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The kinetics of a degenerate electron gas in the inversion channel on the vicinal surface of a 
many-valley semiconductor is considered (with Si as the example) in the region of classical 
magnetic fields. It is shown that the possession of many valleys by the initial crystal leads to 
selective scattering of two-dimensional electrons to various parts of their Fermi surface 
(contour). In the greater part of the region of weak magnetic fields (a, 7.4 1 the dependence of 
the resistance on the magnetic field differs substantially from quadratic. The agreement with 
the reported experiments, and possible new ones, are discussed. 

One of the attractive features of inversion channels on 
vicinal surfaces of semiconductors is the possibility of easily 
changing the Fermi-surface topology of quasi-two-dimen- 
sional carriers [it is more correct to speak in this case of a 
Fermi contour (FC) 1. The presence of a superlattice located 
on the periphery of the inversion layer (lateral superlattice) 
leads to a splitting of the energy spectrum of each transverse- 
quantization subband into a number of one-dimensional 
minibands separated by minigaps. By using the gate voltage 
to vary the density N, of the carriers in the channel, and 
accordingly the degree of occupancy of such minibands, it is 
possible to alter substantially the shape (and topology) of 
the FC, thereby affecting primarily the kinetic effects. 

We consider here the anomalous behavior of the magne- 
toresistance (MR) of a degenerate electron gas in an inver- 
sion channel on a high-index surface of a multivalley semi- 
conductor, when the Fermi energy gF lies near an 
intervalley minigap. This situation was investigated experi- 
mentally in Ref. 1 for n-channels on Si surfaces tilted - 10" 
away from the ( 100) face, in a magnetic field H- 3 kG and 
at a mobility p - lo4 V . sec and at helium temperatures. The 
obtained blip in the plot of the MR vs N, is attributed to the 
abrupt change of the shape of the FC when gF passes 
through the first intervalley minigap (for a round FC and an 
isotropic relaxation time, the magnetoresistance is small in 
terms of the parameter ( T / g F  ) 2  and is much less than the 
experimentally observed value). The magnetoconductance 
of electrons in a lateral superlattice was the subject of several 
theoretical papers.'."hey dealt, however, with the ultra- 
quantum case of a strong magnetic field, when the magnetic 
length is shorter than the period of the superlattice, and the 
role of the latter reduces to a broadening of the Landau levels 
into magnetic bands. We, conversely, consider the region of 
classical fields that do not alter the electron dispersion law, 
so that the Boltzmann kinetic equation can be used. This is 
precisely the situation realized in the experiments.' 

It will be shown that the MR produced is due not only 
to the obvious presence of a strong anisotropy of the carrier 
effective masses, but also to singularities in the scattering 
processes in the indicated system. Both factors are of equal 

importance for the onset of an anomalous field dependence 
of the MR in weak magnetic fields. From the procedural 
point of view, our problem is of interest because the kinetic 
equation with an integral collision term can be solved exact- 
ly. This circumstance is of fundamental importance, since 
the relaxation time leads, in view of the strong anisotropy of 
the scattering, to qualitatively incorrect results. 

To be definite, we shall consider hereafter the system 
experimentally realized in Ref. 1. In this case the lower mini- 
gap is produced by hybridization of the (100) and ( ~ o o )  
valleys, and the dispersion law in its vicinity (within the 
framework of the weak coupling model4) takes the form 

where m=0.19me is the electron effective mass, b is the ef- 
fective period of the superlattice ( x  is directed along its 
axis), n = 1 and 2 are the numbers of the miniband, and 2 1 V I 
is the width of the minigap ( I V I (fi2/mb 2 ) .  

Iffi/l V / is substantially smaller than the characteristic 
relaxation time 7 of the electrons," the expression for the 
MR can be obtained by solving the classical Boltzmann 
equation with allowance for the dispersion law ( 1 ). 

In the system considered, at low temperatures, the prin- 
cipal relaxation mechanism is scattering by charged impuri- 
ties. For two-dimensional degenerate electrons the screening 
radius is known to be of the order of the effective Bohr radius 
a,. In the important energy region we have kFa, (1, so that 
the impurity potential is effectively short-range relative to 
the period of the superlattice. On the other hand, the poten- 
tial is smooth relative to the period of the principal lattice. 
Taking these circumstances into account, we obtain for the 
scattering probability the expression 

wn,. (k, k') 

where k = p/fi,a = mb ' 1  V I/fi2g 1, and W,,is the probability 
of scattering of a plane wave by the same center. On the 
greater part of the FC (k,k '- l /b),  the value of W,,,. (k,kf) 
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FIG. 1. 

is proportional to 6 ( (  - 1 ) " + "'k, k :) (see Fig. 1 ), where 
B ( x )  is the step function. The reason is that the wave func- 
tions of the electron ' ( r )  and $LC ( r )  on the right and 
left halves of the FC preserve (to the extent that the weak- 
coupling parameter a is small) the connection with their 
valleys. The matrix element of the + L +  '++:-' scattering 
vanishes practically even upon integration over a region of 
the order of the original-crystal cell dimensions (owing to 
the fast oscillations of the Bloch factors that pertain to differ- 
ent lengths). Good intermixing of +'+' and $'-' is reached 
only in a narrow strip (of width -n /b )  near k, = 0, so that 
W = WJnn, inside the strip, and W = W0/2 for transitions 
between the strip and the remainder of the FC. 

