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We investigate the fluctuating domain structure of cylindrical magnetically ordered regions 
(MOR) which appear in the deformed regions of a crystal close to dislocations. The MOR 
partition function is evaluated using a functional integral whose calculation reduces to finding 
the smallest eigenvalue E of a one-dimensional Schrodinger equation for a particle in a periodic 
field with a two-well potential in each unit cell. We obtain an analytic expression for E in the 
limiting cases of large and small effective masses of the particles; the intermediate masses are 
obtained by numerical calculations. This allows us to determine the free energy, magnetic 
moment, and susceptibility of the MOR as functions of the external magnetic field, 
temperature and crystal parameters in single-crystal and polycrystalline samples which contain 
dislocations. It is found that the MOR susceptibility depends strongly on field in 
comparatively weak fields, and decreases monotonically as the field increases. Near the Curie 
point, for appreciable dislocation densities, the susceptibility can be comparable to that of an 
ideal crystal. We discuss the possibility of formation of a dislocation dipole glass in an MOR 
system in the vicinity of non-rectilinear dislocations, or in the presence of a nonuniform 
distribution of the dislocation lines. 

The deformations of a crystal near dislocations are 
quite large and affect substantially the exchange interaction 
of its atoms. As a result, regions with large local values of 
magnetization can be produced in the crystal near disloca- 
tion lines noticeably above the Curie point. For real crystals 
which contain dislocations, the formation of such regions 
alters qualitatively the experimental picture as regards sec- 
ond-order phase transitions. ' 

Magnetically-ordered regions can in principle appear 
near dislocations even in crystals where magnetic order does 
not occur at all in the absence of dislocations. They can be 
due to broken bonds between atoms which lie along the dis- 
location lines,2 to restructuring of the electronic spectrum 
near the dislocation cores in paramagnetic  metal^,^ and to 
the magnetic impurity atoms of the Cottrell atmospheres. 

The transverse dimensions of an MOR usually turn out 
to be considerably smaller than other characteristic lengths 
in the problem under investigation. Therefore these regions 
are effectively one-dimensional; in the absence of an external 
magnetic field they are broken up into elongated domains 
with different magnetization directions. Under the action of 
an external field, the sizes of these domains and the direc- 
tions of their magnetization can change, which causes a large 
magnetic susceptibility corresponding to the giant magnetic 
moments of the domains (in analogy with super-paramagne- 
tism). Order-of-magnitude estimates of these susceptibili- 
ties are given in Ref. 1, where it is shown that despite the 
small volume of the MOR's, their contributions to the sus- 
ceptibility near dislocations can be comparable to that of the 
remaining part of the crystal. In this paper we develop a 
quantitaive theory of the dislocation contribution to the sus- 

ceptibility and of its dependence on the field. 
Because the model under discussion is one-dimension- 

al, we can calculate the MOR partition function in an exter- 
nal field by using a method, developed for this to 
calculate a certain related functional integral. In this method 
the calculations of this integral is formally reduced to deter- 
mining the ground-state energy for a certain Schrodinger 
equation. In the present case this equation describes the mo- 
tion of a particle in a one-dimensional periodic potential 
which is a function of the external magnetic field. In the 
limiting cases of weak and strong bonds, this ground state 
energy can be determined analytically, while in the general 
case a numerical calculation is needed. This makes it possi- 
ble to find the partition function, the magnetization, and the 
magnetic susceptibility over a wide range of values of the 
parameters of the problem, of the temperature, and of the 
field. The obtained dependence of the magnetization on the 
magnetic field intensity turns out to be quite nonlinear even 
in comparatively weak fields, considerably weaker than in 
ideal crystals. 

In Section 1 below we formulate a model of MOR's with 
variable directions of magnetization, and obtain an expres- 
sion for its free energy. In Section 2 the MOR partition func- 
tion is determined with the help of the functional-integration 
method mentioned above. In Section 3 the expressions we 
have obtained are used to study the dependence of the mag- 
netization and susceptibility of a crystal with dislocations on 
temperature and field. In Section 4 we discuss the possibility 
of creating a dislocation dipole glass near the Curie point in 
systems with non-rectilinear dislocation lines or with inho- 
mogeneous dislocation densities. 
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1. MODEL AND STRUCTURE OF THE ORDERED REGIONS 

