
Photoinduced phase transitions in magnets 
E. L. Nagaev and A. I. Podel'shchikov 

(Submitted 30 August 1985) 
Zh. Eksp. Teor. Fiz. 90, 1360-1372 (April 1986) 

A theory of photoinduced order-disorder and order-order phase transitions is developed 
wherein these transitions are treated as cooperative phenomena in open systems. The situation 
considered is one in which the photoinduced increase in T, is due to the appearance of 
nonequilibrium carriers at traps. They unite the spins of the atoms near the traps into magnetic 
clusters. The effect arises because the spin polarization of the clusters is higher than that of the 
regular atoms of the crystal. In the mean field approximation the photoinduced second order 
transition is accompanied by discontinuities in the derivatives of the rate of entropy production 
and the carrier density with respect to temperature and with respect to the frequency and 
intensity of the light. An order-order transition can occur because of the accumulation of 
magnetic Frenkel excitons, forming regions of an altered magnetic phase. The accumulation of 
excitons is due to their mutual attraction and to the onset of a coherent excitonic state in which 
the exciton lifetime increases as the region of the excitonic phase grows in size. 

1. INTRODUCTION current carriers. To get a noticeable effect it is necessary to 

There are various mechanisms by which light affects 
the properties of magnets. In particular, circularly polarized 
light gives rise to a magnetization in a crystal because the 
photons transfer their angular momentum to the electrons, 
aligning their spins in a definite direction. Unpolarized light 
cannot, in and of itself, magnetize a crystal, but it can do so 
indirectly by changing the exchange interaction or the an- 
isotropy in a magnet. Of particular interest is the situation in 
which the light causes order-disorder or order-order phase 
transitions. 

A feature of photoinduced phase transitions is that they 
occur under thermodynamically nonequilibrium condi- 
tions. Therefore, they cannot be characterized by anomalies 
in the derivatives of the thermodynamic potential, and the 
well-developed theory of thermodynamically equilibrium 
phase transitions does not apply to them. Photoinduced 
phase transitions are actually an example of self-organiza- 
tion in nonequilibrium systems. 

One can speak of two main types of photoinduced phase 
transitions-proper and improper. The first type, in which 
light alters the characteristics of the transition, can also oc- 
cur in darkness. Light shifts the point of the order-disorder 
transition and can even convert it from continuous to dis- 
continuous. 

If the temperature can be assumed constant throughout 
the sample, then the rate ofentropy production~plays a role 
in nonequilibrium phase transitions that is analogous to the 
role of the entropy Sin  equilibrium transitions. Specifically, 
it turns out that at discontinuous phase transitions it is s 
itself that is discontinuous, while at continuous transitions 
the anomalous quantities are its derivatives with respect to 
temperature and with respect to the parameters of the sub- 
system whose energy is being converted into heat, i.e., with 
respect to the intensity and frequency of the light. This con- 
clusion was first reached1 on the basis of a model calculation 
done on the assumption that the increase in T, is caused by a 
superexchange between magnetic atoms due to photoexcited 

v 

have gaint photoelectron densities, of the order of 1 0 ' ~  
~ m - ~ ,  and there is as yet no experimental proof that such 
densities are possible in magnetic semiconductors. 

In the present paper we study a new and apparently 
more realistic mechanism for photoinduced magnetism, in- 
volving nonequilibrium current carriers trapped by defects. 
Normally the number of photoelectrons trapped by defects 
in photoconductors can be several orders of magnitude larg- 
er than the number of free photoelectrons. This effect is par- 
ticularly pronounced in semiconductors, where there are 
many attachment centers that trap carriers of only one sign. 
Until they return to the conduction or valence band, the 
trapped electrons or holes cannot migrate to a recombina- 
tion center and vanish. At low temperatures, the possibility 
that they will be ejected back into the band is small. There- 
fore, the occupancy of the attachment centers can be very 
high. 

