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We investigate transitions between two-steady-state regimes of forced oscillation (one large- 
amplitude and one small-amplitude) of an anharmonic oscillator, due to thermal activation 
and quantum tunneling. We calculate the transition times for those cases where these times are 
exponentially large. In such cases, the exponents are of the same order of magnitude as the 
ratio of the oscillation energy to the thermal energy (for activated transitions) or to the 
quantum energy (for tunneling transitions). The transition probabilities increase sharply near 
the shutoff point of the small-amplitude oscillation. 

INTRODUCTION 

In the presence of anharmonicity, an oscillator can have 
in a certain frequency region forced oscillations with two 
distinct amplitudes.' Such an oscillator is an example of a 
dynamically bistable system subject to hysteresis. 

Any such system is in a certain sense analogous to a 
particle moving in a potential with two unequal-depth wells 
separated by a barrier. One of the two stable stationary states 
of the particle is metastable: after a long enough time the 
particle always finds itself in the deeper well. This transition 
can result either from thermal activation or from tunneling 
through the barrier. 

In view of this analogy it is obvious that one of the two 
regimes of forced oscillation for an anharmonic oscillator is 
metastable, and, strictly speaking, there is no hysteresis. The 
transition to the stable regime can be either by activation or 
by tunneling. 

It is of fundamental interest to calculate the time for 
such a transition. This question can in addition have some 
practical value when one is discussing resonance in nonlin- 
ear systems of atomic scale," for which the transition time 
may turn out to be rather short. 

Transitions mediated by thermal fluctuations were in- 
vestigated by Dykman and Krivoglazs by functional-inte- 
gral methods. They showed that depending on the param- 
eters of the problem, either the small-amplitude or 
large-amplitude regimes could be metastable. 

The quantum-mechanical investigation of the forced 
oscillations of an anharmonic oscillator has been the subject 
of numerous papers (see, e.g., Refs. 6-1 1 and the citations 
therein). The possibility of tunneling transitions was first 
mentioned by Sazonov and Finkel'shteTn7; however, the cor- 
responding transition time calculated by these authors turns 
out to be incorrect. 

Sazonov~eveloped an original quasiclassical method 
of calculating the tunneling time. However, his demarcation 
of limiting cases and actual calculations were not correct, 
except for the case of a rather small driving force. This result 
agrees essentially with the expression obtained earlier by 

Larsen and Bloembergen2 for the time of coherent multipho- 
ton transitions between vibrational levels of a molecule. 

In the present work we find the time for transitions 
between two forced-oscillation regimes of an anharmonic 
oscillator, for both the activation and tunneling mecha- 
nisms. We will investigate only the cases when this time is 
exponentially large, and limit ouselves to calculating only 
the exponent. We assume that the characteristic relaxation 
time for dissipative processes is long enough for these pro- 
cesses to leave the steady-state oscillation amplitude practi- 
cally unchanged. At the same time, this characteristic time 
will be assumed small compared to the transition times of 
interest to us. 

Our investigation of both activated and tunneling tran- 
sitions is based on the use of an effective Hamiltonian which 
does not contain time explicitly; this is introduced in Section 
2. Section 3 is devoted to activated transitions, in which the 
results of Dykman and Krivoglaz5 (which pertain to the 
case of low friction) are rederived by the transport-equation 
method. In addition, we obtain a stationary distribution 
function for the oscillator and an explicit expression for the 
transition time close to the cutoff point for the small-ampli- 
tude oscillation. The time for tunneling transitions is calcu- 
lated in Section 4. These transitions are dominant, except in 
special cases when the condition T < h ,  is satisfied, where T 
is the temperature and w, is the oscillator small-amplitude 
frequency. We show that, unlike activated transitions, tun- 
neling always leads to metastability of the small-amplitude 
oscillations. This circumstance destroys the analogy with 
the example, investigated earlier, of a particle in a two-well 
potential, in which a state in the shallow well is metastable 
relative to transitions of both types. 

