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Oscillations of a periodic chain of Bloch lines in a domain wall are investigated and the band 
character of these oscillations is determined. Each Bloch line situated in a potential well moves 
along an ellipse and bends the domain wall. The overlap of these bands determines the 
principal mechanism of the interaction between Bloch lines. It predominates over the exchange 
interaction between the Bloch lines, which depends on their topological charge ("kink-kink" 
and "kink-antikink" interactions), if the domain wall bends over a length considerably 
exceeding the length of the Bloch line. The spectrum of a chain of Bloch lines is therefore 
independent of the relative signs of the charges on neighboring lines. The sign of the Bloch-line 
topological charge does influence, however, the direction of the force acting on the wall in a 
uniform magnetic field parallel to the magnetization in the subdomains. This can lead to 
resonance splitting for Bloch lines in such a field. 

1. INTRODUCTION 

Bloch lines (BL) are regions that separate subdomains 
with oppositely rotating magnetization M in domain walls 
(DW) of ferromagnetic materials. Investigations of static 
and dynamic properties of BL were initiated in view of their 
strong influence on magnetic bubble domains (BD).' They 
are now attracting greater interest in view of the prospects of 
using BL as information carriers in memory devices, with a 
possibility of appreciably increasing the information den- 

A Block line is also an interesting object of purely phys- 
ical research. It constitutes a topologically stable linear soli- 
ton having interesting dynamics. The equation of motion for 
the BL contains a gyrotropic force similar to the Magnus 
force for hydrodynamic vortices, since the BL has a topo- 
logical charge analogous to the circulation of a hydrody- 
namic vortex,'.' This circumstance influences substantially 
dynamics of BL, which can also be called magnetic vortices. 

Oscillations of a BL situated in a potential well made up 
by forces of magnetostatic origin and the DW elasticity have 
recently been in~estigated.~-' 

In the present paper the oscillation theory developed for 
one BL in Ref. 5 (see also Ref. 8 )  is generalized for the case 
of a regular chain of BL in DW. It is assumed that in the 
static position the DW coincides with the XZ plane (see Fig. 
1 below), and BL are parallel to the Z axis, along which the 
magnetization distribution is assumed to be uniform. Each 
BL is contained in its own potential well. Such a well can be 
due to the fields of magnetic charges on the surface of a film, 

FIG. 1 .  The shaded circles denote Bloch lines. The arrows indicate the 
directions of M in the central plane of the domain wall. 

or can be artificially formed by producing a periodic poten- 
tial relief on a film containing a DW with a BL. The latter 
turns out to be necessary for technical  application^.^ The 
result is a strictly periodic BL chain whose oscillation spec- 
trum should have a band structure, as was indeed found 
from a theoretical calculations. The principal mechanism 
for interaction between BL is the overlap of the DW bends 
produced by BL moving along an ellipse. Thus, while a static 
BL chain is one-dimensional, its motion is always at least 
two-dimensional. The "flexural" interaction considered in 
the present paper turns out to be much more substantial than 
the usually allowed-for interaction between one-dimension- 
a1 solitons, an interaction that manifests itself at distances on 
the order of their width and depends on the sign of the topo- 
logical charge (interaction of the "kink-kink" or "kink-anti- 
kink" type). The BL-oscillation spectrum obtained here is 
therefore independent of the sign alternation of the topologi- 
cal charges in the chain. This alternation, however, is impor- 
tant when one considers the response, likewise investigated 
in the present paper, of a BL chain to an alternating uniform 
magnetic field. The sign of the BL topological charge deter- 
mines the direction of the force acting on the BL in a uniform 
magnetic field parallel to the magnetization in the subdo- 
mains, and consequently also the direction of the bending of 
the DW near the BL. The frequency of the resonance of BL 
oscillations in such a field is therefore independent of the 
relative signs of the topological charges of neighboring BL. 
This can qualitatively explain the experimentally observed 
splitting of the resonant peak of oscillating BL.6 

We disregard in our investigation effects connected 
with the finite thickness of the film (along the Z axis) and 
leading to a "twisted" DW [Ref. 1, 58E). These effects call 
for a special analysis beyond the scope of the present paper. 
It can be assumed, however, that the fact that the sample is 
bounded in the direction of the BL can be effectively reduced 
to a mere renormalization of the parameters of the theory. 