The presence of the small parameter a in the expres- 
sions for W,,. (k,kf) and En (k )  leads to the appearance of 
an additional characteristic scale of the magnetic field 
(w,T-a1'*,wC = eH/mc). In the greater part of the weak- 
field region (a'', < w, T < 1 ) the dependence of the MR on 
the magnetic field has an anomalous character that is essen- 
tially determined by the indicated selectivity of the scatter- 
ing. 

The structure of the scattering probability (2)  ensures 
separability of the kernel of the integral term in the kinetic 
equation, so that a solution can be obtained in closed form. 
Indeed, Eq. (2) can be rewritten in the form 

+R ( k x )  Fi (k,') I}, ( 3 
where 

With this form of Wnn. (k,kl), the arrival terms in the kinetic 
equations for the distribution functionf; ( k )  ((i = 1, 2 is the 
index of the miniband) depend onf; ( k )  only via constants, 
viz.,integralsofthetypeJd W , ,  (k, ) f; (k).Thus, thefl ( k )  
are determined not by integrodifferential equations but by 
first-order linear partial differential equations. The con- 
stants mentioned above enter in the solutions of these equa- 
tions as parameters that are self-consistently determined lat- 
er. 

The kinetic equations are solved by the characteristics 
method. We transform to variables q, and %, where q, = w, t 
is the dimensionless time of electron motion along an equal- 
energy trajectory (with energy % ) in the magnetic field, and 
with periods @, ( g )  and @,(% ) for the first and second 
minibands. With this choice of variables, the function f, (p) 
and f2(q,) are periodic in q, with periods @, and @, respec- 
tively. The solutions are: 

Here E is the electric field and f 6 the derivative of the equi- 
librium Fermi distribution function with respect to the ener- 
gy. The functional Ji { ~ ( q , ) )  are defined as 

Naturally, if the Fermi level is lower than the bottom of the 
second miniband, we must put @,=O everywhere. The func- 
tion k :'(q,) is given by the solutions of the equations of 
electron motion in the magnetic field, and the expressions 
for the velocity u ( i )  [k, (q,) 1 follow from the dispersion law: 

The degree of influence of the magnetic field is characterized 
by the parameter 

A characteristic singularity of the distribution function (5 )  
is that besides the usual shift Ji {v) ink space, which depends 
on the carrier velocity, there exists an additional shift pro- 
portional to Ji {Fi ) determined by the scattering singulari- 
ties. This circumstance influences directly the field depen- 
dence of the resistance tensorpik (H). 

As noted above, the kinetic coefficients of the investi- 
gated system depend substantially on the location of the Fer- 
mi level. We confine ourselves to the most interesting energy 
region, near the minigap (E = ;( 8, ), J E I  - a ) .  The crite- 
rion of the weakness of the magnetic field (in the sense of the 
ability to expand p, in powers of 8) is smallness of the 
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parameter p in the functional (6) compared with the char- 
acteristic scales of the corresponding functions. At the same 
time, the functions in (5 )  contain the small parameterp. It 
can be shown that the desired criterion in the considered 
region will be p4a'/24 1. The procedure of expanding in 
powers of small p yields for the MR along the superlattice 
axis the "normal" quadratic field dependence: 

Here 

At all2 5P<1  one can no longer expand in powers of 8, 
although the period of motion over the equal-energy trajec- 
tory (in the first miniband) still exceeds the relaxation time. 
The field dependence of the MR differs thus substantially 
from quadratic in a wide range of intermediate weak fields. 

1ffi%a112 we can use the fact that in the first miniband 
the dispersion law ( 1) deviates from quadratic, and the 
functionsF,,, (k i" (p ) )  deviate from constants only during a 
small fraction of the period ( Ap /@, - a )  in the vicinity of 
k i1)(p) = 0, where the electron passes with practically no 
scattering. This circumstance allows us to put a = 0 in Eqs. 
( 1 )-(4). We then obtain in the entire region < oo 

(accurate to the following expression for the 
MR: 

i.e., in the region of intermediate weak fields < 1 we 
have for the MR A a const - J H  1 - ', and only a tp)  1 is the 
normal relation A a const - H -' reached. 

Note that the anomalous field dependence of the MR 
can be the result of abrupt singularities both in the dispersion 
law and in the scattering operator. (Simple models that illus- 
trate this statement are considered in the Appendix.) The 
concrete form of the A(H) dependence is governed in our 
case precisely by the selectivity of the scattering processes. 
Neglect of this selectivity (i.e., when the T approximation is 
used) leads to the qualitatively incorrect result A a IH I .  

It must be borne in mind that the described anomalies 
do not occur if the Fermi level is quite close to the saddle 
point: I E  + 2aI -a2. In this case the electron stays during 
the major part of the cyclotron period near k, = 0 (Ref. 5 ), 
so that the functions in expression ( 5 )  do not have two sub- 
stantially different scales. Accordingly, the quadratic law 
( 8 )  extends over the entirep4 1 region. 

