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We consider a two-stage "capacitor" model for the evolution of the electromagnetic field 
accompanying the breakoff in the constrictions of a plasma pinch with a longitudinal current. 
For a peripheral plasma with a density of the form n( r )  cr r " we find exact solutions for the 
waves in the initial and final stages of the pinch evolution. 

$1. INTRODUCTION 

The development of constrictions on a plasma filament 
with a current, first predicted in Ref. 1, leads regularly to the 
current channel b reak~ff .~  It is just the breakoff in the con- 
strictions which is the key point which determines the whole 
set of observed acceleration effects accompanying a power- 
ful pulse discharge in a gas.3 The dynamics of the electro- 
magnetic field near a constriction which is breaking open is 
qualitatively similar in nature to the "charging" and "dis- 
charging" of a condenser. In the "charging" stage-a rela- 
tively slow buildup of the axial electric field-the motion of 
the pinch boundary leads to the occurrence of a magneto- 
sonic wave (MSW) at the periphery. In that case both the 
ions and the electrons of the peripheral plasma drift along 
the radius to the center and the current transferred by the 
wave is caused by the polarization ion current. It is impor- 
tant that the generation of the wave is accompanied by the 
"outflow" of the current from the pinch to the periphery 
(the total current in the system remains constant!). It is just 
the drift character of the electron motion which makes it 
possible to "charge" the plasma capacitor appreciably. At 
the moment of the constriction breakoff the field has reached 
a magnitude 

E,- ( v l c )  B- ( c , / c )  B. 
From the moment when the boundaries of the constric- 

tions reach the axis the nature of the particle motion changes 
suddenly: the presence near the constriction axis of a field 
E, #O leads to the acceleration of some of the electrons and 
to formation of a near-axial electron beam. This is the "trig- 
ger" mechanism causing a fast "dischargew4-a rarefraction 
wave of E, is formed and destroys the field built up in the 
slow stage. 

For the ions in the peripheral plasma the fast phase is 
equivalent to an instantaneous "shock" which is totally suf- 
ficient, as was shown in Ref. 4, to explain not only theexperi- 
mentally observed energies of accelerated deuterons but also 
their acceleration in a number sufficient for an explanation 
of the complete neutron effect of a pulsed plasma pinch. 

In the present paper we present in detail the picture of 
the evolution of the electromagnetic field near a constriction 
of a pinch with a constant total current I,, using a simple 
model the main feature of which is the presence around the 
pinch of a cold peripheral plasma with a given initial density 
profile n = nO(r) .  We obtain for the slow "charging" stage 
the simplest solutions for power-law profiles of the form 

no a r " . In the particular case s = - 2 it turns out that the 
fast "discharging" phase reduces to a linear equation and 
also is amenable to an analytical study. The model with a 
peripheral plasma with a decreasing density no a r-2 enables 
us thus to trace completely the evolution of the electromag- 
netic field in the vicinity of a breaking constriction. 

52. FAST MAGNETOSONIC WAVE AND OUTFLOW OF 
CURRENT WHEN A CONSTRICTION BREAKS 

In the slow "charging" stage the peripheral plasma with 
a sufficient density has a large permittivity E,, - (c/c,  ) 2, 1. 
A wave on the periphery, which is produced by the radial 
shift in the pinch boundary a = a ( t )  in agreement with the 
condition 

EzIBIr-ocr,=-li ( t ) / c ,  a (0) =ao, (1) 

therefore propagates with the Alfvtn speed c, = B /  
(4rMn ) ' I2  and not with the speed of light. We have studied 
these waves before using a linear equation5 (here and hence- 
forth we assume cylindrical symmetry) : 

a d 4nMn"r) aZ  
-r-E',=A,E, = -- Ez,  
rar dr BOZ(r) at2 

Under pinch conditions, however, the wave can distort the 
main magnetic field of the current appreciably and, strictly 
speaking, the applicability of the linear approximation is vio- 
lated. The simplest nonlinear generalization of (2) is, clear- 
ly, the following: 

Here A(r,t) is the vector potential of the field, no(r) the 
plasma density which, as before, is assumed to be given. In 
the case of a constant density nO(r) = n, = const a simple 
wave is possible with a parabolic profile 

and with a front 
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~ O C A O  
R=R ( t )  = (ao2+2RAct) '", R,  = - = Io/c2 (nMno) '". 

