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Analytic and numerical studies are reported of transient pulsed regimes of nonlinear 
acoustooptic interaction of two collinear electromagnetic waves with sound. It is shown that 
soliton envelopes may form from boundary perturbations. The pumping regimes at the highest 
and intermediate frequencies are very different. The threshold condition for the conversion of a 
breather into solitons is found for the latter case. The soliton velocity is governed by pump 
modulation. An analysis of the soliton velocity is made on the basis of the general Whitham 
relationships. 

Three-wave parametric interactions (w, = w, + a)  of 
electromagnetic waves with vibrations or oscillations of 
equilibrium media (crystals, plasma, etc. ) have been investi- 
gated sufficiently thoroughly, both theoretically and experi- 
mentally, on the assumption of a constant amplitude of the 
pump wave.'v2 The theoretical predictions in respect to 
acoustooptic interactions can be formulated briefly as fol- 
lows: laser pumping at a frequency w, > w, can make a sys- 
tem absolutely (or convectively) unstable under back- 
scattering conditions (stimulated Brillouin backscattering) 
and convectively unstable in the case of forward scattering. 
An instability appears when the pump intensity exceeds a 
certain threshold associated with dissipation, phase mis- 
match, or escape of waves out of the interaction region, and 
it is manifested by an exponential increase in the intensity of 
the Stokes radiation and of sound. However, the approxima- 
tion of a constant pump wave intensity ceases to be valid 
after the transient time, when the amplitude of signal waves 
reaches high values because of the development of the insta- 
bility. Then all three waves are equivalent (the only distinc- 
tive feature of the pump wave being the constant supply of 
energy from the boundary) and the interaction between 
them becomes nonlinear. It should be pointed out that the 
problems of establishment of a steady state is bounded sys- 
tems have not been investigated sufficiently thoroughly. 
Whereas the evolution of a system of opposite waves into a 
spatially inhomogeneous time-independent state is suffi- 
ciently well-gr~unded,~ in the case of concurrent waves there 
are still a number of unsolved problems relating to the drift 
nature of their interaction: firstly this applies to the stabiliza- 
tion of a convective instability allowing for depletion of the 
pump intensity and formation of steady-state soliton-like 
pulses; secondly, we have to consider the probability of exci- 
tation of solitons and control of their dynamics by external 
signals. These problems have now become important be- 
cause of experiments on fiber-optics waveguides in which a 
system of concurrent waves may be at resonance and the 
length of the interaction region may be considerable. 

A nonlinear acoustooptic interaction (stimulated Bril- 
louin backscattering) and the formation of solitons due to an 
electrodynamic nonlinearity at very low threshold fields4 

have both been observed in fiber-optics waveguides. 
The possibility of propagation of steady-state pulses in 

an unbounded three-wave system has been demonstrated in 
Refs. 5 and 6. The integrability of the equations describing 
this system has been demonstrated on the basis of the inverse 
scattering The results of these investigations 
generally do not overlap because in Refs. 5 and 6 one of the 
amplitudes [ - tanhb (x - u t )  ] is not localized. 

We shall report analytic and numerical studies of tran- 
sient pulsed regimes of a nonlinear acoustooptic interaction 
of two parallel electromagnetic waves with sound. We shall 
demonstrate the possibility of formation of soliton envelopes 
from boundary perturbations (signals). In the case of pump- 
ing at the highest frequency we can expect soliton-like enti- 
ties to form from a small perturbation because of the devel- 
opment of a convective instability. If the pump frequency is 
moderate, then solitons are formed only above a certain 
threshold of the boundary signal amplitude. 