The radius r,, of an MOR produced in the vicinity of a 
dislocation is quite large near the Curie point, and substan- 
tially exceeds the correlation rc in an ideal magnet.' This 
allows us to introduce a local Curie temperature 
Tc ( r )  =Tc [ u i ,  ( r )  1,  which is a function of the strain u i j  ( r )  
at a given point. The local values of the thermodydnamic 
quantities in an ideal crystal are functions of 
T = ( T  - T:)/T: (T: is the Curie temperature of the 
ideal crystal); in the case under investigation here, they will 
be functions of T - T, ( r ) ,  where for a rectilinear dislocation 

zc  ( r )  = [ T c  ( r )  -TcO]/TcO=xuii ,  uii=bf (6) Irk (1) 

Here we assume as usual that Tc ( r )  is linearly dependent on 
the dilatation uii (with a proportionality coefficient xT:, b 
is the length of the Burger's vector, r, is the distance to the 
dislocation line, and f (9) is a dimensionless angle-depen- 
dent factor [max f (8) - lo- '] .  

In particular, the magnetization in an MOR varies with 
radius as [T, ( r )  - T I @ ,  falling to zero at the boundary of 
the region defined by r, = r,(S), where 

Along the dislocation line (the Z axis) the magnetiza- 
tion fluctuates (see Ref. 1 ). As will be shown below, the 
characteristic length 1 for this fluctuation (i.e., the thickness 
of a domain wall) can be appreciably larger than f (S)r,,. 
The direction of the magnetization with an MOR cross sec- 
tion is constant, so that the problem can be regarded as effec- 
tively one-dimensional and we can consider the local values 
of thermodynamic quantities averaged over the MOR cross 
section, which depend only on z. We develop below a quanti- 
tative theory just for such a case: I)r,, fm [ fm = max f(9) 1,  
in which the direction of magnetization does not depend on 
the transverse coordinate r, . The case 1 5  r, fm , however, in 
which the direction M ( r )  depends significantly on r, , will be 
considered only qualitatively. 

If only the direction of the vector M(z)  averaged over 
the magnetization cross section varies along the Z axis, while 
the vector length remains fixed, then the volume energy den- 
sity per unit length p, calculated along the Z axis increases 
by an amount 

where S is the cross section area of the MOR, a is the angle 
between M and Z ,  and g - kT, /rc . Here g (d  M/dz) '/M 
and M are obtained by averaging g(r,  ) (VM(r, ) )'/ 
M '(r, ) and M(r, ) over the MOR cross section, i.e., 

where li - 1; Y and p are the critical exponents, rco is the 
radius of the exchange interaction, and M,, is the saturation 
magnetization for T = 0. 

A deviation of the direction of magnetization of a cylin- 
drical MOR from the Z axis leads also to a growth in the 
magnetostatic energy density Urn. In the case under investi- 
gation here, when I>r, f,, the magnetic charges connected 

with variation of the magnetization in directions transverse 
to the MOR axis give rise to a much stronger field H, than 
the charges with density - dM, /dz which are connected 
with variation of M in the longitudinal Z direction. Thus we 
can neglect the field of these latter charges and use only the 
field H, to calculate the energy Urn. Since we are not inter- 
ested in the precise value of numerical factors in U,,, , we will 
assume that the MOR cross section in the XY plane is ellip- 
soidal, and neglect the inhomogeneity of M(r,  ) in this cross 
section. Then 

Um=2n (n,M,2+nlM:), 

where n, and n, are the demagnetization coefficients for a 
model with constant M(r, ) over the MOR cross section; if 
the inhomogeneity of M(r,  ) in the MOR cross section is 
included, n, and n, include correction factors of order uni- 
ty. In the case investigated below of cubic ferromagnets near 
the Curie temperature, the magnetic-anisotropy energy can 
usually be neglected compared to the magnetostatic energy. 

For simplicity, we will henceforth limit ourselves to the 
case of a strongly anisotropic MOR cross section (caused, 
e.g., by elastic anisotropy of the crystal), for which n, (n,. 
In this case,the magnetization fluctuates in practice in the 
XZ plane (this remains qualitatively correct also when 
n, -n, ) .  The change in the free energy for an MOR of 
length 3, due to rotation of the vector M(z)  as determined 
by a definite function a (z), and due to the interaction of the 
magnetization with the external field H takes the form 

z 

A F [ a ( z )  ] = % [ a ( z )  ]=s j [ g ( d a / h ) ' + l n n , M 2  sin2 a  

-MI11 dz. (4) 

