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Expressions are derived for the anisotropies of the penetration depth, surface impedance, 
vortex energy, lower critical field Hcl , and magnetization curve of a superconductor with a 
large Ginzburg-Landau parameter x in the case when the superconducting phase possesses 
uniaxial or biaxial anisotropy. The properties of the vortex lattice in the vicinity of Hc, and in 
the case when Hcl (H(Hc2 are discussed. 

1. INTRODUCTION 

The investigation reported below was prompted by the 
experimental and theoretical investigations of the supercon- 
ductivity occurring in the so-called "heavy-fermion" sys- 
tems: CeCu2Si2 (Ref. I ) ,  UBe,, (Ref. 2) ,  UPt, (Ref. 3 ) ,  etc. 
According to Refs. 4 and 5, if the superconductivity in these 
systems is of the nontrivial type, then the transition into the 
superconducting phase could be accompanied by a lowering 
of the symmetry and the appearance of a superconducting 
state possessing uniaxial anisotropy (as in the case of, for 
example, cubic UBe,,) . As emphasized repeatedly in Refs. 4 
and 6, the properties of such superconductors in a magnetic 
field and the nature of their anisotropy should provide quali- 
tative information about the nature of the resulting super- 
conducting phase. According to Ref. 4, such characteristics 
are to be expected if the superconducting state is realized on 
the basis of solutions for a superconducting order parameter 
that corresponds to one of the multidimensional representa- 
tions of the crystal point group. Attempts to measure the 
anisotropy of the upper critical field7.' H,, have so far not 
furnished an unambiguous answer. Owing either to crystal 
imperfection, or to the fact that the representation realized is 
one-dimensional, or because the superconductivity in UBe,, 
and CeCu,Si, is, on the whole, of the BCS type, no unusual 
anisotropy of the H,, field has thus far been found in the 
vicinity of T, . The investigations of the magnetization, pene- 
tration-depth, etc., anisotropies discussed below could, in 
their turn, prove to be different, and might even turn out to 
be a more convenient tool for the study of the nature of these 
superconductors. Nevertheless, it must be emphasized that 
there are among the superconductors of this class such sys- 
tems as UPt,, U,Fe (Ref. 9)  and CeCuzSi, which, on the one 
hand, intrinsically possess uniaxial crystal symmetry, and 
on the other, are type-I1 superconductors with a large Ginz- 
burg-Landau parameter x-20, and that this property is, 
apparently, an inherent property of the superconductors 
themselves, and not connected with the presence of defects 
in them. 

Thus far, the anisotropy of the type-I1 superconductors 
and the related field-penetration and Abrikosov-vortex- 
structure-formation characteristics have been suited in Nb- 
type systems, for which x -  1, and which possess cubic sym- 
metry. The x values for the uniaxial superconductors InSn, 
(Ref. 10) and In,Sn (Ref. 11) are, apparently, of the same 

order of magnitude, and this naturally makes the theoretical 
analysis difficult because of the nonlocality of the electrody- 
namics. The A-15 compounds (e.g., V,Si) typically have 
large x values, but they are also basically cubic, the slight 
tetragonality in them being possible only as a result of a low- 
temperature martensitic transition. We wish to point out 
here that, regardless of whether the superconductivity in the 
compounds UPt,, U,Fe, and CeCu,Si2 is of the usual type or 
pertains to the nontrivial, but nondegenerate type (i.e., the 
solution to the equation for the superconducting gap corre- 
sponds to a one-dimensional representation), these materi- 
als constitute a class of highly anisotropic type-I1 supercon- 
ductors for which the magnetization, etc., anisotropy effects 
should be strongly pronounced. Indeed, for the UPt, super- 
c o n d ~ c t o r ' ~  there is as much as a 200% difference between 
the value ofHc2 along the hexagonal axis and the value in the 
plane perpendicular to this axis. Similar values are observed 
in CeCu2Si2 (Ref. 13 ) . There are other examples. Thus, the 
Hc2 field is known to be highly anisotropic in tetragonal 
Hg, -,AsFe, (Ref. 14), the quality of whose samples is, ap- 
parently, also quite good. Further, certain layered supercon- 
ductors belong to the class of uniaxial crystals with large x 
(Ref. 15). 