C 
( 5  

It follows from ( 1 ) that the pinch-radius evolution that gen- 
erates the wave (4) is determined by the condition 
A(r  = a(t) , t )  = 0. This gives for the boundary motion 

and the constriction must break at the time 
t = tbr = (e - l)a,/c,,, where e = 2.71828 

It is important to note that at the front when r = R ( t )  
the magnetic field of the wave (4)  continuously changes into 
the unperturbed pinch field B,(r) = 210/cr. This guarantees 
the conversion of the total current in the pinch-wave system, 
whereas the current in the main channel decreases as fol- 
lows: 

I , ( t )=Io  (7)  

and at the moment of the constriction breakoff the whole of 
the current shifts to the periphery. 

The wave (4) thus describes all the laws that govern the 
constriction breakoff stage. However, this model as a whole 
is not satisfactory, since the condition nO(r) = const violates 
near the constriction the continuity equation and requires an 
additional particle source. It is, however, not difficult to get 
rid of this restriction. To do this we use the single-fluid hy- 
drodynamics of a cold, perfectly conducting plasma. As we 
have from the definition of the vector potential that 
Ez = - cc- 'dA /dt and B = - dA /dr, the plasma radial ve- 
locity equals 

We find next the current density from the equation of 
motion 

and, substituting (8) into Ampke's law 

we get a nonlinear equation which is more accurate than (3)  : 

The plasma density n (r,t) which occurs in (9)  is determined 
by using the magnetic-field freezing-in theorem d (B  /nr)/ 
dt = 0, which gives 

a. B 
n=no - - $ ( A )  

r Bo 
The subscript zero marks here the initial values on the un- 
perturbed boundary of the pinch r = a, and $ ( A )  is an arbi- 
trary function which is uniquely determined by the state of 
the plasma ahead of the wavefront. For a power-law density 
profile ahead of the front n = n,(r/a,)" the function $(A) 
equals 

V=exp [-vcA/Io] , v=l+s/2.  (1 1)  

The wave front then clearly propagates according to the law 

which for the particular case s = 0 is the same as (5).  
Notwithstanding the complexity of the nonlinear Eqs. 

(9)  to ( 11 ), we have discovered that one can indicate from 
them a particular rather simple exact solution of the form 

Substitution of this expression into (9),  (10) gives an equa- 
tion for the self-similar part of the potential a({) 

252' [ ( E +  (Q') - exp [-2vQ] ) QN+52'] + (s+2vEQ1) 

xexp [-2vQ] =0, (14) 

whose solution is the function 

which satisfies the conditions a ( 1 )  = 0, a'( 1) = - 1 for 
the continuity of the vector potential ( 13) and the magnetic 
field at the wavefront. This enables us to find for any expo- 
nent s > - 4 all the wave characteristics. For the field com- 
ponents E,, B, and the plasma density n we find 

E , = - - = - -  1-g 
cat CR I-v ( v + I )  -'I ' 

B=--=-- a ( t )  c r c n  ( t )  , 
dr cR v+1 1 - v ( v f  I )  -'E ' ( I & \  

We show in Figs. la,b,c, plots of these quantities. The con- 
striction radius a ( t )  and the current I, in the main pinch 
vary as follows (Figs. ld,e) : 

a ( t )  =R[1-v - ' ( (R /a0) ' - I ) ] ,  

Ii ( t )  =Io (a0/R)'a ( t )  lR,  (17) 

so that the contriction breaks off, and the current is com- 
pletely shifted to the periphery, at the time 

t= tbr =T [ ( I + v )  ( ' + v ) l V -  11. (18) 

The quantity T is here given by Eq. ( 12). 
Is is useful to note that for any s > - 4 the constriction 

at the moment of breakoff moves with the AlfvCn velocity 
v, I , = fbr = - C, ,, and the field and density distributions 
( 16) are qualitatively similar. On the whole they are sim- 
plest for the choices = - 2 for which we have in the wave 
region a ( t )  < r < R ( t )  the relations 

In conclusion we emphasize that the applicability of the 
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FIG. 1. Evolution of the fields E, (a)  and B (b),  of the density n (c ) ,  of 
the radius R(t )  of the MSW and the boundary a ( ? )  of the constriction 
(d),  and also of the pinch current Z,(t) (e )  during the stage of the con- 
striction breakoff. The parameter of the curves is s. The dashed line is the 
regime (4) withaconstant plasmadensity. Weuse:E. = E, (r  = O,t), B, 
= 2Zo/cR, n, = nO(r = R ) ,  r. = at/cR,. 