2. EFFECTIVE HAMlLTONlAN 

We write down the Hamiltonian of an anharmonic os- 
cillator in the presence of a periodic external force in the 
form: 
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FIG. 1. Plot of & ( k , x )  for a <a,. Points 1 and 2 correspond to stable 
oscillations with small and large amplitudes respectively, and point 3 is 
unstable. The internal and external trajectories are shown. The arrows 
mark activated ( A )  and tunneling ( B )  transitions. 

We assume that the anharmonicity is small and that the 
frequency w of the driving force is close to the resonant fre- 
quency w,, with w > w, (it is just in this case, that two oscilla- 
tion regimes are possible at b > 0).  

If we make in the Hamilton equations which follow 
from ( 1 ) the substitution 

X= ( m o o )  -"(q cos o t+p  sin a t ) ,  

P= (moo)'" ( -q  sin o t+p  cos a t ) ,  
(2) 

we obtain 

where S = w - w,(w,, 0 = (36 /8) (ma,)-', f = ( F /  
2) (mao) - 'IZ. 

In Eqs. (3)  and (4)  we neglect as usual nonresonant 
terms which oscillate at frequencies 2w and 4w. 

Let us recall the well-known results of solving the prob- 
lem in the classical-mechanics framework. If we setp = 0 in 
(4), we obtain a cubic equation' for the steady-state ampli- 
tude of oscillation q: 

where we have introduced a new variable x = q( D/S) ' I 2 .  

This equation contains only one parameter 

At a c a, = 2.3-312 we have three solutions to (6) ,  of which 
one is unstable; at a > a ,  there is only one solution. The 
critical value a = a, thus corresponds to the small-oscilla- 
tion shutoff point. 

We have disregarded friction in Eqs. (3) and (4). Add- 
ing a frictional force - r n y ~  to the original equations of 
motion adds the terms - y q/2 and - yp/2 to the right- 
hand sides of Eqs. (3)  and (4).  These additions are responsi- 
ble for the steadying of the oscillations. We will further as- 
sume that y(S, a)y/S. For these conditions the steady-state 

amplitude of oscillation is as previously given by Eq. (5). 
For further investigations, it is convenient to go from 

the Hamiltonian ( 1 ) to a new Hamiltonian H ' with the help 
of the canonical transformation (2). Thus, 

where the generating function G takes in our case the form 

G ( X ,  q, t )  --[ (qz+moaX2) cos o t -2  (moo)'"qXl / 2  sin wt. 
(8)  

In the same way as in the derivation of Eqs. (3)  and (4),  in 
order to go from H to H ' it is necessary to discard nonreson- 
ant terms which oscillate at the frequencies 2w and 4w. We 
then obtain for H ' the expression 

6 B 
H' = - - j - ( p a +  q2) f -(p2-l-qz)z + fq. 

4 
(9)  

Hamilton's equations derived from (9)  coincide with Eqs. 
(3)  and (4). The effective Hamiltonian (9) ,  which does not 
contain the time explicitly, was used earlier in Refs. 9 and 12. 

Let us introduce the new variables 

Then we will have in place of (9) 

e ( k ,  x)  =-'/Z (k2+x2) +'/' (kZ+x2) '+ax. (11) 

In Fig. 1 we show the function ~ ( k ,  x )  for a <a , .  The 
extrema of this surface correspond to steady-state oscilla- 
tions at k = 0 in the presence of small friction, and to the 
values of x determined by (5 ) . Points 1 and 2 correspond to 
stable oscillations with small and large amplitudes, respec- 
tively, while point 3 corresponds to unstable ones. At a = a, 
points 1 and 3 coalesce, and for a > a ,  there remains one 
extremum, point 2. 

Obviously,the phase trajectories are intersections of the 
surface ~ ( k ,  X )  with the plane E = constant. From Fig. 1 it is 
seen that in the energy interval E, < E < E ,  there are two types 
of trajectory between points 1 and 3, internal and external, 
separated by a classically inaccessible region of phase space 
(Fig. 2a; see also Ref. 8). The phase trajectories with ac- 
count taken of a small amount of friction are shown in Fig. 
2b. If we do not take into account thermal fluctuations or 
quantum tunneling, point 1 as well as point 2 correspond to a 
stable stationary state. 

