followed by 
deviations from the exponential function. A further analysis 
of the results was made for sample Bi-2 (Fig. 3). Continuing 
the linear part of the dependence P,, (t) to the point ofinter- 
section with the ordinate, we found the initial moment 
from which the exponential rise of P,, (t) began. When the 
power P, was altered in a controlled manner by A dB, then 
the initial value of P :03 changed by 2A dB. This was plotted 
along the ordinate. Selecting a certain signal level Win the 
receiving channel, we could determine the time t in which 
the exponentially rising signal reached this value. This gave 
two points in the exponential part of the dependence P,, (t) 
for a given pump power Po. Drawing a straight line through 
these points, we found the slope a of the straight line repre- 
senting the growth increment: 

FIG. 3. Timedependences ofthe power P,, at T  = 4.2 K: 0 )  Bi-I, HIIC,, 
E, IIC,, kllvw IIC,, v o / s  = 1.0, H = 38 kOe; 0 )  Bi-2, HIIkI/C,, Eco IIC,, 
v, IIC,, V,/S = 1.3, H = 42 kOe. 

The functions a (u, ) determined in this way are plotted 
in Fig. 4. The most important feature is the existence of a 
maximum of the function a (v, ). The following comments 
can be made about the position of this maximum. We carried 
out repeated quite accurate (within about 10%) absolute 
measurements of v, using a measuring line to find the Q 
factor of the resonator and a thermistor bridge to measure 
the absolute value of the incident power P, . These experi- 
ments were carried out on sample Bi-2 in the klH configura- 
tion at 4.2 K in a field of about 45 kOe. They gave the values 
of v: given in Table I. However, in the usual experiments 
made using the stroboscopic integrator the absolute values 
of P, have been determined with an error as large as 50%. 
The abscissa in Fig. 4 is subject to the same error. However, 
the relative values of v, were determined to within 5%. 

The method of analysis of the data shown in Fig. 4 can 

a,  MHz a. MHz 

FIG. 4. Dependences of the instability increment on the amplitude of the 
drift velocity of carriers at T = 4.2 K: 0 )  Bi-1, HIIC,, E, IJC,, kllv, IIC,, 
H = 38 kOe; 0 )  Bi-2, HJIkIIC,, E, IIC,, v, IjC,, H = 42 kOe. 
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TABLE I 

also be used to find the dependences of a on other param- 
eters such as the temperature of a sample for fixed values of 
Hand P, (Fig. 5). When the incident power P, is constant, 
the change in P,, can be determined simply by measuring 
the rise time of the second harmonic power P,, to a fixed 
level. 

Extrapolation of the dependence a (v ,  ) to a = 0 gave 
the threshold value of the velocity u: and then the threshold 
power P:. These values corresponded to the onset of an 
instability after an infinitely long time from the beginning of 
the incident pulse P, . It is clear from Fig. 4 that these values 
were little different from the threshold values of v, and P, 
which could be determined directly after 10 psec from the 
beginning of a pulse ( 10psec was the longest pump duration 
possible in our experimental system). We ignored this differ- 
ence and measured P$ at the moment of appearance of dis- 
tortions at the end of the P,, pulse. 

Figures 6 and 7 show the dependences of the threshold 
power P: on the magnetic field and on the temperature of a 
sample. Calibration values given in Table I made it possible 
to utilize the v:/s scale in these dependences. This scale 
stressed the circumstance that the threshold velocity uth 
could be less than or greater than the velocity of sound s. 
This was the fundamental difference between the phenome- 
non under discussion and the mechanism of generation of 
hypersound in a constant-drift regime.4 

Direction Threshold drift 

lo5 cm/sec 

4. DISCUSSION 

We have pointed out in the Introduction that the origi- 
nal experimental observations demonstrated that the insta- 
bility in the generation of P,, is associated with the amplifi- 
cation of hypersound: an increase in P,, appears at v, -s, 
the transient processes have characteristic times close to the 

Maximum velocity of 
sound in direction of 

v, (Ref. 17), 10' cm/sec 

t- ', MHz 

I I I I 

times of establishment of a steady state in the constant-drift 
regime,4 and the gain in the generation ofP,, is close to that 
observed in Ref. 4. The results of the present paper support 
strongly this hypothesis. 