Fluctuations can be due not only to rotation of the vec- 
tor M(z), ,  but also to changes in its modulus. These latter 
fluctuations lead to an increase of p, on the order of 
SkTtu- ' rY ( 6 ~ ) ~ ,  where u is the volume of the unit cell, y is 
the critical exponent for the susceptibility, and 7 = M/M,. 
Thus, the appearance of a domain structure in which the 
modulus of M ( r )  and with 167 I - 7 in the domain walls, will 
be therodynamically less advantageous than the formation 
of a structure connected with a rotation of M ( r ) ,  if 

Henceforth we will investigate cases in which condition (5)  
holds, and the magnetization inhomogeneities are caused by 
rotation of M(z) .  When the inequality (5 )  is reversed, the 
vector M(z)  remains almost collinear with the Z axis and 
fluctuates in magnitude and sign. A similar problem was 
investigated in Ref. 7. Equation (4)  applies not only to 
MORs produced near dislocations somewhat above the Cu- 
rie point of the ferromagnet, but also to MORs in nonmagne- 
tic crystals (where they are due to magnetic impurity atoms 
or to variations in the local characteristics of the crystal near 
the dislocation lines). We need only keep in mind that in this 
case S, g, and M ' depend weakly on temperature and in (5 ) 
we have T- 1, while M, and kTc refer only to the region of 
the dislocation core. 
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Expression (4) corresponds to a fixed angular distribu- 
tion a ( z )  in the MOR. The possibility of fluctuations o f a  ( 2 )  

decreases the free energy of the system. A fluctuating do- 
main structure can therefore arise in the MOR. The charac- 
ter of this domain structure in the absence of an external field 
( H  = 0)  is determined by the ratio of the first two terms of 
(4).  If Urn is relatively small so that only the first term is 
significant, the function a ( z )  varies smoothly over charac- 
teristic distances L -gS/kT (determined by the condition 
gSL - ' - kT). Thus, we can neglect the second term in (4)  if 
2mx M 24g/L :, i.e., if the condition m<l  holds, where 

If, however m) 1, the magnetostatic energy [the second 
term in (411 is important. The condition that it be a mini- 
mum leads to the MOR breaking up into pronounced anti- 
phase domains with the magnetization parallel to the MOR 
Z axis (in these domains, a = 0 or a z 1 ~ )  . The domains are 
separated by walls whose thicknesses I, in correspondence 
with (4), are at l>ro fm of order I- ( g/n,M 2 ) ' 1 2 ,  i.e., far 
smaller than the average domain lengths L (ln(L /I) -m'I2. 
The magnetization distribution in the domain wall is deter- 
mined by the Euler equation for the functional (4)  (which is 
the static Landau-Lifshitz equation). Substituting the well- 
known solution to this equation into (4)  (see, e.g., $43 in 
Ref. 8),  we can find the domain-wall energy 

Equations (4) and (7)  are correct only if l)ro f , ,  i.e., 
g)M 'S (for n, - 1 1. As we approach the Curie point, g can 
become on the order of or less than M 2S, and thus the thick- 
ness I of a domain wall bcomes comparable to the MOR 
diameter ro f,,, . In this case the magnetic field is caused more 
by the variation of the magnetization in the longitudinal di- 
rection (to the magnetic charges - dM,/dz), than in the 
transverse direction; the vectors M ( r )  in the cross section of 
the domain wall can be noncollinear, while the expression 
for the magnetostatic energy Urn will differ in form from the 
second term in (4).  In the limit g(M 'S, the basic contribu- 
tion to the wall energy Eo comes from Urn , and is of the order 
of Eo - (MS) '/r0 fm , I - ro fm . This order-of-magnitude es- 
timate of E, is implied in the equations presented below [in 
particular, in (8)  1, if 15 ro fm , Eo)kT (in place of the more 
exact result (7)  for I>ro fm ) . 

A longitudinal field HllZ leads in the volume to a pre- 
ponderance of domains whose magnetization is parallel to 
the field, and in comparatively weak (at m) l )  fields 
H)Ho- kT/LMS (explicit expressions for Ho are given be- 
low) the relative fraction of domains antiparallel to the field 
tends to zero. The susceptibility connected with the anoma- 
lously large magnetic moments of the domains is quite large 
in the region H-Ho. In the case of pronounced domains 
(m) 1) the free energy q, per unit length of MOR can be 
found by investigating the statistics of the domain walls. In 
not very strong fields, where I<L * (L * is the length of the 
domains antiparallel to the field), we can neglect interac- 
tions among domain walls; such a calculation for HllZ leads 
to the expression 

VcOnst- IE 16~M2(kT)  '/g]exp (-2E,/kT) +M2HZS2]'h, 

(8) 
where f is a dimensionless parameter (f = 4m'I2 for 
l>ro f ,  ) which is determined below [see ( 16) 1. The deriva- 
tives of this expression specify the average magnetization 
and susceptibility of the MOR. 