3. TRANSITIONS INDUCED BY THERMAL FLUCTUATIONS 

Let us place an anharmonic oscillator driven by an ex- 
ternal force in a heat bath of temperature T. The kinetic 
equation for the oscillator distribution function p takes the 
form 

where (H, p )  denotes Poisson brackets, and the Hamilto- 
nian H is given by formula ( 1 ). We write the collision inte- 
gral S( p )  in a differential form 

which is valid under the assumption that the relative change 
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FIG. 2. Phase trajectories determined by Eq. ( 1  1 ) :  a )  in the absence of 
friction, b) when friction is present. The thick curve is the separatrix. The 
internal trajectories are located near point 1. 

in momentum in an elementary interaction with the heat 
bath is small. This assumption correpsonds to describing 
dissipation in the classical equations of motion by introduc- 
ing a frictional force-ymX. 

Let us transform from the variables P, X to the dimen- 
sionless variables k, x, by using the canonical transformation 
(2) and Eqs. ( 10). Then, discarding as before the nonreson- 
ant oscillating terms, we obtain 

where E (k, X )  is given by formula ( 11 ) . 
Let us find a steady-state solution to Eq. ( 14), bearing 

in mind that ygS. For y = 0, any arbitrary function of the 
energy E is a steady-state solution. This function, like ~ ( k ,  
x) ,  is two-valued in the energy interval E, < E < E,, where for 
each energy there are two trajectories, internal and external. 
We denote the corresponding branches of the distribution 
function by p ,  ( E )  and p , ( ~ ) .  Outside this interval there is 
only one branch p, ( E )  . 

For y is different from zero we set 

PI,, =PI , ,  (E) +p i2  (k, XI, wherep;,, ( k ,  x )  is a small cor- 
rection of order y/S, with @;, (k, x )  ) , ,  = 0. The angle 
brackets denote averaging over the equal-energetic surface 
~ ( k ,  X )  = E :  

Here the subscripts 1 and 2 indicate that in the calculation of 
the integral on the right side of (16) we need include the 
contribution from either the internal or external trajectories, 
respectively. 

We solve Eq. ( 14) by iteration. The conditions under 
which first-order equations are solvable for the function pi,, 
determine the form of the function p,,, (E) .  Since 
({E, pi,,)) ,,, = 0, the condition 

must be met. Using ( 15) and ( 16) and integration by parts, 
we can transform ( 17) into 

where 

The solution to ( 18) under the condition that is flux in 
energy space is 

e 

[ a. 6 j' B f i . z ( ~ ~ )  , (20) prvz(e)= Cexp --- 
T p 8I D,,2(e1)  

where Cis  a normalization constant chosen to be the same 
for the two branches from the condition that the change in 
the distribution function be continuous as we cross the se- 
paratrix p , (E, ) = p2 ( E ~ ) .  

Expression (20) gives the steady-state distribution 
function for an anharmonic oscillator driven by an external 
periodic force. We note that by definition D ,,, , ,. The quan- 
tities B , , ,  ( E )  can be cast, using ( 16) and ( 19), in the form 

B, ( E )  =-2 $ k ,  dz. B2 (8) = 2 k2 ax,  (21 

where k , ( ~ )  and k , ( x )  are the dimensionless momenta obtained 
from ( 11 ) for the internal and external trajectories, respec- 
tively. The difference in sign is due to the fact that the direc- 
tions of motion along these trajectories are opposed (see Fig. 
2a). Thus, B,  <oand B , > o ,  and therefore the functionp, (E)  has 
a maximum at E = E,, whilep, ( E )  is a maximum at E = E, . A 
schematic plot of the steady-state distribution function is 
shown in Fig. 3. 

Let us now determine the exponential factors in the ex- 
pressions for the times T12 and T,, required to go from the 
vicinity of point 1 to that of point 2 and back. If the initial 
distribution is localized, for example, near point 1, then in a 
time on the order of y- ' a quasi-equilibrium distribution for 
which p , ( ~ )  = 0 sets in while the function p , ( ~ )  is deter- 
mined by a formula similar to (20) : 
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ing this quantity in expression (26)  and recognizing that d ~ /  
dk, = - 2 k , / 3 ,  according to (25) ,  we obtain D, = - B , / 3 .  We get 
ultimately 

FIG. 3. Steady-state distribution function for T , ,  <r,,. The function is 
double-valued in the energy range E, < E < E ,  . 