Electrons at local centers influence the magnetic order- 
ing of the crystal in two ways. First, because of the electron- 
phonon interaction they cause a uniform deformation of the 
crystal, which is manifested in a change of the lattice con- 
stant. The change in the lattice constant in turn causes a 
change in the exchange integral between magnetic atoms 
throughout the crystal. A simple calculation shows that the 
relative increase in the Curie temperature due to the lattice 
deformation is 

where Jo is the exchange integral, a  is the lattice constant, C 
is the interaction constant of the electrons with acoustic 
phonons (the deformation potential), p is the mass of the 
unit cell, v is the speed of sound in the crystal, and N is the 
concentration of photoinduced defects. Assuming the values 
p = g, u = lo5 cm/sec, C = 10 eV, a  = 3.10V8 cm, 
and (a / Jo )  (dJdda( = 10, we obtain for N = lOI9 cm-3 the 
estimate tz0.01 (the radius of the electron orbit is assumed 
to be so small that no impurity band is formed). Thus we see 
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that this effect is amenable to experimental observation. 
Even more important, however, is the increase in Tc 

due to the second cause: the influence of the magnetic mo- 
ments of the defects on the magnetic ordering of the crystal. 
This effect can be understood qualitatively as follows. A con- 
duction electron trapped by a defect brings about a superex- 
change in its surroundings, uniting the moments of the 
atoms over which it is spread into a single defect moment. 
We assume that the superexchange through an electron 
within a cluster is much stronger than the direct exchange 
between magnetic atoms (the temperature T, at which the 
cluster is destroyed is much higher than T, ). Then the role 
of the electron reduces to keeping the moment of the cluster 
fixed in magnitude, with only its direction in space allowed 
to vary. If all the defect moments were oriented in the same 
direction (polarized defects) at all temperatures, no phase 
transition at all could occur in the ~ y s t e m . ~  In fact, the effect 
of the defects in this case is equivalent to the effect of an 
external magnetic field on the crystal. 

In the case under consideration here, the degree of po- 
larization of the defects goes to zero at the Curie point. Be- 
low this point, however, it is substantially higher than the 
degree of polarization of the regular atoms, and consequent- 
ly, by analogy with the case of polarized defects, there is a 
rise in the Curie point Tc of the entire crystal. The reason 
why the degree of polarization of the defects is higher than 
that of regular atoms is that the molecular field acting at the 
defects is approximately the same as at the regular atoms, 
but the moment of the defect is much larger than that of 
these atoms. For example, if the defect consists of a central 
atom and z nearest neighbors, then the defect moment Y is 
equal to (z + 1 )S (S is the magnitude of the spin of the 
atoms of the crystal), and the interaction energy of such a 
defect with the regular atoms surrounding it in the nearest- 
neighbor approximation is ED = - z(z - 1 ) J a r ,  where J 
is the exchange integral, P = Y z / ( z  + 1 ) is the projection 
of the defect moment (per atom of the defect) onto the mag- 
netization axis Z ,  and M is the average spin of the regular 
atoms interacting with the defect (in tlie expression for ED 
we have taken into account that each of the z atoms around 
the defect interacts with z - 1 regular atoms). The expres- 
sion for ED can be put in the form ED = - HD Y z ,  where 
HD = JQZ(Z - 1 ) / (z  + 1 ). For z )  1 the field HD in the ze- 
roth approximation in l/z is the same as the molecular field 
H ,  = J@Z acting on the regular atoms of the crystal (actu- 
ally the ratio HD/H,,, is still larger, since the magnetization 
of the regular atoms surrounding a defect is higher than that 
of the atoms far from the defect). The defect moment isz + 1 
times larger than the spin of a regular atom, and so the de- 
gree of polarization of a defect, equal to p z / Y ,  is much 
larger than the degree of polarization #/s of the regular 
atoms. Moreover, this mechanism of photoinduced magne- 
tism gives qualitatively the same anomalies in the rate of 
entropy production at the transition point as does the mech- 
anism of superexchange through photoelectrons. 

The second type of transition is when light puts the 
crystal in a state that is inaccessible under thermodynamic- 
ally equilibrium conditions. Such a transition is realized 
when the light generates long-lived nonmagnetic elementary 

excitations which join together into droplets of rather large 
size (e.g., Frenkel excitons at magnetic atoms). The magnet- 
ic properties of such regions can differ substantially from 
those of the unexcited crystal. The magnetic phase transition 
that occurs under illumination in this case is "improper." It 
is brought on by the appearance of mutually interacting ele- 
mentary excitations in the system. 

After the light is turned off, the crystal that it has excit- 
ed is generally not in a metastable state, since its state does 
not correspond to even a relative minimum of the thermody- 
namic potential. Nevertheless, the elementary excitations 
can turn out to be frozen for purely kinetic reasons, and then 
the magnetic structure arising under illumination can persist 
for a rather long time. In particular, as we shall show, the 
Frenkel excitons in the droplets can have an anomalously 
long lifetime because of the coherence of their states. Specifi- 
cally, the exciton lifetime in respect to multiphonon transi- 
tions increases exponentially with increasing number of 
atoms in the droplet. 