We shall assume that an electromagnetic pump wave of 
frequency w, is incident on the entry to the system and that 
this wave interacts parametrically with a concurrent electro- 
magnetic wave of frequency w, and an acoustic wave with 
the difference frequency R = w, - 0,. In the optical range 
of this interaction the frequency of sound - 100 MHz is 
much less than in stimulated Brillouin backscattering. Con- 
sequently, the absorption of sound in the length of a system 
L - 100 cm may be negligible. In view of the smallness of the 
difference between the refractive indices An, we can ignore 
also the difference between the velocities of electromagnetic 
waves in accordance with the inequality AnL /cr, 4 1, where 
rp is the pulse duration. In the case of an exact resonance the 
system of reduced equations for the wave amplitudes is (the 
phases are assumed to have reached steady-state values) 

where a is the photoelastic constant; E is the permittivity; s is 
the velocity of sound; K and k are the propagation constants 
of acoustic and electromagnetic waves;p is the density of the 
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system; JG 1(1 is a dimensionless factor allowing for the 
transverse structure of the waves (overlap integral). Here 
and later we shall ignore the quantities - (s/c) - lop5 com- 
pared with unity. The boundary conditions for the system 
( 1 ) are 

wheref; ( t )  are the given boundary conditons. The values of 
A for the signal and idler waves are assumed to vanish or to 
decrease sufficiently rapidly on increase in t .  

We shall first consider the case of pumping at w, > w,. 
We shall introduce the following dimensionless quantity 

where I, = (P,P, E )- ' I2 is the spatial scale associated 
with the investigated nonlinearity; v = c/s. In the simplest 
case of a one-soliton regime the solution of the system ( 1 ) is 
easily shown to be 

At=-g ( t -x l v )  th X ,  Az=g( t -x l v )  sech X, 

1  
As= b sech X ,  X= b [ x - r  + - j g2 ( r ' )  dr ' ]  , 

hZ 

whereg (~  - x/v) is an arbitrary function which-subject to 
Eq. ( 2 1 4 s  given by g ( ~ )  = [f: (T) + f: (T) ] 'I2, and b is 
an arbitrary constant. 

The instantaneous velocity of the center of an acoustic 
soliton in Eq. (3)  (the physical meaning of this velocity will 
be discussed later) is related to the amplitude b by 

sinceg = g ( ~  - x/Y), the velocity u is a function of the mo- 
dulation of the pump amplitude so that in the case of suffi- 
ciently wide pulses it is possible to control effectively the 
soliton dynamics. For example, iff, (T )  = exp( - a2r2) and 
b-l,wehavev= 1 -exp[ - a 2 ( ~ - ~ / v ) 2 ] , w h i c h m a k e s  
it possible to delay an acoustic pulse. In the case of the unmo- 
dulated pumping corresponding tog=l the system of equa- 
tions (3)  describing the solution agrees with Ref. 5. 

The solution (3)  demonstrates that solitons can exist 
against the background of a pump pulse in an unbounded 
medium. In practice it is more important to consider the 
possibility of formation of solitons in bounded media and to 
determine the dependences of their amplitudes and veloc- 
ities on the parameters of external signals. [From this point 
of view the solution (3),  which requires special boundary 
conditions, is of limited interest. ] The characteristics of for- 
mation of solitons in a semibounded regionx>O on injection 
of an acoustic signal of the type 

A,  (0, t )  =2B sech 2Bt ,  B= (4p,Uo2/p,E,Z) Ih 

and of unmodulated pumping at the entry A, ( 0 , ~ )  = 1 will 
be illustrated by the following exact solution of the system 
( 1 ), taken from Ref. 9: 

I-q2 2$ 
A1=- A z = - 7 ,  

a a* A , = - -  
i+q12 ' I + +  1+q? ax ' 

(5  

$=B( l+BZ) -"  sh [ ( l + B Z ) ' " x ]  sech B ( 2 r - x )  

The Stokes wave A, is excited here as a result of the interac- 
tion described by A, (~ ,T)  = 0. We shall analyze the solution 
(5)  in greater detail for the case when B g  1. We can easily see 
that the expressions in Eq. (5)  describe the following three 
stages of formation of excitation. If x g  1 and 2874 1 are 
small, then $g 1; consequently, the expressions in the system 
( 5 ) become 

and represent the solution known from the theory of con- 
stant pumping.' However, if x,l, then the quantity 
$ a exp{x - B 127- - x 1 ) is exponentially large and in the 
limit x - ~ T > B  -' we have a soliton described by the solu- 
t i o n ( 3 ) w i t h b z l , ~ = x - u ~ , a n d v =  -2B<O(withthe 
additive constant omitted), which describes the formation, 
in the region defined by x> 1, of a pump depletion zone and 
its displacement toward the boundary. The system then be- 
haves nonlinearly. During the third stage when x s l  and 
27 - x>B -I, a soliton of Eq. ( 3 )  with an amplitude b z  1 
and velocity v z 2 B  > 0, traveling in the positive direction, is 
established in the system. It should be pointed out that if 
B g  1, then the soliton amplitude is b=. 1 and it is independent 
of the boundary "seed" B. In general, the length and the time 
of formation of a soliton are inversely proprotional to B and 
are given by, respectively, 