Below we present some results obtained in a theoretical 
analysis of the anisotropies of the impedance, penetration 
depth, lower critical field, magnetization curve, and some 
other properties. This analysis is substantially simplified by 
the locality of the electrodynamics of these superconductors, 
and the anisotropy of each of the indicated properties can 
therefore be given in the entire temperature range. For the 
cubic superconductors with small x - 1, the problem of vor- 
tex penetration into the crystal is usually treated numerical- 
ly (see, for example, Ref. 16). The Hcl anisotropy in a 
layered superconductor has been computed by Takanaka,17 
but for only two symmetric orientations of the field. As to 
the anisotropic properties of heavy-fermion superconduc- 
tors, let us point out again that a detailed investigation 
would be extremely important for the determination of 
which superconducting class they belong to.4 

2. PENETRATION DEPTH AND SURFACE IMPEDANCE 

If the London electrodynamics is applicable and the 
Ginzburg-Landau parameter is large (x, 1 ), then in weak 
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fields the problem reduces to the solution of the electrody- 
namics equations 

rot h= (4nlc) j (1) 

(here and below h is the local magnetic field), with the cur- 
rent given by the expression 

where ii;k is the "superconducting-electron density" tensor. 
Let nontrivial superconductivity develop in a cubic crystal 
on the basis of one of the multidimensional representations 
for the order parameter. Then, according to Ref. 4, the su- 
perconducting phase acquires a uniaxial anisotropy, and iiYk 
can accordingly be written in the form 

~ik8=no6ik+n'vivk, (3) 

where no and n' are, of course, functions of temperature and 
v is the anisotropy axis. The generalization of (3) for the 
biaxial model is obvious. Expressing V@ - (2e/*)A from 
(2) in terms of the curl h in the Maxwell equation ( 1 ), and 
applying the curl operation again, we obtain 

mc2 
h +-rot (Lr-' rot h) =0. 

4ne2 

Further, we can write Eq. (4)  with the aid of (3)  in the form 

h+6,2[rot rot h+h rot (v(v rot h) ) ]=0, ( 5  

where 

The solution of this equation offers no difficulty. For exam- 
ple, let the axis v make an angle $ with the normal to the 
surface, and let the attenuation (screening) of the external 
field H, which is oriented along the surface, occur in the 
plane defined by v and H. Then, defining the impedance 
according to the relation18 

we find that the impedance matrix 

where the xy-coordinate system has been chosen in the sur- 
face plane such that vy = 0. Let us now assume that both the 
axis v and the field H lie in the crystal-surface plane. The 
solution for the field near the surface is 

&=Hz exp[-l~l/6~1, hu=Hv exp[-l~l/6~(l+h)'"l ,  

thez axis being oriented along the normal to the surface. It is 
remarkable that the magnetic field, as it attenuates with dis- 
tance into the sample, turns toward or away from the v axis 
according as A is smaller or greater than zero. 

3. THE LOWER CRITICAL FIELD H,, AND THE 
MAGNETIZATION CURVES 

The formulation and solution for this problem differ 
little from the well-known problems for isotropic supercon- 
ductors (see, for example, Refs. 19 and 20). Let us, follow- 

ing Ref. 19, write the expression for the electromagnetic part 
of the free energy of the superconductor in the form 

The field h satisfies the equation 

c2m 
h+- 4neZ rot (kl rot h) =,(DOE 6 (r-ri), 

where 1 is the unit vector along the vortex axis (the induc- 
tion B) and @, is the flux quantum. As usual, we have, in 
accordance with the assumption that 60)60 = CiuF/rA(O), 
neglected the vortex core structure. We shall not, for the 
moment, specify the lattice configuration. We assume, how- 
ever, that the vortex cores do not overlap, and that the inter- 
vortex spacing d can at the same time be smaller than the 
penetration depth. This condition encompasses the region of 
fields stretching from the vicinity of H,, , where the field 
penetrates the crystal in the form of isolated vortices form- 
ing a very sparse lattice, up to fields H-H,,  (H,, is the 
thermodynamic critical field) in which the fluxes of the indi- 
vidual vortices practically overlap and the magnetic mo- 
ment of the superconductor is small. 