In the case of a tilted field H, lying in the XZ plane and 
oriented at an angle 9 to the Z axis of the MOR, the direc- 
tions of the magnetization M in a domain with m) 1, i.e., the 
angles a beween M and the Z axis, are determined from the 
condition that the latter two terms of (4)  be minimized with 
respect to a :  

sin a cos a=h s i n ( + - a ) ,  h=H ( h h M )  -'. (9) 

For m) 1, the rotations of the vectors M make up the princi- 
pal contribution to the susceptibility in fields 
H-H 6 = 4rnX M)Ho (in fields H - ~ T M ,  processes which 
take M out of the XZ plane are also important), while for 
H-Ho the fractional change in the volume fraction of do- 
mains with differing signs of M, plays the dominant role. 
Henceforth we will basically be investigating systems with 
H,(H;, in which these effects can be studied separately, or 
the case of longitudinal fields HIIZ. 

2. PARTITION FUNCTION OF AN MOR 

To calculate the partition function 9' of an MOR from 
first principles, it is necessary to evaluate the functional inte- 
gral 

E=S Da(z) exp {-%[ra(z)] /kT) (10) 

for all possible functions a (z) , i.e., for all possible fluctua- 
tional rotation of the vector M(z) .  The role of the effective 
Hamiltonian R [ a ( z ) ]  in the considered MOR model is 
played by expression (4).  In the case of one-dimensional 
problems of this kind, evaluation of the integral (10) re- 
duces formally to the problem of finding the smallest eigen- 
value& of a certain operator For an MOR with Ham- 
iltonian (4)  this leads to a one-dimensional Schrodinger 
equation for a particle of mass m [see (6)  ] in a periodic field 
at f i =  1); in the case of a longitudinal field (HIIZ), 
q, = - 22-'kT In 9' is determined by the equations 

(p=n&M2Se, H.tt@=~$, 
He,,=- (1/2m) (d2/da2) + (2 sin2 a-4h cos a ) .  ( 1 1) 

The eigenvalues ~ ( m ,  h)  depends on the dimensionless pa- 
rameters m and h; taking into account (6)  and (9),  Eq. ( l l ) 
determines the dependence of the free energy pY of the 
MOR on the field H and on the parameters n, , M, g, and S. 

The Schrodinger equation ( 11 ) can be solved analyti- 
cally by standard methods in the limiting cases of weakly 
and strongly bound electrons. Let us investigate first the case 
of weak binding, i.e., small particle masses m. In the limit of 
small m and arbitrary mh, we can disard 2$ sin2 a in Eq. 
( 1 1 ), which reduces now to Mathieu's equation. Thus, E can 
be expressed in terms of the lowest eigenvalue a,(q) of the 
standard equation y" + ( a  - 29 cos 2z) y = 0, for which 
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the following expansions in q and l/q were obtained (see 
Ref. 9): 

e= (1/8m)ao(-16mh) =-16mh2[1-7 (2mh)z 
+ (99819) (2mh) '+ (68687136) (2mh) '- . . . ] 

( m < l ,  8mh<1), 
e= (118m) [-x2/2+x-114-1/16x-3164s' (12) 

-53/1024xS- . . . I ,  x=8 (mh)  " 
( m < l ,  16mhB1). 

In the case of large masses m, to solve the Schrodinger 
equation ( 11) of a particle in a periodic field we can make 
use of the tight-binding approximation for the electrons. 
Since in ( 11 ) the potential energy in each period 27  has for 
h $0 two minima of unequal depth [at a = 2rn and 
a = r (2n  + 1 ), where n is an integer], the wave function in 
this approximation is the following linear combination: 

X exp ( n  (2n+l)  ik) ] 

of "atomic" functions pi (a) and p2(a). The lowest eigen- 
value E corresponds to the wave function (13) with k = 0. 
Substituting it into (1 I ) ,  we find that the corresponding 
eigenvalues are determined by just the same equation 

as in the double-well potential problem (see, e.g., Ref. 10). 
The approximation ( 19) is applicable if the condition 

is fulfilled, allowing us to neglect the contributions to $, (a) 
from excited states of the wells and limit ourselves in ( 14) to 
the nearest-neighbor approximation. When condition ( 15) 
holds, the basic dependence of E ,  - E~ on the field h is con- 
nected with the shift of the potential minima, and 
E ,  - c2 = 8h, while the dependence of Won h can be neglect- 
ed in the region of interest (4h 5 W). In this limiting case we 
can determine W by using the quasiclassical approximation 
for the wave-functions in the region below the barrier (see 
$50 in Ref. 11). Choosing the energy origin such that 
E,  + E~ = 0 [when condition ( 15) holds, E ,  + c2 is practical- 
ly independent of h ] ,  we obtain 

tric solutions of the Mathieu equation for large values of the 
parameter q = m. Using the asymptotic expression 20.2.31 
in Ref. 9 for this difference, we obtain 