single-fluid description requires that the ions be magnetized. 
Since the characteristic time for the development of the wave 
is of the order oft,,,, -a,,/cAo, the ions are magnetized un- 
der the condition 

aoasio aomoi - cAOIC t < t c h a r ~ B I  --=--- , aoi= (4ne2nolM)'h, 
CAO C & 

(20) 
where we use the notation 

~ = c ~ ~ / a ~ a ~ ~ = B ~ / 4 n  1 e 1 noao= (Rela,) ', Re= (Io/2n 1 e 1 cn,) '" 

(21 
Re is a parameter which is important in what follows in the 
fast "discharge" stage. The magnetization of the ions thus 
imposes a stringent condition on the quantity E:  &(cAO /c( 1. 
We consider in Appendix I a two-fluid model and show that 
the MSW equations ( 9 ) ,  ( l o )  are valid also for the weaker 
inequality E( 1. 

$3. FORMATION OF A NEAR-AXIAL ELECTRON BEAM 

In what follows we restrict ourselves to the case 
s = - 2, when no(r) During the evolution of the 
wave ( 16) the running number of particles included in the 
motion is, up to the moment of breakoff, equal to 

m i )  

Nl ( t )  =2x 5 dr rn (r, t )  (22) 
a(r) 

and is, by virtue of the equation of continuity, exactly equal 
to the running number of particles which are up to the same 
time "covered" by the front. 

R(1)  

N2 ( 1 )  =2n 5 dr rnO (r) . (23) 
no 

FIG. 2. Qualitative picture of the electron drift in the near-axial region of 
the contriction. The arrows indicate the direction of the drift. 

At the moment of the breakoff of the constriction, N, has 
reached the value Nl = N ,,,, = 2nn,a:. One checks easily 
that for t > t,,, if the MSW evolves further, this number is 
conserved whereas N, continues to grow! This could be 
called the "sticking" of an excess number 
SN(t) = N2(t) - N ,,,, of particles to the axis of the sys- 
tem. In the near-axial region, however, the nature of the 
particle motion changes drastically (Fig. 2)  and the radial 
current caused by the growth of SN(t) is changed into an 
axial current. 

As the basic factors giving rise to the axial motion of the 
particles we select the drift caused by the effective "shift in 
direction" of the magnetic field when a particle intersects the 
axis, and the acceleration of the particles oscillating near the 
axis by the axial electric field. For a particle initially incident 
on the axis along the radius, the non-uniform drift velocity is 
equal to /v, / = 2 Iu, I/n and clearly depends on the sign of 
the charge. When a field E, #O is present in the vicinity of 
the axis, in first instance the plasma electrons are acceler- 
ated, and furthermore almost freely, so that 

d 
-Vre m -- 
at 

IeI E,. 
m 

We estimate the current of the axial electron beam I,. The 
radial current (per unit length) I I" of the electrons which 
reach the vicinity of the axis is equal to 

and is proportional to the field E,, since nr/B = const be- 
cause the magnetic field is frozen in the plasma. At a certain 
time t', dN = I ;"( t f )dt  ' electrons with zero velocity v, 
reach the axis during a time dt '. 

We neglect the contribution of the non-uniform drift. 
Then by the instant t the electrons reach according to (24) a 
speed 

i 

Summing over all particles arriving at the axis by the instant 
t, we find the axial current 

i i 

where A(t) is the vector potential of the field 
(E, = - c-'dA /at) and E is the parameter (21 ). One can 
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generalize Eq. (26) also for relativistic electrons if instead of 
(24) we use for the determination of v, the "relativistic" 
formula 

For the beam current we now find instead of (26) 

lelAZ I, (t) = - [ l+  (I+ (eAlmc2) 2)%]-'1 
2 ~ m c  

which, as one should expect, goes over into the non-relativis- 
tic estimate (26) if leA I (mc2. 