Going over to the Fourier representation in terms of the 
vortex-lattice vectors, we have 

1 
h (r) = - hkeik; hk = j h (r) e-" d3r, 

k 

where S is the area of a unit cell, containing, as usual, one 
flux quantum. The lattice parameters themselves must, in 
principle, be determined on the basis of energy consider- 
ations. Above k = a, N, , where the ai are the vectors forming 
the unit cell. In the Fourier representation, Eq. (8)  has the 
form 

cZm 
h k - 7  [k, ;I.-' [khk] I = ~ @ Q .  

4ne 

The induction B = @,/S is oriented along the unit vector 1 
specifying the vortex axis. It is not difficult to verify that, 
according to (9),  the expression (7)  for the free energy of a 
unit volume can be rewritten in the form 

If by chance A;k is the anisotropic tensor (3),  then the field 
h, has components parallel and perpendicular to the vortex 
axis 1. From Eq. (9)  we easily obtain 

where the orthogonal system of coordinates xyl has been 
chosen such that vy = 0 (Fig. 1 ) . We see that we need only 
the expression ( 1 1 ) for the computation of ( lo) .  

Let us begin by finding the energy of a single vortex. 
This case corresponds to our going over in the formulas ( 10) 
and ( 1 1 ) to integration over k, with the dominant logarith- 
mic contribution coming from the region 6; ' 4 / k /  46, '. 
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FIG. 1 .  

By means of a simple change of scale in the d 2k integration, 
we obtain" 

where x = S,/l, and 8 is the angle between 1 and v. 
As is well known, to find the relations connecting the 

macroscopic variables (i.e., the induction B and the intensi- 
ty H) ,  it is convenient to use the Gibbs potential 
G = F - BH/4a, and then find the minimum of G for a giv- 
en H field. We immediately obtain as a result the expression 
for the magnitude of the "critical field": 

(l+X sinz 0)'" 
Hci=Haio 

cos (0-7) ' 

Here y is the angle between v and H. The true value of the 
critical field Hc, , i.e., the value at which vortices begin to 
penetrate the superconductor, corresponds to the minimum 
value of ( 13). The relative orientation of the external field 
and the vortex direction is obtained by varying ( 13) with 
respect to the angle 8. As a result, we find 

tgOo=tg yl(I+A), (14) 

where 8, is the angle between 1 and v when H = Hcl (y) .  
Thus, the field B at the commencement of its penetra- 

tion does not coincide in direction with either v or H. Evi- 
dently, in the opposite limiting case, when the field almost 
completely penetrates the sample, i.e., when go(dgSo, the 
vortices are oriented along the direction of the field H. In the 
logarithmic approximation, we find from the expression 
( lo),  ( 1 1 ) for the free energy that 

According to ( 16), in this region of field intensities the mag- 
netic moment M = (B  - H)/47~ is small, and is of the order 
of H,, . Further refinement of this formula, which, in the 
logarithmic approximation, does not depend on the lattice 
configuration, requires us to carry out numerical computa- 
tions for the purpose of comparing the various variants of the 
vortex lattice, and we did not carry it out. 

Let us return to the region of field intensities close to the 

lower critical field, where the lattice is sparse, and it is suffi- 
cient to consider the interaction of only the closest neighbors 
(see the references cited in Refs. 19 and 20) : 

Going over in the formula ( 10) to the coordinate representa- 
tion again, and assuming, on account of the linearity of the 
problem, that the field at a point where a vortex is located is a 
superposition of the field of the vortex itself and the fields of 
the nearest neighbors, we see that the computation of the 
energy of interaction of the closest neighbors requires 
knowledge of the law according to which the individual-vor- 
tex fields fall off at large distances. Going over to the coordi- 
nate representation in ( 11 ) in the region rsS,, we obtain 
(the derivation of this formula is given in the Appendix) 

where 

Thexy plane is perpendicular to the vortex axis 1; the anisot- 
ropy axis v and the external field H lie in the xl plane (see 
Fig. 2); and the angle $ is measured from the p axis. 