W-m-I" exp (-4m") 

with the numerical coefficient given in ( 16) (the quasiclassi- 
cal-approximation equation leads to the less precise numeri- 
cal factor 4(2e/lrZ) 'I2, because this approximation is correct 
only in the barrier region, and is inapplicable in the potential 
wells). The expression obtained for q, from ( 1 1 ) and ( 16) 
agrees at 4m'12>1 with Eq. (8)  for a structure with well- 
defined domain walls. 

In the general case of arbitrary masses m, ~ ( m ,  h )  can 
be found numerically. For this purpose, it is convenient to 
seek the eigenfunction for the ground state of ( 11 ) in the 
form 

m 

Then E is determined as a root of the characteristic equation 
Do(&) = 0, where Do is a codiagonal operator with matrix 
elements 

dn,,=2me- (n-1)2 ,  d2,t=2m'h(4m"h-1), 
d,,,t,,,=2m'h[ (4m'"h-1 ) /2~(n-1 )  ] (n=2, 3 .  . .I. (18) 

If we denote by D, the determinant obtained from Do by 
deleting the firstp rows and columns, it is easy to show that 

i.e., D,/D, can be expressed as a continued fraction 

DolDi=dii-dtzdztl (dzz-dz~dszl(dss-ds,d4sl (do- . . . . (20) 

In the particular cases where the continued fraction is 
truncated, the roots of the equation Do(&) = 0 ,  including the 
smallest root, can be found exactly (Ref. 12). For arbitrary 
m and h this equation is easily solved on a computer by 
equating expression (20) to zero. The dependence of a(m, 
h )  on h so obtained for small m is in good agreement with the 
analytic formulas (12), and agrees with ( 16) for large m. 

3. DEPENDENCE OF THE SUSCEPTIBILITY ON 
TEMPERATURE,EXTERNALFIELD,ANDCRYSTAL 
PARAMETERS 

The susceptibility of a crystal with dislocations can de- 
pend appreciably on the dislocation density and orientation 
relative to the external field. Let us first investigate the sim- 
plest case of rectilinear dislocations parallel to each other in 
a longitudinal magnetic field, and discuss the magnetization 
and susceptibibity of an individual MOR near a dislocation. 

The average magnetization of a MOR in a longitudi- 
nal magnetic field and the specific suceptibility xi, of the 
MOR are defined by the derivatives of ~ ( m ,  h )  with respect 

2 
E = - [  (4h)'+W2]"', ~ = 8  (y ) m-Ih e ~ ~ ( - 4 m ' ~ ) .  ( 16) 

to h: - 1 a c ~  1 de H M = - - - = - - M - -  
In the limiting case under study here, we can likewise S d H  4 d h H '  

define 4m Wat h = O  as the difference between the two low- 1 a2e 
~,,==aiiz/aH = - -$---+ est eigenvalues corresponding to symmetric and antisymme- 16nn, aha 
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For the large- and small-m regimes, the differentiation of 
expressions ( 12 and ( 16) for E (m, h ) can be performed 
analytically. For example, for 4m 'I2> 1 we have according to 
(16) and (21), 

In the region of intermediate m, the differentiation in (21 ) 
must be done numerically. A plot of the zero-field suscepti- 
bility xi0' SO obtained as a function of the parameter m is 
shown in Fig. 1; plots of the functionxll (h) versus external 
field inensity h for several values of m are shown in Fig. 2. 