No explicit account of the magnetostatic interaction 
was taken. It was taken partially into consideration, how- 
ever, by introducing in the theory the forces that return the 
DS and BL to their equilibrium positions. The magnitude of 
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these forces enters in our calculations via the phenomeno- 
logically specified parameters KO and K,. In addition, mag- 
netostatic charges can be produced on the DW if the wave 
vector of the bending wave has a component along the mag- 
netization in the domains. Such an interaction can lead to an 
effective increase of the DW elasticity, something that can 
also be taken roughly into account by altering the param- 
eters of our theory. Finally, there exists a long-range magne- 
tostatic interaction between charges that are produced on 
the BL themselves.' This interaction can compete with the 
flexural interaction considered in the present paper, and the 
relation between them will be estimated below. 

2. EQUATION OF MOTION OF A DOMAIN WALL WITH 
BLOCH LINES 

A chain of BL spaced L apart is shown in Fig. 1. The 
motion of the DW sections empty of BL is described on the 
basis of the linearized Slonczewski equations1 without dissi- 
pation: 

aMz Ko 007 
$=-yH.  sign [-I - y  + - v Z q ,  

a~ 2M 

where q ( x )  describes the DW displacement from the equi- 
librium position, q ( x )  is the angle between the magnetiza- 
tion direction in the central plane of the DW and the X axis, 
Hz is the field that moves the DW, KO is a parameter of a 
magnetostatic-origin, restoring force acting on the DW, y is 
the gyromagnetic ratio, a, = 4(AK,  ) ' I 2  is the DW surface 
energy density, and A, = ( A  / K ,  is the effective DW 
thickness, where A and K ,  are the parameters of the inho- 
mogeneous exchange and of the uniaxial anisotropy. Elimi- 
nation of $ yields 

q/Ao=-4nyZMH, s i g n [ a M , l d y ]  -2nyZKoq+2ny2uoVZq 

-y200AV'qIM2. (2)  

The theory expounded below presupposes that the charac- 
teristic wavelength IL,,!', = ( K o / a o ) 1 1 2  for flexural oscilla- 
tions is much larger than the BL width A = ( A  /2n-M 2 ,  ' I 2 .  

We can therefore neglect henceforth the term with the 
fourth spatial derivative in Eq. ( 2 ) .  

The action of the BL on the DW dynamics was taken 
into account by introducing in (2)  point forces concentrated 
on the BL, the latter regarded as infinitely thin. Thus, Eq. 
(2 )  takes the form 

To determineA we consider the law of BL 

where U is the effective free energy of the system, ri is the 
radius vector of the BL in thexy plane, and G is the gyrotro- 
py vector. We are interested only in one component 
G, = 2n-vi, where the BL topological charge is 

Inside the BL, the magnetization departs from the DW 
plane, and only there do we have My $0.  It can be stated for 
the situation shown in Fig. 1 that vi = 1 for the left-hand BL 
and vi = - 1 for the right. 

The static forces in the left-hand side of (5) take the 
form 

where H, is the field that propels the BL along the DW, K ,  is 
a parameter of the elastic restoring force; and f is the equi- 
librium position of the BL. It is recognized here that the 
force exerted on the BL by the DW is equal and opposite to 
the forceA applied to the DW. Substitution of ( 6 )  in ( 5 )  
yields the equations of motion of the BL: 
- (2nM/y)v i i i=2MH,Aon s ign [dM, (x i )  l d x ] + K ,  ( z i - z i ) ,  (7)  

( 2 n M l y )  vi&= fi. (8) 

Eliminating x i ,  we obtain forf;. the expression 

f i=-m,, , i i -  ( 4 n 2 M 2 / K , y )  Aovi s i g n [ a M , ( z i )  IaxIfi=,  ( 9 )  

where 
m,BL=4n2M2/y2K,  (10)  

is the DW mass localized on the BL. Substituting ( 9 )  in ( 3 )  
and ( 4 )  we ultimately obtain the equation of motion of a 
DW with a BL: 

and the boundary conditions for the equation of motion on 
DW sections free of BL, 