The experimental data on the photoinduced phase tran- 
sitions agree with the above ideas concerning the two types 
of transitions. The photoinduced increase in the magnetiza- 
tion was first observed3 in the ferromagnetic semiconductor 
EuS. Pulsed laser illumination of a crystal was found to give 
a photoinduced increase in the Curie temperature of - 0.1 
K, or - 1%. According to the classification proposed above, 
this is a proper photoinduced transition. 

A growth in the magnetization under relatively low- 
intensity illumination has also been observed4 in the ferro- 
magnetic semiconductor CdCr2Se4. The measurements were 
made at a temperature of 43 K, substantially lower than Tc 
( 130 K )  . The change in the magnetization corresponded to a 
shift in T, by 5 K. 

In both of those it was assumed that the effect 
is due to superexchange through photoelectrons, but the 
photoconductivity itself was not measured. However, since 
it is very difficult to achieve the gaint (in fact, prebreak- 
down) densities of photoelectrons necessary for such shifts 
in Tc ,  it is more likely that the shift in Tc here is due to 
photoelectrons trapped by defects, and the theory developed 
in the present paper gives a more satisfactory explanation of 
the results of Refs. 3 and 4. The anomalies in the rate of 
entropy production and in the density of photoelectrons 
have not been studied experimentally. 

Another example of a proper transition is the photoin- 
duced spin-reorientation observed in ErCrO, at tempera- 
tures below the point at which this transition occurs in dark- 
ness5 As to improper phase transitions, one such transition 
has apparently been observed6 in the antiferromagnetic insu- 
lator EuCrO,. Laser illumination of this magnet led to a 
change in the antiferromagnetic resonance spectrum, with a 
threshold in the pump power and duration. It was assumed6 
that the illumination caused the crystal to go from a metasta- 
ble state to the true ground state. However, if that were the 
case, the ground state could also be reached by other means, 
such as a very slow cooling. This was not seen in the experi- 
ment. It seems entirely justified to assume that Frenkel exci- 
tons arising at the Eu2+ ions coalesce into droplets having a 
very long lifetime. If the pump power is insufficiently high, 
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the excitons will not manage to coalesce into long-lived 
droplets during their relatively short lifetime and will there- 
fore annihilate. 

2. MODEL FOR PROPER PHOTOINDUCED PHASE 
TRANSITIONS 

In this section we shall assume that light illuminating a 
ferromagnetic semiconductor excites photoelectrons which 
then accumulate at attachment levels. After making the 
transition to an attachment level, a photoelectron causes a 
ferromagnetic coupling between the atoms in its ~ i c in i t y .~  
We assume that this coupling is so strong that the moments 
of all these atoms for T S  T, are bound into a single cluster 
characterized by a total moment. Further, since the lifetime 
of an electron at an attachment level is known to be large 
compared to the time required to establish thermodynamic 
equilibrium in the spin subsystem for a given number of oc- 
cupied attachment levels, the moments of the clusters are 
found in thermodynamic equilibrium with the moments of 
the regular atoms. The electrons in the conduction band, on 
the other hand, can have a lifetime in the band that is com- 
parable to the time required for the establishment of equilib- 
rium among the spins of the regular atoms, and they can 
therefore have a substantially nonequilibrium moment. 

Let us start with the description of free electrons. We 
assume that the width W of their conduction band is large 
compared to the energy AS of their exchange interaction 
with the localized spins, where A is the s-fexchange integral 
and S is the magnitude of the f spin. The character of the 
energy spectrum of a conduction electron near T, depends 
substantially on the radius r, of the exchange interaction 
between f spins. The spin correlation ofneighboring atoms is 
proportional to r; '. If r, is small, then these correlations are 
large, and the spins of the long-wavelength conduction elec- 
trons have a substantial tendency to align with the local mo- 
ment of the crystal. Thus these spins do not have a definite 
direction in space, but fluctuate together with the local mo- 
ment of the c ry~ ta l .~  On the other hand, if the exchange radi- 
us is large, then the correlators are small, and the alignment 
ofthe electron spin to the local moment is not important. We 
can therefore assume that the projection a of the electron 
spin is fixed. This can be seen from that fact that for large r, 
we obtain a small value for the imaginary part of the mass 
operator of an electron with quasimomentum k and spin 
projection a in the Born approximation for T> T, (Ref. 7)  : 

where tt is the inverse correlation radius. In what follows, for 
the sake of definiteness, we consider the case of large r,. The 
case of small r, will be the subject of a separate paper, where 
it will be seen that the results remain qualitatively the same 
as in the case of large r,. 