From Fig. 1 it is clear thatxll (0)  is not large for small m 
[according to (12) and (21) ,xII  (0)  = 2m/77nx for m(l],  
but grows rapidly with increasing m, going over to an expo- 
nential dependence. 

for large m [see (22) and ( 16) 1. This rapid rise in xll (0) is 
due to the appearance of the giant magnetic moments 
M O -  exp(4m'I2) of the domains at 4m'I2> 1. Comparative- 
ly weak fields, for which M OH- kT, lead to reconstruction of 
the domajn pattern. Consequently, as is clear from Fig. 2, the 
susceptibility depends significantly on field, decreasing 
monotonically as the field increases. Whereas for small m 
Eq. ( 12) implies that this dependence appears only for rath- 
er strong fields h -ho = 1/8m, for large m [as is clear from 
(22) and ( 16) 1 it is already significant even in very weak 
fields h - ho = ~ / 4  - m - 'I4 exp ( - 4m 'I2 [according to 
(9 ) ,  h is measured in units of the characteristic field HA 
= 4rnx M I .  In strong fields h>ho, according to (2 1 ), ( 12), 

and (16), we have 

for m(1, and 

for ( 8 h )  -'>rn> 1. The average magnetization of an MOR in 
weak fields (hxh,) equals 

M=xs ( 0 )  EI,'h, 

while in strong fields it is close to M: 

m=M-MI8  (mh)'" 

FIG. 1. Dependence o f  X ,  = 1 6 ? m , ~ ~ ~  (0) on m ' l Z ;  the dotted curve is 
basedonEqs. ( 2 )  and (21 ) ,  thedashedcurveon (16 )  and (21),and the 
continuous curve on the results o f  numerical calculations. 

FIG. 2. Dependence o f x  = 1 6 n n , ~ , ~  ( h )  on the magnetic field for various 
values o f  m (temperature). The abscissas hm - ' I 8  are proportional ac- 
cording to ( 3 ) ,  ( 6 )  and ( 9 )  to external field and do not depend on tem- 
perature a tP = 1/3 and v = 2/3.  

for m ( 1 and 

form) 1. These effects were discussed qualitatively in Ref. 1. 
The dimensionless parameter m which plays the role of 

the effective mass in the auxiliary Schrodinger problem 
( 1 1 ), can be expressed in terms of the real crystal parameters 
and temperature by using formula (6). If the MOR near the 
dislocation are formed at temperatures close to the Curie 
point, we get, taking (3) into account, 

The quantity m grows rapidly when we get close to the Curie 
point (as 2' + v - 4 ,  i.e., as rP8l3 for f l=  1/3, y = 2/3), 
which leads to appreciable growth of the susceptibility and 
of its dependence on the field. For example, for Mo = lo3 G, 
v = cm3, TC = 1000 OK ( = 7 x  low5),  5 = 1, 
2 m x  = 1, x = 1 we have m = 0.7 for T = and m = 4.4 
for T = 5 X 

The total per-uit susceptibility X, of a paramagnet with 
MOR's near dislocations is determined by the formula 

wherex, is the susceptibility of an ideal crystal (for short- 
range exchange forces xid -p rp  y ) and nd is the length of 
the dislocation lines per unit volume (dislocation density). 
At appreciable dislocation densities and large enough m, it is 
clear from (3) ,  (23) and (24) that the second term in ( 2 5 ) ,  
which is due to MOR's near dislocations, can be comparable 
to or even larger than the first term. For example, for 
n = 10' cmp2, T = 5 x lop4, m = 4.4, p = 7X and 
S = lo-'' cm2, we haveXd/Xid - 1. 

We now investigate MOR's with m > 1 in the general 
case when the magnetic field has an arbitrary orientation 
relative to the dislocations. Since for m > 1 (i.e., ho( 1 ) the 
characteristic field H 6 = 4rnx M which can cause rotation 
of the vectors M in the domains is far larger than the field 
Ho = HAho(HA in which a substantial fraction of the do- 
mains change sign, the processes of growth and rotation of 
domains occur at greatly different field values. In the region 
of fields H ( H  A we can neglect the growth and rotation of 
the magnetization, so that the basic contribution to the 
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change in magnetic moment and in susceptibility, as pre- 
viously noted, is due to the influence of the longitudinal field 
component on the domain structure of the MOR. If the dis- 
locations are parallel, the results above are correct if we re- 
place h by h cos 79 in them, where 79 is the angle between H 
and the dislocation lines. 

In a strained crystal there are usually several differently 
oriented systems ofdislocation lines, and to calculatex, it is 
necessary to average over these orientations. It is simplest to 
do this average for a polycrystaline sample, in which there is 
no crystal texture and all dislocation directions are equally 
probable (taking into account the different orientations of 
the grains). In the low-field region (h(ho), the result of this 
averaging is a factor (cos2 9 ) = 1/3 in X, : 

x ~ = ~ / ~ ~ ~ S X ~ ~  (0) at H ~ H , = H , ' h ~ ~ H , ' = 4 n n J k l ,  hoK1 .  