54. INITIAL PHASE OF THE "DISCHARGE". 
ESTABLISHMENT OF THE RELATIVISTIC ELECTRON BEAM 
(REB) CURRENT 

As shown in $2, we have on the axis E, > 0 directly at 
the moment of the breakup of the constriction, so that the 
beam current (26) increases rapidly. The vector potential of 
the field, during the stage when the beam current grows, can 
be written in the form 

A=AO (r, t) +d (r, t) ,  

where 2 is the field of the axial current and A O the potential 
of the MSW ( 13), which is approximately equal to (we as- 
sumes= -2 ) .  

at the time immediately after the breakup. We put t = 0 at 
the time of the breakup of the constriction; R . = R (t,, ) is 
the radius of the MSW front at the time of the breakup. The 
structure of the field in the beam region will not be given in 
detail; we note that the beam occupies a region with a small 
radius a,. We describe the reaction of the plasma surround- 
ing the beam by Eqs. (A8) (see Appendix I). 

Since it is primarily the plasma electrons which respond 
to the change in the field we can as a first step neglect the 
effect of the "fast" field2 on the ions, putting G z A  O(r,t) in 
(A8). The ions continue "by inertia" the motion dictated by 
the MSW. For the vector potential 2 outside the beam we 
then get from (A.8) the linear equation 

OX= (er)-'A, r>aB (30) 

(the linearity is caused by the convenient choice 
no(r) a r-*). When E( 1 it is clear that the plasma strongly 
screens the electromagnetic field so that the phenomena de- 
scribed here evolve in the immediate vicinity of the pinch. 

The general solution of Eq. (30) in the form of a diver- 
gent electromagnetic wave can by found by a "fictitious-cur- 
rent" method similar to the one suggested in Ref. 5. Here we 
shall not give it, since the purely wave stage is very short- 
lived, t,,,, -a, /c, and after that time the field near the beam 
becomes quasi-stationary. We have thus approximately 

A (r, t) =a (t) (a.lr) "", (31) 

FIG. 3. Evolution of the reduced vector potential and of the axial electron 
current with time in the stage of the formation of the REB. We have put: 
I .  = mc3/21el~; l :xO(T) ,  2: x ( T ) ,  3: I , / I . .  

current" (31) with the beam current I ,  ( t )  through the con- 
dition 

We further take it into account that at the boundary of the 
beam the total vector potential is equal to 

210 c.40 
A (t) B-ctEo+a (t) , Eo = -- . 

cR. c 
Finally, combining Eqs. (28) and ( 3  1 )-(33) we get an alge- 
braic equation for the beam current 

where we write T = le 1 Eot /mc; x = - le lA /mc2 is the re- 
duced vector potential. The function x ( T) is shown in Fig. 3 
and illustrates the inductive delay of the growth of the cur- 
rent. 

At the start of the acceleration process when T z O  we 
have x ( T) z T and the beam current increases rapidly: 

By the time T- 1 the valuex - 1 is reached and the electrons 
become relativistic, I v, /c I z x  ( T) - 1. The front of the REB 
should thus be formed after a time of order 

t-t,c=mc/(elEo. (36) 

Subsequently, at 7b 1 we would havex( T) z T/2 so that the 
current I,, zmc3T/4&lel would continue to grow, while the 
field E, would be established at a level E, z E d 2 .  The resid- 
ual field is obviously due to the ion inertial motion which we 
postulated earlier to be given by the MSW. In fact, the REB 
evolution is accompanied by a growth in the r-component of 
the electrical field, which approximately equals (see (A.6) ) 

This field stops the ions and as a consequence switches off 
the main source-the radial drift of the plasma to the axis, 
which maintains the non-zero electron-accelerating field E, . 

Using the REB growth rate found above, we can esti- 
mate the time for the stopping of the ions, which determine 
the saturation of the REB current as follows 

where a ( t )  is an arbitrary function. We match the "external 
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If the beam radius is not too small, or to be more precise, if 
( a , / a o )  > ( m / M 2 )  ( c / cAo  13/4 weshall have t,,,, > t,,, and 
it is possible to form the REB. We shall not consider the 
concluding stages of the REB in more detail, the more so 
since in the infinite cylindrical model considered by us there 
are no factors which determines its duration. In a real case 
the constriction has a finite length L so that the beam elec- 
trons must "drain off' at least after a time At-L /c  after 
their flow to the axis stops. 

$5. ELECTROMAGNETIC RAREFACTION WAVE (EMW) 

The concluding "discharging" stage-the annihilation 
of the electrical field accumulated by the constriction which 
is breaking up-is described neglecting the fact that the size 
of the REB, the time it takes to generate it, and the radial 
stopping of the ions are all finite. The appearance of the REB 
then instantaneously "places" the field E, on the axis and 
the ions behind the discharge wavefront are immobile. 