In accordance with what we have said, the electron 
spectrum can be assumed to be given by the simple expres- 
sion 

where E, is the electron energy in the absence of s -f ex- 
change. Formula ( 1 ) applies near T, if the characteristic 

electron energy is large compared to the energy associated 
with the alignment of the electron spin with local fluctu- 
ations, the latter being given7 by the expression 

To describe the state of the conduction electrons, one 
must know their distribution function. It is natural to as- 
sume that the time required for the electrons to diffuse from 
the level to which they are excited to the bottom of the con- 
duction band is small compared to the time for their capture 
to local levels. In this case one can assume that all the elec- 
trons are concentrated near the bottom of the conduction 
band. At sufficiently high densities the electrons can be re- 
garded as degenerate. We also assume, as is actually true in 
the majority of cases, that the holes interact with the local- 
ized moments much more weakly than do the electrons. By 
assumption, there are no attachment levels for holes. There- 
fore, the holes do not directly influence the magnetization of 
the crystal. 

The kinetic equation that determines the density nu of 
photoelectrons in the conduction band is of the form 

Here G, is the rate of generation of current carriers by light 
of frequency o; R is a coefficient which is proportional to the 
intensity of the light and depends on the details of the band 
structure; E, is the width of the optical gap in the paramag- 
netic region. The second term in ( 3 )  describes the spin relax- 
ation of the photoelectrons. The quantity E, denotes the 
thermodynamically equilibrium density of photoelectrons 
with spin projection a at a given average magnetization M 
of the crystal and a given photoelectron density 
n = nu + n -, . The term proportional to T; ' describes the 
capture of photoelectrons by recombination centers and 
their subsequent annihilation. The term proportional to T; ' 
describes the transition of the electron to the attachment 
level, N,  is the total density of such levels, and N is the 
density of occupied levels. The last term in (3 )  describes the 
inverse transitions from the attachment levels to the conduc- 
tion band. This expression contains the degree of polariza- 
tion x of the defect moments because the electron spin at a 
cluster is directed along the moment of the cluster. If the 
moment of the cluster makes an angle of y with the moment 
of the crystal, then according to the rules for spinor transfor- 
mations the probability for the transition of an electron from 
the cluster to a band with spin projection a i s  proportional to 
1/2 + acosy; after an averaging over all the defects, this 
gives the corresponding expression in ( 3 ) .  

The times T,, T,, and T, in ( 3 )  are all assumed to be 
independent of the magnetization of the crystal. This makes 
it possible to write the kinetic equation directly for the total 
density of electrons at the attachment levels: 

In accordance with our above assumption of a rapid relaxa- 
tion of the spins of the clusters formed around defects occu- 
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pied by electrons, we can assume that their moments have a 
thermodynamically equilibrium spatial distribution. 

Equation ( 3 )  assumes that the electron density is lower 
than the density of levels between the bottom of the corre- 
sponding subband of the conduction band and the level to 
which the transition occurs: 

where m* is the effective mass of the electrons (the effective 
mass of the holes is assumed to be much larger than that of 
the electrons). Restriction (6)  should be taken into account 
in analyzing Eqs. (3)-(5). 

3. THERMODYNAMIC AND SYNERGETIC POTENTIALS OF A 
CRYSTAL CONTAINING DEFECTS 

The average magnetization M of the crystal is deter- 
mined by minimizing an expression which has the structure 
(but not the meaning) of the density of the incomplete ther- 
modynamic potential (the "synergetic" potential) ' 

Here p, is the density of the incomplete thermodynamic po- 
tential of the crystal in the absence of photoexcitation, p, 
and p, describe the work performed on the crystal by the 
trapped and free electrons, respectively, during the estab- 
lishment of the average magnetization a;;f, is the change in 
the free energy of the system upon the appearance of a single 
trapped electron; E, is the change in the energy of the elec- 
tron gas upon the appearance of an electron with spin projec- 
tion u. Because all the electrons are concentrated near the 
bottom of the conduction band, we have, according to ( 1 ), 

While the sum of the first two terms in (7 )  can be justi- 
fied on the basis of equilibrium statistics, the third term is 
justified by proceeding from the equations of motion for the 
electron and spin operators with allowance for the interac- 
tion of the latter with the constant-temperature bath.' If the 
electrons in the crystal are in thermodynamic equilibrium (a  
doped semiconductor), expression (7 )  goes over completely 
to the thermodynamic potential of the system. 