The exponential growth of P,, with time (Figs. 2 and 
3 )  is an indication of the paramagnetic nature of the process. 
An indirect confirmation is provided by a strong (exponen- 
tial) temperature dependence of the value of P,,: an in- 
crease in the temperature of a sample by a factor of 3 reduces 
the second harmonic power P,, by a factor of 10' for practi- 
cally the same pump amplitude. It is clear from Fig. 4 that a 
typical value of the increment at amplitudes twice as high as 
the threshold is - 1 MHz. This means that the characteristic 
relaxation times of the waves being amplified are - 1 psec. 
Such a long relaxation time can only be associated with the 
phonon system of bismuth, because the time constants of the 
electron subsystem (such as the momentum relaxation 
time) are much shorter (T=: 10W9 sec) . The existence of the 
maximum of the instability growth increment at v, ~ 2 . s  
(Fig. 4) makes it necessary to assume that the parametric 
process is associated with the amplification of hypersound. 

The theoretical model in Sec. 2 admits the possibility of 
two channels of second harmonic generation. The first is 
identical with that described in the Introduction in a discus- 
sion of generation in the constant-drift regime. It postulates 
amplification of weak sound of frequency w generated on the 
surface. The second channel can be described as follows. 
Sound in generated (i.e., it is amplified from the noise level) 
directly at the frequency 2w in the bulk of a crystal and it is 
then transformed at the surface into an electromagnetic 
wave of the same frequency. In principle, the theory allows 
us to distinguish these two channels. We can write down the 

I , , , , ,> -  - 0 I0 40 60 H, kOe 

Y 6 B T, 3 FIG. 6. Dependences of the threshold power P: on the magnetic field H 
applied to Bi-2 sample at T = 4.2 K: 0 )  HIIC,, E, IIC,, kllv, IIC,; 0 )  

FIG. 5 .  Temperature dependence of the reciprocal of the growth time of HIIC,, E, IIC,, kllv, IJC,. The right-hand scale applies only to the upper 
the power P,,: Bi-2, HIIkIIC,, E, IIC,, v, IIC,, H = 42 kOe. curve. 
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FIG. 7. Temperature dependence of the threshold power P:,h: Bi-2, 
HIIkIIC,, E, IIC,, v ,  IICz, H = 42 kOe. 

formula for the attenuation increment in the form 

where a, and y are parameters, and n = 1 applies to the first 
channel and n = 2 to the second. Equation ( 19) gives differ- 
ent positions of a maximum of the function a (v, ) : u, / 
s = 1.8 for n = 1 and 1.5 for n = 2. The experimental values 
are 2.45 for sample Bi-1 and 2.15 for sample Bi-2. Although 
formally the two theoretical values are within the limits of 
the 50% error, nevertheless the experiments tend to suggest 
the first channel. Therefore, we shall carry out a detailed 
comparison of the experimental results using Eq. ( 19) and 
assuming that n = 1. Variation of the scale along the v,/s 
axis and of the coefficients a, and y makes it possible to 
describe very satisfactorily the experimental points (see the 
continuous curves in Fig. 4).  The coefficients a, and y are 
then quite reasonable: y = 0.2 MHz for Bi-1 and 0.3 MHz 
for Bi-2 (compare with Ref. 9),  whereas a, = 22 MHz and 
4.3 MHz, respectively. A theoretical estimate gives 
A z 3 ~  anda, ,zAwz20 MHz. 