Under those conditions the potential G in Eqs. (A.8) 
does not change with time behind the EMW front, 
G = G O ( r )  and, by virtue of the continuity at the front is 
equal to 

Go ( r )  =A0 ( r ,  t )  I t = r / c  

The time is reckoned here from the moment the EMW 
breaks away from the axis, so that its front corresponds to 
r  = ct. Differentiating the second equation of (A.8) with 
respect to the time we get for the field E, the wave equation 
( 3 0 )  

At the front r  = ct the wave ( 4 0 )  must be continuously 
transformed into the MSW field which is approximately 
constant because c, ( c  

We get the continuous solution of this problem by combin- 
ing the particular solutions E, = F ,  ( r / t )  and E, = tF , ( r / t )  
of Eq. ( 4 0 ) .  The result will be as follows: 

b=Arcch (c t l r )  . ( 4 2 )  

The profile of the "discharge" EMW ( 4 2 )  is shown in Fig. 4 .  
It is noteworthy that for some time the field close to the axis 
is positive, while for 

it changes sign. The solution ( 4 2 )  given here is valid only up 
to the moment t .  = R . /c=2.72aO/c,  when the fast wave 
reaches the MSW front. The further evolution of the field is 
qualitatively clear and reduces to the following. At the mo- 
ment when it reaches the MSW front the fast wave is partial- 
ly reflected (due to thejump in the derivative of E :) and the 
reflected wave after that reaches the vicinity of the axis, 
where it is again reflected and emitted. The non-stationary 

FIG. 4. Profile of the fast electromagnetic rarefaction wave in successive 
instants of time. The parameter of the curves is 7 = cr / R  . ; E = 0.2. 

phase lasts a time on the order of several times t .  and is 
terminated by the total vanishing of the field E, while the 
vector potential takes on a stationary value which is approxi- 
mately equal to 

This corresponds to a re-establishment of the total current of 
the pinch which is now distributed in the region 
r < R .  ~ 2 . 7 2 ~ ~ .  

$6. CONCLUSION 

The sequence of electromagnetic processes accompany- 
ing constriction breakup which we earlier called "a capaci- 
tor model," reduces to three basic phases that predict an 
MSW-REB-cEMW evolution scheme. This picture in 
turn is based on a general foundation-the assumption that 
the pinch is surrounded at the periphery by a cold plasma. 
This is in our model the only experimentally "unobservable" 
factor. The experiments so far guarantee only that the plas- 
ma density does not exceed no- l o i 5  to 1016 cmP3. 

The picture of the field evolution close to the constric- 
tion is consistent if the lengths of the characteristic times of 
the various stages of the development follow the sequence 
At REB < At EMW ( A t  M S W .  Using the estimates given in 
the text one can show that this is satisfied at least in the 
region a ,  5: 1 cm, I,- 1 MA, and no- l o i 5  cmP3. 

We emphasize, finally, that we have concentrated 
mainly on a model with a decreasing density of the peri- 
pheral plasma n O ( r )  ar r - 2  solely because it gave us the possi- 
bility to solve this example both in the first "charging" stage 
and in the second "discharging" stage. This case covers the 
main stages, but in details it may simplify the situation too 
much. In particular, the linear wave equation ( 4 0 )  ofthe fast 
phase does not contain a characteristic length. On the other 
hand, for other initial profiles, for instance, n O ( r )  = const, 
one can show that the waves may be localized in a region of 
size -Re (see ( 21  ) ). This fact may be important for a de- 
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scription of a temporal fine structure such as has been ob- 
served in experiments of REB current  oscillation^.^ 

In conclusion the authors feel that they should express 
their appreciation to V. D. Shafranov, V. V. Vikhrev, and V. 
M. Smirnov for discussions of this work and valuable re- 
marks. 

APPENDIX l 

"Two-potential" equations of the dynamics of a cold 
two-fluid plasma with inertialess electrons. 

We describe the two-fluid hydrodynamics in cylindrical 
geometry by the set of equations 

Here B=Ber and E , ,  are the field components, v , ,  are the 
velocity components, and the subscripts a = e,i label the 
particles (electrons, ions). 