Let us now turn to an evaluation of the defect contribu- 
tion to the free energy. The influence of polarized defects on 
the phase transition was studied with the aid of a phenomen- 
ological model in Ref. 8. However, the results of Ref. 8 can- 
not be applied directly to the case under study, since the 
correspondence between the phenomenological parameters 
used in that paper and the microscopic parameters of our 
problem has not been established, and we have therefore 
been unable to make quantitative estimates of the effect. 
Furthermore, the model of Ref. 8 is essentially the Ising 
model, while we are considering an isotropic magnet. Let us 
therefore do the analogous calculation, but on the basis of 
the microscopic Heisenberg model. 

In the molecular field approximation the influence of a 

defect on the spin subsystem of the regular atoms can be 
described by introducing a defect field conjugate to the order 
parameter (the magnetization M )  . The density of this field 
created at site f by a defect centered at ri is 

where J (  f - f '1 is the exchange integral for the spins of 
atoms f and f ', yi is the angle between the direction of the 
defect moment and the magnetization axis of the spin sub- 
system, rd is the radius of the region in which the defect 
electron is localized, and O ( x )  is the unit step function. 

To study the thermodynamics of a magnet containing 
defects, let us consider the free energy of the system in the 
continuum approximation, with allowance for the nonuni- 
form distribution of the magnetization over the volume of 
the crystal due to the presence of defects: 

The last term in ( 10) takes into account the configurational 
entropy of the defects in the case of classically large defect 
moments. I t  is found by summing over all the microscopic 
states corresponding to a given set of angles yi . For brevity, 
the expressions for the coefficient f i  and the Curie tempera- 
ture T,  of the ideal crystal in darkness are given for the case 
of classically large atomic spins S (the generalization to the 
quantum case is elementary). The integration in ( 10) is over 
the region outside the defects. However, the dimensions of 
the defects are assumed to be small compared to the dis- 
tances between them, and in all the subsequent calculations 
we keep only the terms of leading order in rd N ' I 3 .  

Since the case we are considering in this paper is one of 
defects whose moments can change their direction in space, 
to determine the equilibrium state of the system we must 
minimize free energy (10) with respect to both the order 
parameter M and the spin configurations of the defects speci- 
fied by the sets of angles yi. It is clear on physical grounds 
that the degree of polarization of the defects is proportional 
to the magnetization of the regular atoms, and their contri- 
bution to free energy ( 10) is therefore in fact quadratic in M. 
The defects under consideration here are thus analogous to 
the "random temperature" defects studied by Lebedev 
et u I . , ~  who found the same defect shift of the transition tem- 
perature that is obtained on the assumption that the order 
parameter is uniform along the sample. Therefore, in mini- 
mizing ( 10) we shall assume that the magnetization M( r )  is 
constant and equal to its volume averaged value M. 

Minimizing (10) with respect to %, we find 
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1 H=- 
cos yi 

I d~ hdi ( r )  

f f '  

where Vis the volume of the crystal. The quantity H has the 
meaning of the energy of the exchange interaction of the 
defect with a spin subsystem of unit magnetization in the 
case when the direction of their moments coincide. The pa- 
rameterx in ( l  l  ) is obviously the degree of spin polarization 
of the defects that appears in ( 3 ) .  By minimizing ( 10) with 
respect to cosy, with allowance for ( 1 1 ), we obtain the 
steady-state value of this parameter: 

cos yi=x=HM/3T. ( 1 2 )  

After substituting ( 12) into ( l o ) ,  we get an expression for 
the quantityf, appearing in ( 7 ) :  

f l  ( M )  =-H2WV6T. ( 1 3 )  

4. SHIFT OF THE CURIE POINT AND ANOMALIES IN THE 
RATE OF ENTROPY PRODUCTION 

The photoelectron contribution to p  near T, is an im- 
portant part of the term -M2,  since the latter goes to zero. 
However, the photoelectron contribution is not essential to 
the term - a 4 ,  which retains its normal value near T, .  We 
shall therefore evaluate the corrections to p, in ( 7 )  with 
allowance only for terms -a '. From ( 7 ) ,  ( 8 ) ,  and ( 13) we 
easily see that for this we must calculate the density N of 
localized photoelectrons in the zeroth approximation, while 
the difference n ,  - n ,  in the densities of free photoelectrons 
in the subbands must be calculated to first order of a .  