(26) 

For ho( 1 (large 4m1l2), the condition H(H A is com- 
patible with the condition h)ho of the strong fields H)Ho. 
For such fields, within the overwhelming portion of almost 
all MOR the magnetization is oriented along the field com- 
ponent HI, parallel to the dislocations. Only for dislocation 
orientations 79-~/2  can reorientation of domains in the 
field continue. Taking ( 16) into account and averaging over 
the angles, it is not difficult to show that for Ho(H(H ;, and 
m) 1 we have 

i.e., the susceptibility is proportional to h - ' as in the case of 
longitudinal fields, but because a certain fraction of the 
MOR's are almost transverse to the field the susceptibility 
increases also by a logarithmic factor. 

According to (27), in systems with large 4m'I2 and for 
strong enough fields h)ho the susceptibility X, which arises 
from rearrangement of the domain structure will be small. In 
this region of fields, an important contribution to the change 
in the average magnetization vector M of the MOR's and in 
their susceptiblities comes from processes which rotate the 
magnetization of the MORs in an oblique field from the di- 
rection of HII to that of H. In the case under study here, 
when n , (3 ,  fields H4H; = k n , M  rotate M in XZ 
planes and M be taken out of these planes only for H4H ;. 
The direction of fi in each MOR is determined by Eq. (9),  
in whch we replace H by H cos 4, where 4 is the angle 
between H and the XZ plane for a given dislocation. Averag- 
ing over the orientations of the XZ planes (i.e., over 4)  and 
over the dislocation directions in these planes, we find that 
for h)ho (almost all the MOR's are practically single-do- 
main) and at H(H; the processes of rotation lead to the 
following contribution to xd : 

In stronger fields comparable to H:>HA, the rotation 
processes which take the magnetization of the MOR out 
of the XZ plane become important. Allowing for these pro- 
cesses, fi and xd in such fields are given by the expressions 

From (27)-(29) it is clear that in the region of weak 
fields, where h(h :I3, the susceptiblity of MOR's is due es- 
sentially to the domain-growth processes considered above, 
which lead to a sharp falloff ofx, in the region h -ho; how- 
ever, in larger fields at h(h :/3, the processes which rotate 
the magnetization play a greater role. In this case, according 
to (28), xd within a certain interval h ;/3(h41 depends 
weakly on the field and has a value smaller thanx, for h 4  
by a factor h; ' [see (26) and (22)]; subsequently at h)l, 
as is clear from (28 ) and ( 29 ) , X, once again decreases ra- 
pidly. 

In MOR's with 4m'I2S 1, the fields Ho and HA are 
comparable, and the processes of domain growth and rota- 
tion of the magnetization take place simultaneously. In this 
case the determination ofx, for polycrystalline samples re- 
quires numerical methods to average over the directions. 
However, in the limit m+O, when we can neglect the magne- 
tostatic energy, the susceptibility in general does not depend 
on the orientation of H relative to the MOR. Thus, as in a 
single crystal, we have according to ( 12, (21), and (25) 

In this limiting case of small m, the MOR contribution 
to the total susceptibility of the crystal is usually small. 

4. DISCUSSION OF RESULTS: THE DISLOCATION SPIN 
GLASS 

From the results presented here, it follows that in the 
presence of a sizable dislocation density n,, fluctuating do- 
mains in MOR's close to the dislocations can add to the 
susceptibility substantial contribution X, that depends 
strongly on the field and rises rapidly as the Curie point TO, 
is approached. These results were obtained for an isolated 
rectilinear MOR and are correct only if the domain length L 
is small compared to the lengths L ' between sharp bends in 
the dislocation lines and the lengths L ,  of the links in the 
network of intersecting dislocations [ (L,  - d / r0  f, ) in the 
case of a random network, and L ,  -rd in the case of a Frank 
network]. We also require that the thickness ro f, of a MOR 
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be small compared to the average spacing r, between dislo- 
cations. According to Ref. 1, as the temperature falls, for 
L - L,  the one-dimensional picture of a MOR goes over into 
a three-dimensional picture, and as a result of a phase transi- 
tion in the network at T = Tf, in place of fluctuating do- 
mains there arises a magnetization of one sign. If (for very 
large n, ) we still have not reached ro fm -r, as T-+T:, 
then a percolation phase transition must take place (Ref. 
13). Below these transition temperatures the results we have 
obtained will obviously be inapplicable. In systems with 
small x, even for small n, the formation of MOR's at T-  r0 
can lead at once to the appearance of a network (rf -T;  see 
Ref. 1 ) and the theory developed here is nowhere valid. 