4n2MZ -- a 
K i  y A O V ~  s ign [d, M . ( r i )  ] ax, 

.. a Z q  aMz 
mDp-uo - + K ~ ~ = - ~ M H ,  sign [ -1 + fiS ( x - x i )  , ax2 ay 2 

where m,  = (2n-y2Ao) - ' is the Doring mass of the DW;A is 
the force exerted on the DW by a BL located at xi ; S ( x )  is the 
delta function. Integrating Eq. ( 3 )  over a small vicinity of 
the BL, we obtain the boundary conditions that must be sat- 
isfied by the solutions of the equation of motion (3 )  for DW 
sections containing no BL: 

The mass my,, specified by ( 10) was introduced in Ref. 
11. The parameter K1 in the equation for the BL mass char- 
acterizes the restoring force acting on the BL along the DW. 
No stipulation is made here concerning the origin of this 
force. It can be due to magnetostatic interaction, as in Ref. 
11, or result from an interaction between the BL and a defect 
or a potential relief artificially deposited on the film. The 
mass my,, must be distinguished from the BL mass intro- 
duced in Ref. 5 to describe BL motion along a DW. It should 
be noted that according to Ref. 5 the BL traces an ellipse as it 
oscillates. Such an elliptically polarized oscillation can be 
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described in terms of the displacements either across or 
along the DW, i.e., either excluding the coordinate xi from 
the equations of motion, as we did above, or excluding yi, as 
in Ref. 12. The value of the BL mass in the corresponding 
equation of motion depends on the description method. The 
equation of motion for the BL in terms of the displacement 
xi along the wall is obtained in the following manner: in 
accordance with Ref. 5, we obtain the solution for slow free 
oscillations of the DW near an individual BL [Eq. (11) 
without the right-hand side], when the Doring mass of the 
wall can be neglected, i.e., q = yi exp( - k Ix - xi I ) ,  where 
k = (Ko/uo) 'I2. Substituting this solution in the condition 
(4)  we obtain an expression for the forceA, which must next 
be substituted in (8) .  Elimination of the variablexi from the 
system (7)  and (8) yields the equation of motion for a BL 
with mass my,, , and by eliminating yi we obtain the equa- 
tion of motion in terms of the displacement xi : 

m x B L ~ i + K i ~ i = O ,  (13) 

Since the masses my,, and m,,, are connected ith motion of 
the BL across and along the wall, respectively, they can be 
correspondingly called the transverse and longitudinal 
masses. 

3. SPECTRUM OF BLOCH-LINE OSCILLATIONS IN A 
DOMAIN WALL 

Since a DW with BL is a periodic structure with period 
L, its oscillations are described by the Bloch functions for the 
DW displacements: 

q (x ,  x )  =eixru (x ,  x )  , (15) 

where u (x + L,x) = u (x,x), and (xL) is the phase shift of 
the oscillations of the neighboring BL. 

It follows from (8) the the displacements q(x,x) on the 
DW sections free of BL are described by a combination of 
two plane waves: 

q (x ,  X )  =e-iwt [ A  ( x )  e'kx+B ( x )  e- lkX],  (16) 

where k = [ (mDw2 - Ko)/ao] 'I2. Substitution of (16) in 
the boundary conditions ( 12) and ( 15) yields a dispersion 
equation that relates w and K: 

at w)G and 
'12 

ch { [-(a2-a') ] L }  -COS X L  
( J o  

o2 (,,2 -% '!r 

= ( 1  - )  s ~ { [ ~ ( @ ~ - c o ~ ) ]  L} (18) 
om2 (Jo 

at w>Z. Here G = (Ko/mD ) ' I2  is the gap in the spectrum of 
the flexural waves of the free DW, and the frequency 

o , 2 = 2 ( ~ 0 K O ) ' b  ( ~ 1 2 n M ) ~ K ,  (19) 

coincides with the oscillation frequency of an isolated BL if 

Zgo ,  (see Ref. 15). As might be expected, the oscillations 
of a DW with BL have a band spectrum. The lower limits of 
all but the lowest bands are described by the simple equation 

where n > 0 is the number of the band. These frequencies 
correspond to values kL = m. It can be seen from ( 17) that 
the corresponding values of x are 0 or T/L, and in each case 
this is the bottom of the band. 