If we treat the gas of free photoelectrons as degenerate, 
we find from ( 3  ) - ( 5 )  with allowance for ( 12) 

The quantity n ,  in ( 14) is equal to the density of free photo- 
electrons for a = 0 .  

Substituting ( 1 4 )  and ( 1 5 )  into ( 7 ) ,  taking ( 8 )  and 
( 13) into account, and considering the explicit form ( 10) of 
the function p , , (M) ,  we can write the synergetic potential 
density as a function of 2 :  

From ( 16) we immediately get the Curie temperature and 
the temperature dependence of the magnetization of a ferro- 
magnet under illumination: 

The first and second terms in the curly brackets in ( 1 7 )  
describe the shifts of the Curie point due to defect-trapped 
and free photoelectrons, respectively. 

Let us now find the anomalies in the behavior of the rate 
of entropy productions at the phase transition. This quanti- 
ty, in neglect of radiative recombination of current carriers 
and with allowance for the fact that all the absorbed light 
energy is ultimately converted into heat, is given by the 
expression 

It has also been taken into account in ( 19) that in the steady 
state the rate of photon absorption is equal to the rate of 
recombination of free photoelectrons. It follows from ( 3 ) -  
( 5 )  that at small magnetizations, when A M ~ U  - E,, we can 
write 

8 ( M )  =S (0) [ I - U 2 W 2 / 8 ] ,  8 ( O ) = O ~ R / T T ~ .  ( 2 0 )  

Analysis of relations ( 1 4 ) ,  (171, ( 1 8 ) ,  and ( 2 0 )  shows that 
at the phase transition point the rate of entropy production 
itself is continuous, but the derivatives of s with respect to 
temperature and with respect to the intensity and frequency 
of the light have finite discontinuities with values given by 

where the symbol A denotes the change in the quantity upon 
the transition of the system from the unmagnetized to the 
magnetized state. According to ( 19) and ( 14),  the deriva- 
tives of the densities of free and trapped photoelectrons have 
similar anomalies. 

Relations ( 14)-( 17),  ( 2 0 ) ,  and ( 2 4 )  were obtained on 
the assumption that the densities of free photoelectrons, in 
the subbands do not reach the limiting values n,, ( 6 ) ,  i.e., 
that 

It is easy to obtain the corresponding formulas for the case in 
which the opposite inequality holds. Recognizing that in 
that case the free electron density is determined by ( 6 )  and 
that formulas ( 18) and ( 19) remain valid, we write the main 
results: 

N=N,=n, (n, /N,+zd/t , ) - ' ,  ( 2 3 )  
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Let us discuss these results for the Curie temperature of 
an illuminated ferromagnetic semiconductor. It follows 
from ( 17) and (25) that the relative change in Tc due to the 
localized photoelectrons is 

Since H in ( 11 ) is proportional to J,, this shift does not 
depend on the s-fexchange constant AS, unlike the shift due 
to the free electrons, which is described by the second terms 
in the curly brackets in ( 17) and (25) and is proportional to 
A 2S [recall that for free electrons ( 17) and (25 hold only 
at the Fermi energy of the photoelectrons, which is higher 
than Eo (2) 1. Physically, result (28) is perfectly clear: thes- 
f exchange unites the spins of the atoms within a defect into a 
single cluster, but outside the defect this exchange can be 
manifested only implicitly, through the size of the cluster it 
creates. 

Since AS> T, , in order for the shift of T, due to elec- 
trons localized at defects to be comparable to the shift due to 
free photoelectrons, the density of the first must be several 
order of magnitude higher than that of the second. As we 
have mentioned above, such a situation is completely realis- 
tic. 

According to ( 11 ), under the condition that the ex- 
change radius ro is larger than the defect dimension r, the 
quantity H/J$ is equal to the number of lattice atoms on 
which the defect-trapped electron is localized . Even if this 
number is ofthe order of the number of nearest neighbors, at 
the typical parameter values a = 5 ~ 1 0 - ~  cm and N = 1019 
cm-3 the quantity t, in (28) can reach 10%. 