The choice of one of the asymptotic forms in the expres- 
sion ( 18) is dictated by the sign ofA. The simplest case is the 
one with A <O. Then exp( - r/S,)>exp( - r1/S0), and the 
second term in the square brackets in ( 18) can be dropped. 

Substituting ( 18) into the Gibbs potential G, ( 17), we 
can find from the condition for a minimum of G the vortex- 
lattice parameters in the xy plane: the shape of the unit cell, 
the cell areas  = @,/B, as well as the correction A8 = 8 - 8, 
to the angle between v and 1 {let us recall that, if H 
=Hc, ( y), then 8 = 8, [see ( 14) I}. The vortex lattice in the 
case (A < 0 )  under consideration consists, up to distortions 
of order (Sdd )  < 1, of equilateral triangles, with 

FIG. 2. 
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But the lattice is not degenerate with respect to rotation in 
the xy plane, and it is oriented as shown in Fig. 2. 

The determination of the correction A8 is greatly facili- 
tated by the fact that 8 does not enter into the argument of 
the exponential function in ( 18). Consequently, in varying 
G with respect to 0, we can, to within the same S,/d error, 
drop the term dU/d8. Thus, we obtain 

Thus, the magnetic field begins to penetrate the crystal 
at H = H,, (y) ,  and at this point the direction of the vorti- 
ces, which is given by ( 14), coincides neither with that of the 
anisotropy axis v, nor with that of the external field H. As 
the external-field intensity increases [in the region H 
> H,, ( y) 1 ,  the vortex lattice turns. For small AH we have, 
according to (20), A6'- AH, but at H)H,, (y )  the vortices 
finally align themselves along the direction of the external 
field, as follows from ( 16). 

These qualitative results are valid for R > 0 as well, al- 
though this case is somewhat more complicated because of 
the fact that the anisotropy-related exponential function in 
( 18) predominates. But before we consider the R > 0 case, it 
is appropriate to note that the available experimental data on 
the anisotropy of the upper critical field Hc2 in UPt, (Ref. 
12) and CeCu2Si2 (Ref. 13) allow us to estimate the quantity 
A. At low temperatures R Z  - 0.6. In the vicinity of Tc in 
CeCu2Si2 we have, according to Ref. 13, the opposite situa- 
tion. This case can be considered to be an example of the 
situations in which the anisotropic superconducting phase 
with large x and positive A should be realized. 

Now let A > 0. Making in (18) (where it is now suffi- 
cient to retain only the second term, since exp( - r/S,) 
gexp( - r1/S0) ) the change of variablesx' = x/a, y' = y/P, 
and accordingly, S' = S /aP, we find that, in the new vari- 
ables, the vortex-vortex interaction is isotropic (again up to 
the pre-exponential factor). Consequently, the vortex lattice 
in thexy plane can be obtained by stretching a regular hexag- 
onal lattice along the x and y axes and increasing the dimen- 
sions along these axes a andP times respectively. The origi- 
nal regular hexagonal lattice should be oriented in the xy 
plane as shown in Fig. 2. Thus, the vortex lattice in the pres- 
ent case should be made up of not equilateral triangles, but 
isosceles triangles with a side-to-base ratio equal to 
[ l  + R(3 + cos2 6')/4] ' I2 .  For the induction B we obtain 
lcf. (1911 

The result 6' - 8,-H - H,, (y )  for H - H,, (y )  (H,, (y )  
remains valid. 