1 ,  ( l+Bz) -" ,  1 ,  [B-'+ (l+B2)-"112s. 
At first sight it seems surprising that there are excita- 

tions traveling from the interaction region to the boundary 
in a system of concurrent waves. Therefore, the above result 
was checked by a numerical experiment involving direct so- 
lution of the system (1)  for various input signalsA (T).  A 
typical pattern of the evolution of the amplitudes Ai is repre- 
sented in Fig. 1 for 

A,  (0, t )  = l ,  A, (0, r )  =0,2 sech 2  ( T - 3 ) ,  A3 (0, T )  =O 
and zero initial conditions. We can see that transient pro- 
cesses occur initially: small perturbations grow and their 
amplification is limited by depletion of the pump amplitude. 
The region of characteristic depletion of the pump ampli- 
tude travels from the right to the left reaching the entry at 
x = 0, which corresponds to a soliton traveling in the oppo- 
site direction, as predicted above. After a time interval T- 8 
representing the transient stage, a pulse with a steady-state 
amplitude travels in the system and it is superimposed on a 
background of nonsoliton corrections, which are not always 
small. A soliton pulse travels at a velocity ~ ~ 0 . 8  related to 
the amplitude b = 2.4 by a characteristic "soliton" relation- 
ship (4).  An allowance for the attenuation in the system has 
practically no effect on the solition amplitude, but reduces 
considerably nonsoliton oscillations. A similar pattern is ob- 
served also in the case of optical and acoustic excitations, 
and it is on the whole in agreement with Eq. (5).  

The soliton nature of the solution discussed above will 
now be demonstrated. Substituting in the system ( 1 ) the 
variables 

r - s l v  

q= b ( x - r )  
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FIG. 1 .  Results of a numerical calculation of the distribution of the wave 
amplitudesd, in a semibounded medium (x>O) obtained for various mo- 
ments in time  given by numbers alongside the curves) in the case of a 
nonsoliton input signal. 

and the functions 
Q, @ 

Ai=g cos - , A,=g sin - , 2 2 
a i a  A.,=(-+--I- ax V 82 2 ' 

where b is an arbitrary constant and g = g ( r  - x/v) is an 
arbitrary function. Then, @ is described on the basis of the 
system ( 1 ) by the sine-Gordon equation 

Equation (8) has been investigated thoroughly in the litera- 
ture, particularly for systems with distributed Josephson 
contacts and in the case of a self-induced 

One of the remarkable properties of this equation is the 
existence of solition so l~ t ions .~  For our purpose, we note 
that the substitutions @+@ + n= and p+ - p  do not alter 
the form of Eq. (8). We then have A,+ - A,. Since the 
boundary conditions for electromagnetic waves are general- 
ly asymmetric (one of them is the pump and it is character- 
ized byf, +O), it follows that if we know one of the solutions 
of Eq. (8) we can readily obtain the other (complementary) 
solution for the case of pumping by the other wave. The 
substitutionp+ - p (p is a nonlinear correction to the time 
and space variables) determines in the final analysis, the 

existence of subsonic and supersonic perturbations. The lat- 
ter provide additional opportunities compared with the Jo- 
sephson and self-induced transparency systems, in which so- 
litons travel at a velocity somewhat lower than the 
characteristic velocity (which is the velocity of light in the 
investigated medium). 

We can easily see that in the one-soliton regime, we 
have 

@=4 arctg 9, $=exp (bpfqlb), O<(D<2n, 

and the solution of Eq. (8) expressed in terms of the initial 
variables is identical with Eq. (3) .  The two-soliton regime 
corresponds to the solution described by the system (5).  
Multisoliton solutions can be explained by the familiar 
m e t h ~ d . ~  It should be pointed out that a direct comparison 
of these results with those of Ref. 7 is difficult, because in 
Ref. 7 the condition v, = v, corresponds to v, = v,. 