If the exchange interaction is only between nearest- 
neighbor spins," then for r, >a the quantity H/J$ is pro- 
portional to the number of surface atoms of the defect. On 
the other hand, for a defect consisting of a central atom and 
its z nearest neighbors we have H/J$ = z - 1, and for a 
cubic lattice ( z  = 6) we get t ,  = 25Na3. This estimate agrees 
in order of magnitude with the estimate obtained when Tc is 
evaluated using the density of long-wavelength magnon lev- 
els for S = 1/2 in a crystal containing defects." 

5. LONG-LIVED COHERENT STATES 

In this section we consider the situation which might 
exist6 in EuCrO,, viz., that illumination produces Frenkel 
excitons between which there can be an attractive force" 
giving rise to exciton complexes and, if the lifetime is suffi- 
ciently long, an excitonic phase having magnetic properties 
different from those of the unexcited crystal. The formation 
of the excitonic phase is accompanied by a decrease in the 
light absorption, since the frequency of the light should 
agree with the frequency of the exciton, and after one exciton 
is excited at an atom a second exciton can no longer be excit- 
ed at it (optically induced transparency). Consequently, the 

phase transition should occur with a decrease in the rate of 
entropy generation. 

It is shown below that if the excition band is sufficiently 
wide, the probability of radiationless multiphonon annihila- 
tion of excitons acutally falls off exponentially with increas- 
ing size of the excitonic-phase region. The Hamiltonian of a 
system consisting of Frenkel excitons and phonons is written 
as a sum of the free exciton Hamiltonian Z e , ,  the free 
phonon Hamiltonian X p h ,  and the interaction Hamilto- 
nians XC and Xa between them, the first of which con- 
serves the total number of excitons and the second of which 
does not: 

= V z ag'ag + EB (h) ag+a.+h 

%.=N,-*Z A,. exp ( i qg )  Q,a.+a,. 

Here a: and a, are the Pauli exciton operators, g is the 
number of the atom, the subscripts q and s of the normal 
coordinate Q,, are the phonon quasimomentum and spectral 
branch, respectively, and N, is the number of unit cells in the 
crystal. The Hamiltonian Rph has the standard structure; 
the structure of Pa is unimportant. 

The role of the zero-order Hamiltonian is played by 
Xo = X - RD . In the adiabatic approximation its wave 
function is approximated by the expression (w, is the 
phonon frequency andp is the mass of the unit cell) 

9. 

(30) 

Qqi=-Aqa~q. - 2 p - l ~ . - ' ~  exp ( ipg)  ( 0 ,  ag+agB). 

Here is the exciton wave function, and x is a harmonic 
oscillator wave function. The probability of a transition 
from initial state i of Hamiltonian Z to final state f is gov- 
erned mainly by the exponential factor due to the change in 
the phonon equilibrium positions Oqs upon the transi- 
tion12-14: 

ort-exp [- ( e -EP) /2a2 ] ,  

where n, in the Bose distribution function for the phonons, 
and E is the difference of the exciton energies between the 
initial and final states. The structure of Za affects only the 
pre-exponential factor in the expression for op 

The sign of the exciton-exciton interaction in Ze, (29) 
corresponds to an attraction between excitons, which also 
gives rise to the excitonic phase. It is assumed that this phase 
in the initial state occupies a simply connected region 9 in 
which all L atoms are excited. In the final state one of the 
excitons within this region has vanished, i.e., an exciton hole 
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has appeared in it (the concept of a hole can be introduced 
not only for fermions but also for Pauli quasiparticles). 

Depending on the relationship between the width W, of 
the hole energy band, which according to (29) is proportion- 
al to B, and the maximum lattice-deformation energy E," 
(3  1 ) of the hole, a hole can be can be either localized at a 
definite atom or spread out over the whole excitonic region. 
For W, gE," the hole is localized at a definite atom (an 
anlog of a small-radius polaron). Then Qf(h)  = a, Qi, 
where Qi is the initial excitonic wave function and Qf (h)  is 
the wave function on localization of the hole at atom h. 
Then, according to (30) and ( 3  I ) ,  neither sQ,, nor wg will 
depend on the size of the excitonic region. 