The steady-state character of this distribution is disturbed 
only by an exponentially small flux thorugh the activation 
barrier. The transition timer,, is determined by the value of 
the quasi-equilibrium function (22)  at E = E,. Thus, 

We recall that B, < 0. By analogy, we can obtain 
L ,  

Equations (23) and (24) coincide with the results of 
Dykman and Krivoglaz,' who calculated the quantities I, 
and I ,  numerically and showed that I, < I 2  for a > 0.1 1 and 
I ,  > I ,  for a < 0.11. Thus, for a > 0.11 the time r,, is shorter 
than T 2 , ,  and the small-amplitude oscillation regime (point 
1 ) is metastable. In the opposite case, the large-amplitude 
oscillation regime is metastable. The steady-state distribu- 
tion (20) is accordingly localized at a > 0.1 1 near point 2 
(see Fig. 1 ), while at a < 0/11 near point 1. 

For a - 1, the dimensionless quantities K ,,, are also of 
order unity. In this case, the exponents in (23)  and (24)  are 
in order of magnitude equal to the ratio of the oscillation 
energy to the thermal energy. For a(1, we have5 I, = 1/2, 
I2 = 2a, 

Let us evaluate the quantity I, (a) near the small-oscil- 
lation shutoff point, where A =a, - a(1. In this case, 
r2,>r12. AS a approaches a,, points 1 and 3 in Fig. 1 come 
together, and at a =a, we have x ,  = x, = x, = 3 - ' I 2 ,  

E ,  = e3 = E, = 1/12. Settingx = x, + y, E = E, + r] and as- 
suming that k, y, 7-4 1 ,  we find from ( 11  ) that 

Points 1 and 3 correspond to the values 
71.2 = - 3 ":A + 2.3 ".'Av:. 

Using (16) and (19), we can represent D, in the form 

From formula (25) it follows that in the energy interval 
7.t < 7 < 7 ,  the quantity (da,/dy~is of order All2(  1 .  Neglect- 

1 (a) = ('/;I4) A'Iz. (27) 

Thus, near the shutoff point the activation barrier is lowered 
and the transition time is significantly decreased. 

We emphasize that (23)  and (24) can be used when the 
exponent is large compared to one and at y r )  1. 

4. TUNNELING TRANSITIONS 

For sufficiently low temperatures the transition 1-2 
between the two oscillation regimes takes place via quantum 
tunneling from an internal trajectory near point 1 to an ex- 
ternal trajectory with the same energy E (see Fig. 1 ) .  

Let us calculate the transition probability in the quasi- 
classical approximation.To do this we need to find the func- 
tion k ( x ) ;  from ( 1 1 ) we obtain for the internal and external 
trajectories 

There are four turning points, where k = 0, in the energy 
interval E~ < E  < E ,  of interest to us. Typical plots of k * ( x )  
are shown in Fig. 4. The points a , ,  b, and a,, b, are the 
respective turning points for the internal and external trajec- 
tories. Besides these we have one more turning point 
c = (1 + 4&)/4a, where k , ( c )  = k,(c). At this point, al- 
though k #0, the velocity q vanishes, as is clear from (3 ) .  In 
the case depicted in Fig. 4, point c lies in the classically inac- 
cessible region. 

From Fig. 4 it can be seen that in the classically inacces- 
sible region of phase space, where k < 0, there is a path that 
connects the internal and external classical trajectories. We 
know1, that it is the action calculated along this path which 

FIG. 4. The function k '(x) according to equation ( 1 1  ) . a  ,, b,, a,, b,, andc 
are turning points. The dashed lines correspond to classically inaccessible 
trajectories. The dashed line b,bz is a trajectory along which a tunneling 
transition takes place. 
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determines the tunneling probability. Limiting ourselves to 
calculating the exponential factor in the expression for the 
transition time Tl2, we obtain 

'12 

where q,z = (S/fl)'I2b Changing from p and q to the 
variables k and x in Eqs. ( lo),  we obtain 