The character of the magnetic sturcture of a MOR will 
be significantly altered when we take into account non-recti- 
linear dislocation lines, in particular their sharp bends which 
often appear in real dislocation ensembles. Below the 
network phase-transition point Tf (or above this point if 
L > L '), when certain conditions are fulfilled, the dipole in- 
teractions between portions of the MOR network can make 
thermodynamically advantageous formation of a disloca- 
tion dipole glass consisting of parts with differing directions 
of magnetization M. In the case of thick domain walls, when 
l)ro ( g ' 1 2 > ~ r o  fm ), the exchange energy Ee and the total 
energy E 6 = Ee + Em of a kink in the MOR are minimal if 
the directions of M on both sides of the kink make an acute 
angle. In this case, below the network phase transition point 
Tf, in a sufficiently homogeneous MOR network, a new 
magnetization Mf can appear, which gradually diffuses 
throughout the volume of the entire crystal (Ref. 1).  

However, ifg'"<Mr0 fm , then the basic contribution to 
the kink energy E 6 comes from the magnetic energy E,, , 
and in the case of sharp kinks (with angles > 7~/2) ,  E 6 de- 
creases sharply (by - M 'Sr0 fm )kT), when the directions 
of M on both sides of the kink make not an acute, but an 
obtuse angle. Here, there arises a cancellation of the magnet- 
ic moments of different parts of the MOR of a random 
network with L)L ' and L ,  )L ', Mf = 0, and a dislocation 
glass results. The presence of portions of this glass with dif- 
ferent directions of magnetization is not connected with 
thermal fluctuations, as in the dislocation superparamagne- 
tism investigated earlier, but is rather due to the greater ther- 
modynamic advantage (due to dipole forces) associated 
with the corresponding kink energy, so that the M ( r )  distri- 
bution turns out to be determined by the random structure of 
the dislocation ensemble. Only when the temperature gets 
low enough to make r,, fm -rd can contact between the 
transverse walls of the MOR's lead to a thermodynamically 
advantageous ferromagnetic state with Mf #O, which ex- 
tends over the whole volume of the crystal. 

Even in the absence of sharp kinks and f ~ r g " ~ > M r ~  fm , 
i.e., l)r,, a dislocation glass can be energetically advanta- 
geous if, as often happens in real systems, the dislocation 
network is essentially not one-dimensional. Thus, if in the 
crystal there are sections with dimensions - R  and with a 
high density of dislocations n; - (r;)-'. i.e., appreciably 
larger than the mean density n,, then the total dipole mo- 
ment p-M< f kn;R of all the MOR's is connected with 

these sections. The energy p2(R ') - 3  of the dipole interac- 
tion of two neighboring sections separated by a distance R ' 
increases the energy n;R 2E 6 of the domain walls of the 
MOR's produced by rotation of the magnetization of one of 
the sections if the conditions R 4r0 f, )ri2R l 3  for 
g'12<Mro f, or MR 4< f >r; g ' I 2 ~  " f ~ r ~ ' ~ ~ < M r ,  f, are 
met. In these cases, for sufficiently random locations of such 
sections of the crystals, and for L(T))R (i.e., close to the 
point TO, ), the dipole interactions should lead to the appear- 
nace of dislocation glass. Depending on the crystal param- 
eters, this glass is formed when the temperature decreases 
out of the paramagnetic (i.e., above Tf) or ferromagnetic 
(below Tf ) states of the MOR's near the dislocations; subse- 
quently, at TzT:, it goes into the ferromagnetic phase 
which extends over the entire crystal. A dislocation glass can 
also arise as a nonequilibrilum state, if e.g., the time for rota- 
tion of the magnetization directions accidently produced in 
large sections of the MOR network is extremely long. 

The formation of dislocation glass near the Curie point 
can substantially influence various magnetic properties of a 
perfect crystal, particularly the dynamic susceptibility 
x = X' - ix". AS is well-known, in spin glassesx" (o) is al- 
most constant over a broad range of the frequency w, and 
xi-ln(const/w ) (see, e.g., Refs. 14-16). The same depen- 
dences were observed in studies ofx(w) in CdCr,S4 near the 
Curie point (Ref. 17). One possible explanation for these 
results could be based on the assumption that MORs near 
dislocations (which in ordinary real crystals always have 
appreciable densities) form a dislocation dipole glass, for 
which the dependences of x', X" on w are of the kind de- 
scribed above. 
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