We introduce the vector potential A(r,t) of the wave 
such that E, = - c-' aA /at, B = - dA /dr. The electron 
fluid is then connected with the field by the relations 

where the last of them is determined by the fact that the 
magnetic field is frozen into the electrons 

d B -(-)=a dt. rn, 

To describe the ion component of the plasma we introduce 
one more "potential" G(r,t) that defines the analogs of the 
"magnetic" field 26' = - aG /ar and "electric" field 
8, = - c-'dG /at. Clearly, these fields are related through 
an "induction law" 

We further require that 

and it is then easily verified that there is an analog of the 
"freezing-in theorem" 

and for the ion component we get 

The $(A) andx(G) in Eqs. (A.2), ( A S )  are arbitrary func- 
tions which can completely be determined by the state of the 
plasma ahead of the wavefront. 

Using the formulae for the densities ne,i we find from 
the Poisson equation the r-component of the electric field 

E, = 
4n(e\nOa0 $(A) -~ (G)  - _ $(A)-~(G)  (A.6) 

Bo 
9 r er 

where E is the parameter introduced in the text by Eq. (-21 ). 
Substituting Eqs. (A.2), (A.4), and (A.5) into the remain- 
ing Eqs. (A.l) gives us two equations for the potentials 
A(r,t) and G(r,t). We give here the result only for the parti- 
cular form of the profile n: = n4 = n0(adr) '  for the plasma 
density ahead of the front. We assume furthermore that 
B O = go = 210/cr. In that case $(A)  = A, x ( G )  = G, and 
we can write the field equations in the form 

a2 G-A CAO r I  
n r , t ~ = ( ~ r - m ) ~ = - F [ ~  9 

cAoZ G-A rB 
=--[I+(?) re2 aoBo -1, aoBo 

where the index "zero" indicates the initial values of quanti- 
ties taken at the pinch boundary. We neglect small correc- 
tions a (cA0 /cI2 on the right-hand side of (A.7) and we 
then get finally 

In the MSW stage we can neglect the fact that the veloc- 
ity of light is finite. We then find for ~ < l  from the second 
equation of (A.8) that GzA,  which yields, after substitu- 
tion into the first, the MSW equation (for s = - 2) used in 
52. Allowance for the fact that E is finite determines, as 
shown below. the fine structure of the wavefront. 

APPENDIX 11. STRUCTURE OF THE FRONT OF A SELF- 
SIMILAR MAGNETOSONIC WAVE 

We neglect in (A.8) the fact that the velocity of light is 
finite, replacing OA+ArA, and seek for a solution in the 
form 

where R ( t )  is the front of the MSW for E = 0 and u = cAo . 
Substitution into the original equation gives 

g=a-eZt (tar)', p2(l+g"lg'2)lgr= (tar)', (A. 10) 

where p = u/cAo is the Mach number of the wave. If we 
neglect in (A. 10) the fact that E is finite, the solution can be 
continued up to the front only whenp = 1 and then it equals 

as should be the case for a single-fluid MSW (52). For small 
but finite EX 1, Eq. (A. 11 ) holds up to terms m e 2  and 
(p2 - 1 ) 1 in the whole region 6 < 1 of the flow. We refine 
this solution near the "front" g=: 1. Here we put 

814 Sov. Phys. JETP 63 (4), April 1986 S. K. Zhdanov and B. A. Trubnikov 814 



E=l+~x, g(E)=e#(x), a(E)=ee ( x ) ,  ( A .  12) 

and then we get from Eqs. (A.10),  neglecting small terms 
a E( 1 

pZ 
p Z r ( ~ ) = # l s ( ~ )  (8-z) ,  tZ'(t)=i + -[I-l/HfZ ( x )  1, 

2 (A.13) 
where we used the fact that far from the "front," as x+w, 
we must have &' = g' = 1 in order that there be no field E, 
ahead of the wave. It is convenient to write ( A .  1 3 )  as follows 

( A .  14) 

We further restrict ourselves to the soliton approximation, 
putting ,u2z 1 ,  v=(l  - p ) / p 2 ,  and 171<1. We then have 
q=. 1 - q  + +v2 and we get for the function ~ ( x )  the equa- 
tion 

p2q"(x) =q (p2-1+S/~q) t  ( A .  1 5 )  

whose solution is a soliton of the form 

q(x)  = - ( ~ " 1 )  ch-%x, h=(p2-1)"/2p, x = ( E - I ) / E .  

(A.16) 

It is this solution which determines the structure of the "soli- 

ton precursor" of the MSW. In particular, we get for the field 
components 

210 Bz- 210 
cR ( t )  

- E* = - CR ( t )  "" 

( A .  17) 

Since 7 < 0, the precursor "condenses" the magnetic field. 
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