To conclude the present section, let us consider the case 
of layered superconductors, for which no + n1(nO in the "su- 
perconducting-electron-density" tensor, or, in terms of the 
effective-mass tensor of an anisotropic theory of the Ginz- 

burg-Landau type, m, )ml,, where mll and m, are the effec- 
tive electron masses along a layer and in the transverse direc- 
tion (i.e., in the direction parallel to v )  respectively. Notice 
that in the present case A = m, /mil - 1) 1. In this standard 
notation the expressions for the vortex energy E,  ( 12), the 
lower critical field H,, , ( 15), and the angle 8,, ( 14), at 
which the field begins to penetrate the crystal in the case 
when H = H,, have the form 

Since m, /mII ) 1, it follows from ( 14') that 8,=:?r/2, that at 
H = Hc, the vortices are oriented along the layers for practi- 
cally any direction of the external field. For H slightly higher 
than Hc, the vortices form a lattice in which the mean dis- 
tance between the nearest neighbors along a layer is much 
greater than in the perpendicular direction. 

4. BlAXlAL CRYSTALS 

In this section we present some results concerning crys- 
tals whose electron-density tensor possesses biaxial anisot- 
ropy. The problem is of some interest, since there could be 
realized in the transition into the superconducting state in 
such crystals as CeCu2Si2 and U,Fe a two-dimensional rep- 
resentation for the equations for the superconducting gap, 
and thus give rise to a biaxial symmetry of the new phase. 

Let us write the density tensor f i ,  as follows: 

where p and v are the anisotropy axes. The London equa- 
tions have the form 

h+rot (I1 rot h )  -0, 

where 

From (23 ) we immediately obtain the penetration-depth an- 
isotropy. By proceeding in much the same way as before, we 
can easily write out the impedance matrix in coordinates 
such that a p, py +BY, vy = 0. It has the form 

Similarly, we can easily generalize the derivation of the 
formulas for the field H,, and the magnetization. Thus, the 
field component along the vortex axis, i.e., the component 
figuring in ( lo),  is given by the expression 

lh,=@O{I+P [ I -  (kv ) ' ]  + a l l -  (kp)']+afl [ I -  (kp) ' -  (kv) ']  
- 2 ( l [ k ~ l )  ( l [ k v l ) a P ( k ~ )  ( k v )  -a (I+P[kv12)  ( l [ k ~ l ) ~  

- f l  ( I +  a [ k p ]  ' )  ( I [ ~ V ] ) ~ )  {602k2+60'fl (k2-  ( k ~ ) ~ ) + 6 ~ % z [ k ~  
- ( k p )  'I+aP [kZ- ( k ~ ) ~ - ( k v ) ~ ] ) - ~ ,  kBOBI. (25) 

And from (25) we obtain for the vortex energy the expres- 
sion 
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where the anisotropy axes v and p and the direction 
z = [vp ]  are taken to be the coordinate axes. The angles q, 
and p2 are the polar and azimuthal angles of the vector 1 in 
this coordinate system, and thexyl coordinate system, which 
is fixed to the vortex, has been chosen such that v lies in the 
xyl plane. Further, 

C O ~  p= [(I-sin2 cpl cos' cpz)'" cos cpl-sin2 cps cos2 VZ] 
~(1-sinZ 91 sin2 cp2)-", 

pa-- (a cos2 cpo+b sin2 cpo+c sin 2cpo)-', 

q2= (a sin2 q0+b cos'qo-c sin &o) -I, 

tg 2cpo=2cl (a-b) , 
a=l+p(i+a)sinz cpl cos2 cpz-a(l+b) 

~(1-sinz cpl sinz cpz) sin2 p, 

b=l+p(I+a)-a(l+i3) (I-sinz cpl sinz cp2)cos" p, 
c=a (1-P) sin p cos p (1-sin2 cp, sinz cp2). 

For a = 0 we have the results obtained in the preceding sec- 
tions for uniaxial crystals. 

For H)H, ,  , the magnetic-field intensity in the super- 
conductor is given by 

H=B+lHcl"ln (d/g,)/ln (Po/ga) ] {I+b sinz cpt  COS' cpz 
+a sinZ cpl sin2 cpz-aP cosZ cp,+aP cos2 p (I-sinZ cpt sin2 cp,) ( I  

-sin2 9, cosZ .cp2))pq, (27) 

where all the angle-dependent quantities are given in the lllH 
coordinate system. Similarly to the case of a uniaxial crystal, 
the angle between the vortices and the external field H is of 
the order of A8 - H y, /H(  1. 