We shall now consider the case when the pump wave is 
of intermediate frequency w2 < w,. It follows from the above 
analysis that the one-soliton solution is obtained from the 
system (3)  by the substitutions b '5 - b and A,++ -A2. 
Instead of Eq. (4) ,  the soliton velocity is now described by 

which corresponds to a supersonic perturbation. The solu- 
tion describing the formation of a soliton from an acoustic 
signal 

A, (0, z) =2B sech 2Bz, A, ( 0 , ~ )  =0, Az (0, z) =I,  

has the same form as the solution (5 )  (after the substitution 
A ,++ - A,) and we find that 

$=B(Bz-I)-" sh [ (BZ-l)lhx] sech B(22-x). ( 10) 

In view of the factor (B - 1 ) 'I2, the difference 
between Eqs. (10) and (5)  is considerable: a soliton can 
form only when the amplitude B exceeds a certain threshold 
condition B >  1. We can easily see that when 
(B - 1) " 2 ~ ) 1  and B 127 - ~ 1 ~ 1 ,  a soliton forms with the 
following parameters 

A,=sech X, A,= th X, A,=b sech X, 

In the asymptotic case described by x > 27 and B) 1, we have 
b = - JB, which describes a pulse traveling at a velocity 
v = 2B '3 1 considerably higher than the velocity of sound. 
At the same time in the region x < 2 r ( a  = 1 ) a second pulse 
is formed and its amplitude and velocity are b = 2B and v> 1, 
respectively. Therefore, an above-threshold perturbation 
splits into two solitons of larger and smaller amplitudes and 
the velocities of these solitons are very different, so that the 
distance between them in space increases. 

If B < 1, then instead of Eq. ( 10) we find that 

$=B(l-BZ)-" sin [(i-B2)'"x] sech B(2.t-x), (12) 

which corresponds to a periodically modulated traveling 
packet known as a breather. We can say that the condition 
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B = 1 is the threshold for the conversion of a breather into 
solitons. 

We shall conclude with the following comments. The 
equilibrium velocity of solitons v can be given a clear phys- 
ical meaning if we begin with the obvious conditions of con- 
servation of energy of such excitations: 

where 

Then, the velocity v is defined, in accordance with the gen- 
eral Whitham relationship, l 2  

by analogy with the definition of the group velocity of a lin- 
ear wave packet. Since we are interested in the velocity of 
propagation of localized excitations, it is clear that in the 
case of a pump A i  , we have to take v = v,, where i#j and 
i, j = 1 or 2. For example, in the case of the pumpA ,, we have 

A direct substitution readily shows that in the case of the 
soliton ( 3  ) the velocity ( 15) is exactly the same as that given 
by Eq. (4). A similar result applies also if the pump is A,. 
Therefore, acoustooptic soliton envelopes under considera- 
tion here are strongly nonlinear excitations consisting of 
acoustic and electromagnetic subsystems. Such excitations 
travel as a whole, have a definite velocity and energy, and 
represent a natural nonlinear mode of the three-wave reso- 
nance interaction under consideration. 

It therefore follows that in the case of resonance acous- 
toopic interaction of parallel electromagentic waves with 
sound we can expect formation of soliton envelopes as a re- 
sult of injection of an input optical or acoustic signal from 
the boundary. Formation of a soliton is the result of competi- 

tion between a nonlinearity associated with the absorption of 
a pump wave and dispersive spreading of wave packets be- 
cause of the existence of two group velocities (optical and 
acoustic) in the system. Modulation of the pump near the 
entry makes it possible to control the soliton dynamics. If 
w, > w,, then a soliton-like pulse is formed for any "seed" 
amplitude at the entry and it is the result of evolution of a 
perturbation in a convectively unstable medium. However, 
considerable nonsoliton corrections may also be excited. If 
w, < w,, then the process of formation of solitons is of thresh- 
old nature. In the case of the above-threshold amplitude of 
the injected signal in a system, two concurrent solitons with 
different amplitudes and supersonic velocities are formed. In 
view of the existence of a threshold the contribution of non- 
soliton corrections is small in the case of the investigated 
interaction. 
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