The dimensionless quantity J in  (30) depends on the value of 
the classical parameter a defined by (6) and on the dimen- 
sionless energy E. We will be interested in the transition time 
at the energy E = E, corresponding to steady-statc small-am- 
plitude oscillations (point 1 of Fig. 1 ) . Actually, in the ab- 
sence of dissipation, the closed internal trajectories in Fig. 1 
are stationary and tunneling transitions are possible from 
these trajectories to the external ones (and back). However, 
in the presence of friction (see Fig. 2b), any internal trajec- 
tory leads the system to point 1 that corresponds to the 
steady-state small-amplitude oscillations before tunnel tran- 
sition occurs. Thus, it is interesting to study the tunneling 
from point 1 to an external trajectory with the same energy. 
The reverse tunneling transition can be ignored, for owing to 
friction any external trajectory takes the sytem to point 2 
that corresponds to steady-state large-amplitude oscilla- 
tions. In order to calculate the energy E, we must use Eq. 
( 1 1 ), in which we need to set k = 0 and take for x that root of 
( 5 )  which has the smallest absolute value. 

The classical approximation which we have used to find 
the quasiclassical tunneling probability is valid, as usual, un- 
der the condition that the exponent in (30) is large com- 
pared with unity. 

Thus, the problem was reduced to calculating the inte- 
gral J(a) for a <a , ,  when there are two steady-state oscilla- 
tion regimes. As in the preceding section, we will investigate 
limiting cases a4 1 and a, - a4 1. It is obvious that in the 
intermediate region (a, - a ) / a  - 1 the quantity j ( a )  is of 
order unity. 

Let us first investigate the case a< 1. The energy E,  here 
is of order a2;  thus, we can set E,  = 0. Neglecting terms of 
order a ,  for the turning points b,, b2 and c we have b, = 0, 
b2 = v"Z, c = (4~)-I, so that c)b2 and the function k 2 ( ~ )  

corresponds to Fig. 4a. The integral in (30) takes in this case 
the form 

E C 

~ ( a ) = l  1 k ~ 1 k - J  Ikzldx. (31) 
b ,  b,  

Let us break up each of the integration intervals into two 
parts: x <xo and x > x,, where 1 (xo<a-'. In the region 
x<xowehave ( k , J z x ,  Jk21=:(x2 - 2 ) ' 1 2 . F ~ r x > ~ o t h e d i f -  
ference lkll - Ik21 is approximately equal to the expression 
x- '(1 - 4ax) 'I2. When we evaluate these integrals, we 
find, up to small terms of order a ,  that 

Let us compare our results with those of Ref. 9, in which 
tunneling transitions were studied for the case a( 1. We note 
first that the quasiclassical method proposed in Ref. 9 in fact 
coincides with the one we have used: if we introduce a new 
integration variable z according to the formula x 
= (E + z - z2)/a and carry out a few transformations, we 

reduce the general formula (30) to the form obtained in Ref. 
9 

However,the author of Ref. 9 erroneously distinguished 
between limiting casesJbfi 312,8and f4fi 312,8, regarding only 
the first as quasiclassical and the second as quantum-me- 
chanical. In Ref. 9 the result of calculating the integral in the 
first case differed from (32) and seems wrong to us. For the 
quantum case fdfi 312fl, the expression cited in Ref. 9 was 
derived earlier2 by another method. In fact, at this 
expression is a quasiclassical result and coincides with (30) 
and (32). In reality the condition S ~ f i  fl is the only criterion 
for applicability of the quasiclassical approximation (except 
for the region in a-space near a, ; see below) and when it is 
satisfied relation beween f and fi 'I2fl is immaterial. Using 
the definition ( 6 ) ,  this condition can be rewritten in the form 
Jbfi 312&, from which it is clear that if a(1, then the quasi- 
classical approximation is valid also at f4fi 312fl. 