We conclude by assessing the dependence of the MR on 
the position of the Fermi level (i.e., on the near-surface car- 
rier density), as determined by the parameter E. At I~l%a 
there is practically no MR. Indeed, at large negative &/a the 
FC consists of two separate parts with almost-isotropic dis- 
persion law. At large positive &/a the fraction of carriers 
with mass anisotropy is negligibly small, and in the constant 
G [Eq. ( 1 ) 1 the contributions of the minibands cancel one 
another accurate to -a/&. The anomalous MR of the first 
miniband [Eq. ( 12) 1 is cancelled out, according to the gen- 
eral form of the functionA. (p) ( 5 ) , by an analogous contri- 
bution from the second miniband. As a result, A -a/& in all 
the magnetic-field regions. In the region I E ~  -a,  the depen- 
dence of the MR on E is determined from Eqs. (10)-(12) 
through the energy dependences of the quantities fl, k F,vy) 
they contain. As e goes though the threshold value 
E = - 2a the MR resistance increases steeply with increas- 
ing E, owing to the behavior of a, (E) near the saddle point. 
In the gap region ( - 2a < E < 2a) ,  the MR depends weakly 
on E. At E = 2a the function undergoes a discontinuity fol- 
lowed by a change of slope. This is due to the jumplike ap- 
pearance of a finite @, when the second miniband becomes 
populated by carriers. 

This A( Z?, ) dependence agrees with that obtained in 
experiment' (at the parameters a --& $ 3 ~ 0 . 6 ) .  Direct ob- 
servation of an anomalous field dependence of the MR under 
the conditions of this experiment should be expected in mag- 
netic fields H- 1 to 5 kG. 

Note also the following circumstance. We have as- 
sumed the unrenormalized mass of the two-dimensional 
electrons to be isotropic (m, = my =m), whereas actually 
my /m, ~ c o s  8. This weak anisotropy does not alter sub- 
stantially our present results (or, incidentally, those in other 
cases4). Indeed, it can be easily shown that m should be 
replaced in the quantities a ,  2, and v, and by (my m, ) ' I2  in 
uy ; in the definition of P [see (9) 1, m is replaced by my. 
Under these transformations, Eqs. (5)-(7) and ( lo)-( 12) 
retain their form. 

The authors thank M. V. Entin for helpful discussions, 
and Z. D. Kvon for a discussion of the experimental possibi- 
lities. 

APPENDIX 

We consider two simple models that illustrate the influ- 
ence exerted on the kinetic coefficients by the sections where 
the dependence on k is strong in the dispersion law and in the 
scattering probability. 

1. Stepwise scattering. We assume the standard carrier 
dispersion law 8 ( k )  = fi2k '/2m, and take the scattering 
probability in a form that imitates valley selectivity: 

i.e., the electrons are scattered predominantly in their 
"own" half of k space. We write the kinetic equation for the 
distribution function f(p,  8 ) in terms of angle variables: 
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where q, is the polar angle in the k plane and f is the deriva- 
tive of the equilibrium Fermi distribution function with re- 
spect to energy. 

The departure term in the collision integral can be rep- 
resented in the form 

Zn 

and the arrival term in the form 
Zn 

where the constant A is defined as 

A = I dcpf(r) .  
-n/Z 

('45) 

Taking the introduced notation into account, we can rewrite 
(A2) in the form 

oc(d f /dq )  + ( ! I T )  =-eEvf,'+wA sgn (cos cp). (A6) 

After finding the solution of (A6), we determine A in 
self-consistent manner and, calculating then the resistivity 
tensorp, , we find thatp,, does not depend on H,p, is given 
by the usual formula and contains no scattering characteris- 
tics, and the MR along the x axis is given by 

where 

Thus, A(H) is an even function of the magnetic field, 
but has an essential singularity as H 4 :  

A ( H )  =[2w2lp(2Pln)/W0 (4w+n2Wo)] 

A ( H ) - + m  if W o 4 .  
2. Singular dispersion law. Let, conversely, the scatter- 

ing be isotropic and described by a relaxation time 7, and let 
the dispersion law be chosen in the form 

8 ( k )  =E2[ky2+ (k,-ko sgn k.)2]/2m (A101 

(this is the limiting case of the $ , (k)  dependence in Eq. ( 1 ) 
as a 4 ) .  At 8, > fi2k :/2m the FC constitutes two identi- 
cal circular arcs whose angle is 

which are symmetrically attached to each other. 
Solving in the usual manner the kinetic equation writ- 

ten in the relaxation-time approximation, with allowance for 
the dispersion law ( AlO), and calculating next the MR, we 
obtain, in particular, at .rr - y( 1 

'For order-of-magnitude estimates we use here and below the pheno- 
menological relaxation time T determined from the mobility in the ab- 
sence of a magnetic field. It will be shown that a correct description of 
the kinetics of the considered system is impossible in the T approxima- 
tion, and the kinetic equation must be solved with an integral collision 
term. 
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