In order to rewrite the results obtained in terms of the 
mass tensor m, , we must make the change of variables: 

mlvlrl=mo, m,,=mo ( l+u) ,  m,=mo(l+B). 

5. CONCLUSION 

Thus, we have obtained for uniaxial and biaxial super- 
conductors a number of results that describe in the London 
limit the anisotropies of the principal characteristics of a 
superconductor. These expressions could have been immedi- 
ately used to describe the anisotropy of, for example, the 
hexagonal compound UPt,, or the tetragonal compound 
CeCu,Sil. We said above that these compounds are appar- 
ently of interest simply because of the fact that they are type- 
I1 superconductors, to which the London electrodynamics is 
applicable, and are therefore materials whose anisotropic 
characteristics can all be expressed in closed analytic form. 
Of particular interest, it seems to us, are the vortex-penetra- 
tion characteristics for these superconductors, the measure- 
ment of the magnetization curves, and, perhaps, the direct 
observation of the vortex lattice. Also, the above-presented 
formulas should be used to identify the superconducting 
classes in the "heavy-fermion" systems, since superconduct- 
ing phases with lowered symmetries could be realized among 
these classes in the indicated systems. Then all the formulas 
corresponding to uniaxial crystals would be directly applica- 
ble to the unusual phases in the cubic UBe,, crystal (let us 

recall that, according to the classification proposed in Ref. 4, 
the superconducting phase in a cubic crystal could possess 
threefold or fourfold axes 1. 

The formulas obtained for biaxial superconductors 
could, in their turn, be used for the investigation of uniaxial 
materials, in which two-dimensional representations4 ad- 
mit, for example, of even the appearance of twofold axes. We 
mentioned above that measurements of the anisotropy of the 
upper critical field Hc2 in the vicinity of Tc (Refs. 7 and 8) 
have so far yielded a negative result. It seems to us, however, 
that this answer ought not to be taken to be final, since the 
samples used in these investigations were not of very high 
quality, and the transitions in the majority of cases extended 
over temperature ranges broader than the region of applica- 
bility of the Ginzburg-Landau theory. If we assume that the 
transition width is connected with the inhomogeneity of the 
material, then, besides the regions for which the temperature 
is close to the transition temperature, there can be in the 
sample regions where the local transition temperature is 
markedly higher than the experimental temperature, and are 
therefore already in a developed superconducting phase. 
These regions, oriented, perhaps, randomly, could, being in 
one of the anisotropic phases, simulate isotropic behavior. 
Some"upper-critical-field" anisotropy, defined with respect 
to the middle of the resistance transition in a magnetic field, 
has been detected in CeCu2Si2 by Aliev et al.,R but its origin 
and connection with the foregoing ideas remain for the pres- 
ent obscure. 

The authors express their gratitude to G. E. Volovik 
and L. Ya. Vinnikov for useful discussions. 

APPENDIX 

The interaction between the vortices is determined by 
the asymptotic form of the field at r>S,, i.e., we must find the 
asymptotic form of the Fourier integral of lh, [see ( 1 1 ) 1. 
Let us begin by finding the asymptotic form in coordinate 
representation for the inverse Fourier transform: 

Q,0{(I+k2602) [1+k2Po2+h602 (kz-ki2v2)] )-I. (A1 
As to lh, , its inverse follows from (A 1 ), since the difference 
between them amounts to differentiation of the latter with 
respect to the coordinates. 

The asymptotic form in ( A l )  is given by the poles of 

[the notation is the same as in ( 18) 1. For the field compo- 
nent along 1 we have 

where Mand Nare, as indicated above, uniquely determined 
by differentiating with respect to the coordinates and requir- 
ing that the usual isotropic result be recovered in the limit as 
A+0. Thus, we obtain 

C M=-- N=- 1 a-' cos2 cp+P-' sin2 cp C =  
1-C ' I-C ' a-2 cos2 ~ p + p - ~  sin2 cp 
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