Let us turn to the limiting case A = a, - a < l ,  which 
corresponds to the region close to the shutoff point for the 
small-amplitude oscillation. As a -m,  , the turning points 
a,,  b, and b2 approach one another and all tend to the value 
x, = 3-'I2. The function k '(x) now corresponds to Fig. 4b, 
and the integral in Eq. (30) takes the form 

ba 

J(cz)= lk1Idx. (33) 
b ,  

As in the preceding section, we set x = x, + y, E = E, + q 
and choose the energy correction 7 = 7, such that its value 
corresponds to point 1; we then obtain from (25) 

Ik, )2=3'(y+yo)2 ( 2 ~ , - ~ ) ,  yo=3-"A'". (34) 

Substituting this k, into (33) and integrating with respect to' 
y from -yo to 2y0, we finally obtain 

J (a) = (4.301*}5) A'''. (35)  

Thus, as expected, the probability for tunneling in- 
creases sharply in the neighborhood of the shutoff point. For 
A 5 (+@ the transmission coefficient turns out to be of 
order unity. In this region, however, the quasiclassical ap- 
proximation cannot be used. 

In connection with formula (30), we make the follow- 
ing remark. In the absence of friction, tunneling transitions 
could occur only when the quantum levels corresponding to 
the internal and external trajectories are equal (to an accura- 
cy fi/rI2). In this case the populations would oscillate with a 
characteristic period determined by Eq. (30) (without the 
factor of 2 in the exponent). However, in the presence of 
friction such that yr,,> 1, as a consequence of the broaden- 
ing of the levels, the tunneling transitions become possible 
even for unequal levels. In this case the exponential factor is 
always determined by (30). The level difference is manifest 
only in the value of the pre-exponential factor, which we do 
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not calculate. 

5. CONCLUSION 

Equations (23 1, (24 and ( 30) determine respectively 
the times of activation and tunneling transitions between the 
two regimes of forced oscillation of an anharmoic oscillator. 
Far from the shutoff point of the small-amplitude oscillation 
[at (a, - a ) / a  - 11, the exponents in these formulas are of 
the order of the ratio of the oscillation energy to the thermal 
energy T (for the activated case) or to the quantum energy 
h0 (for tunneling transitions). Consequently, the activated 
transitions play a fundamental role for ah0 and the tun- 
neling transitions for T 4 h o .  

As the shutoff point is approached the probabilities of 
these and other transitions rise sharply. We call attention to 
the differences between the dependences of the exponents on 
the quantity A = a, - a for activated and tunneling transi- 
tions [see Eqs. (27) and (35) 1. The height of the activation 
barrier is proportional to A3I2. The tunneling probability is 
determined by the product of the square root of the barrier 
height and its width, the latter of order All2 [see (34) 1. This 
gives a dependence for the exponent. Thus, sufficiently 
close to thk shutoff point, the main cause of these transitions 
is always thermal activation. 

It is interesting to note that the small-amplitude oscilla- 
tion regime is always metastable in respect to tunneling tran- 
sitions. By contrast, if the activated transitions dominate, 
then at a < 0.11 it is the large-amplitude oscillations which 
are unstable. This difference is thus significant at small val- 
ues of the parameter a. Comparing the exponents in (24) 
and (30), we find that for a( 1 the tunneling transitions play 
the fundamental role if a > a, = ( T / h , )  In (fiwdT). In 
this case, the small-amplitude oscillations are metastable. If 
however a < min (a,; 0.11 ) then the large-amplitude oscil- 
lations are metastable. 

We note that our assumption, that the relative change in 
momentum and energy for each scattering event responsible 
for dissipative processes is small, is quite important. For ex- 
ample, if besides these processes there are infrequent colli- 
sions (with frequency v<y) accompanied by large energy 
loss, then just one such collision is enough to stop large- 
amplitude oscillation state. Thus, even at T,, < T,, this re- 
gime is possible only for v~ , , ( l .  In the opposite case, the 
small-amplitude oscillation will be the steady-state regime. 
In the case of quasi-elastic collisions with large momentum 
transfer there occurs an effective intermixing of the trajec- 
tories and two regimes of oscillation will not exist at all. Just 
such a situation arises in the case of nonlinear cyclotron res- 
onance in semiconductors, which was investigated in Ref. 4. 
Thus, the hysteresis predicted in Ref. 4, which is related to 
nonparabolicity of the electronic spectrum, should not be 
observed. 
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