We shall now turn to the dependence of the threshold 
power on H. We can see from Eq. ( 17) that the growth incre- 
ment has a maximum at w - w, z g / r z  (qR ) 2 / 3 ~ .  In the 
case of bismuth subjected to magnetic fields of 20-80 kOe we 
find that if w/27r = 10"' Hz, then w - w, -2n-x 10' Hz, 
which lies within the - lo7 Hz width of the spectrum of a 
magnetron pulse. This is important because in the process 
under discussion it is assumed that there is a "seed" acoustic 
wave. It also follows from Eq. ( 17) that at the maximum the 
term with J :  is practically independent ofH. The value of v, 

0 10 t, psec 

FIG. 8. Profile of the second harmonic pulses obtained at moderate pump 
powers. The experimental conditions and the notation are the same as for 
the results obtained in Fig. 2. 

is also independent of H, because the electric field E, of a 
magnetoplasma wave is proportional to H (Ref. 10). Conse- 
quently, in strong magnetic fields the threshold power P $ is 
independent of H, as found experimentally (Fig. 6 ) .  A re- 
duction in the magnetic field intensity may bring into oper- 
ation various factors so that the maximum of a begins to 
edge out of the magnetron band. It is possible that an in- 
crease in the pump power is due to the fact that the pumping 
inhomogeneity begins to play a role. The nonmonotonic de- 
pendence P $ (H) observed in moderate fields is due to oscil- 
lations of the density of states at the Fermi level.' Such oscil- 
lations of nonlinear threshold characteristics of bismuth 
have been observed earlier.'' 

We shall now discuss the dependence of the threshold 
on the temperature of a sample. According to Eq. ( 17), the 
coefficient a, in Eq. ( 19) is independent of 7-. Therefore, the 
observed dependence of the increment a(v, ) on T in Eq. 
( 19) should be contained in y and we know that y is related 
to the scattering of sound on phonons. There are several 
mechanisms for the attenuation of sound by phonons.12 Fig- 
ure 5 shows the temperature dependence of a quantity pro- 
portional to the growth increment. This dependence is near- 
ly linear, so that in the case of Bi at frequencies w/2n-z 10'" 
Hz the decay mechanism of the relaxation of sound by phon- 
ons predominates, which is not surprising at very high fre- 
quencies. l 2  

We shall now consider the problem of the subsequent 
evolution of a parametric instability and the resultant har- 
monic generation processes. This topic is currently the sub- 
ject of intensive theoretical studies and also of model experi- 
ments because of the appearance of soliton-like generation 
regimes and also of stochastic (turbulent) regimes in sys- 
tems with a small number of interacting  wave^.'^^'^ If we 
modify the experimental conditions somewhat, for example 
by altering the value of H and P, , we can change greatly the 
profile of a P,, pulse and obtain not the pulses in Fig. 2 but a 
different result (see Fig. 8, which shows pulses obtained at 
intermediate values of P, relative to those recorded at 1 dB 
and 9 dB in Fig. 2). We even reported earlier' cases when in a 
period of 10 psec there were three generation peaks. This 
generation regime is clearly associated with a modulation 
instability of a growing acoustic wave of frequency w. The 
same model of modulation instability predicts also a stochas- 
tic regime of the generation of sound.I4 We cannot exclude 
the possibility that this process is responsible for the appear- 
ance of radioelectric current noise in bismuth when a sample 
is subjected to a strong microwave radiati~n.~." 

5. CONCLUSIONS 

We can regard it as established that the threshold gener- 
ation of the second harmonic of microwave radiation in Bi 
subjected to strong magnetic fields is associated with para- 
metric amplification of hypersound at a frequency located in 
a narrow spectral interval close to the pump frequency. In 
contrast to an acoustoelectronic instability associated with 
the Vavilov-Cherenkov in our case the instability 
increment is positive in a narrow frequency interval which 
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can be varied by altering the frequency of the incident radi- 
ation. 

The authors are grateful to I. A. Voropanova for grow- 
ing the samples and to V. V. Shvyrkin for technical help. 

"The value y,, =: lo7 sec was obtained in Ref. 9 for thermal phonons with 
T z 4  K; in our case the phoncn energy was about 0.3 K and, consequent- 
ly, the relaxation frequency was at least an order of magnitude less: 
yph ( w )  =: lo6 sec. 
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