A completely different situation occurs for W, ) E 2 ,  
when the hole moves over the entire excitonic region and the 
coherence of this motion is manifested in the presence of a 
wave vector k: 

(k) =z C h ( k )  a h m i .  

h€ b 

According to (30) and (32), the shift of the normal coordi- 
nate of the phonons is given by the expression 

According to ( 3  1 ), exciton annihilation for T)o,, is an 
activational process. Since &<Eg,  the activation energy is 
E, z&'/4EP. For T = 0, exciton annihilation occurs as a 
result of the quantum tunneling of the lattice from the initial 
to the final equilibrium position of its atoms. Regardless of 
the temperature and the nature of the q dependence of w, 
and A,, the annihilation probabiity (3  1 ) falls off with in- 
creasing L. This can be seen immediately from the fact that, 
according to (33), for L-cc all the sQ,, with q#O go to 
zero. For long-wavelength acoustic phonons, w,, and A,, 
are proportional to q. If this dependence is extrapolated to all 
q, the activation energy E, comes out to be proportional to 
L, i.e., the annihilation probability falls off exponentially 
with increasing L. It falls off even more rapidly for T-0: the 
argument of the exponential in ( 3  1 ) is proportional not to L 
but to L 2. A similar situation obtains for optical phonons if 
w,, and A,, are assumed to be independent of q. 

Conditions are more favorable for exciton annihilation 
near the surface of the excitonic region. The energy of an 
exciton hole on the surface of the region is different from the 
energy in the interior, and this can give rise to a surface band. 
We shall assume that the corresponding states are concen- 
trated in a surface layer having a thickness equal to the lat- 
tice constant. Taking 9 in (33) to mean a set 9, of surface 
atoms and L to be the number L, of such atoms, we arrive at 
the conclusion that the activation energy in this case is pro- 
portional to L,, i.e., to L 3'2. 

A possible reason6 for the absence of radiative annihila- 
tion of excitons is that the laser light does not directly excite 
long-lived excitons but some other high-frequency excitons, 
which are transformed through intermediate processes into 
low-frequency excitons for which radiative annihilation is 

forbidden. 
The discussion given above refers to ideal crystals. Let 

us now consider how defects influence the excitonic phase. It 
is well known that in ordinary semiconductors the recom- 
bination of nonequilibrium current carriers takes place 
through defects, since they lift the restriction of momentum 
conservation. It is for this reason that the lifetime of these 
carriers in the excitonic droplets in Ge and Si does not de- 
pend on the size of the droplets. However, in the case under 
consideration here, the excitonic phase is made up of Fren- 
kel excitons rather than Mott excitons. Therefore, the prop- 
erties of this phase are different from those of the excitonic 
droplets mentioned above. First, the excitons here are excit- 
ed at all the atoms within a certain region, and their concen- 
tration per atom of the semiconductor in the excitonic dro- 
plets remains small. Second, no metallization of the Frenkel 
excitons can occur here. 

To clarify the physical picture, let us imagine that the 
excitons are at first excited at all the atoms of the crystal. Let 
us also assume that the crystal contains defects near which 
the exciton energy is lower than at a large distance from 
them. In the spectrum of the exciton holes such defects cor- 
respond to local levels lying above the energy band of these 
elementary excitations. Annihilation of the exciton through 
local levels is not limited by quasimomentum conservation, 
and the annihilation probability is therefore independent of 
the dimensions of the excitonic region. 

Thus, after the light creating the excitons is turned off, 
the vanishing of the excitonic phase begins in the regions 
near defects, into which the excitons diffuse from other re- 
gions. But the diffusion of excitons is limited by the necessity 
of their escape from the excitonic phase, to which the exci- 
tons are bound by forces of attraction. Accordingly, the acti- 
vation energy for the annihilation of excitons increases by an 
amount of the order of the energy of cohesion of the excitons 
in the excitonic phase. Since this energy does not depend on 
the size of the excitonic region, this exciton annihilation 
channel is the most effective. The physical situation is remi- 
niscent of the evaporation of an evacuated liquid, and the 
process is also described by a diffusion equation with a mov- 
ing boundary. 

We note that a long lifetime of the excitonic phase can 
result not only from the specifics of the exciton-phonon in- 
teraction but also from some other effects. In any case, the 
above treatment demonstrates that it is possible in principle 
to have an excitonic phase with a long lifetime due to cooper- 
ative effects. 
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