We track now the variation of the oscillation spectrum 
of a BL chain as a function of the transverse BL mass (my,, 
can be verified by changing the parameter K,) .  We relate 
my,, to the DW Doring mass over the length between the 
BL. 

In the case my,, /mDL(l (i.e., in the case of large K, ), 
narrow forbidden gaps are present between the bands, and 
their width decreases with decrease of the parameter 
myBL/mDL. The corresponding spectrum is shown in Fig. 
2a). For high-number bands (such that w>G) the expres- 
sion for the relative width of the forbidden gap takes the 
simpler form A, w/w = mY,,/mDL. The frequency w, of the 
bottom of the lowest bands approaches the frequency i3 as 
myBL/mDL decreases and is described by the expression 
w2 = G2(1 - myBL/mDL). In the limit as mY, , /mDL4 
the spectrum of the oscillations becomes continuous with 
w>G, corresponding to a free DW without BL. 

In the opposite case myBL/mDL) 1 we have low values 
of K,. The BL pins the wall, each band is compressed 
towards its bottom, and the lowest band towards w = 0 (see 
Fig. 2b)." at m,,,/mDL) 1 we can derive for the relative 
widths of the high-number bands the simple relation 

Abo/o= (2/kL)2mDLlm,sL. 

Correct expressions for the lowest band are (Ibend = (ao/ 
K,) ' I 2 :  

-'b L \ '" 
..=a("")"(") (2"-, < 

~ V B L  'bend /bend 
In the limit as my,, /mDL-co the spectrum becomes strict- 
ly discrete. 

FIG. 2. 
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Generalizing the foregoing, we can draw the following 
conclusion: owing to the gyrotropy of the BL motion, if the 
BL can move quite freely along the DW (K, = 0)  the latter 
becomes pinned, and if the BL is absolutely pinned 
(K, = m ), on the contrary, the DW becomes free to move. 
Similar results were obtained in numerial experiments by 
Matsuyama and Konishi9 They have found that a potential 
relief superimposed on a film and restricting the motion of 
the BL along the DW increases substantially the mobility of 
the wall itself. 

We examine now the transformation of the spectrum 
when the distances between the BL are increased and when 
the BL becomes solitary. In the limit as L+m each band 
except the lowest one becomes compressed towards its bot- 
tom, and all the w, ( n  > 0)  tend simultaneously to the gap 
frequency, forming a quasicontinuum o > G. The solution of 
(11) takes the form q=q(O)exp ( -k lx l ) ,  where 
k = [ ( 1 - w2/G2)Ko/ao] 'I2. Thus the lower band of the 
spectrum corresponds at L+w to flexural DW oscillations 
localized on BL, in other words, to oscillations of an isolated 
BL. These oscillations are described by Eq. ( 13) for the case 
w(G, so that the wall banding produced by the BL motion 
can be treated statically. The condition w(i3 is met if the 
mass my,, is high enough compared with m,/k, i.e., with 
the Doring mass over the length l/k on which the bending of 
the DW takes place. While in this case the inertia of the DW 
over the length of the band (i.e., its kinetic energy) is of little 
importance, the longitudinal mass of the BL, on the con- 
trary, is connected with the energy accumulated in the bend 
domain wall. The fact that a DW is bent by a Bloch wall and 
the role of the bending in BL dynamics were noted also by 
Matsuyama and Konishi9 in a numerical modeling of BL 
motion. 

In the limit as L+m the width of the lowest band is 
given by 

Ab0=20 ,e -kL .  (23) 
It is important that the argument of the exponential contains 
k = 1/1,,,, , which is the reciprocal of the DW bend length, 
and not 1/A, where A is the BL width. Thus the interaction 
between the BL is not via exchange repulsion of the BL (tak- 
en into account by S lonc~ewski~~ in the determination of the 
equilibrium period of a BL structure in a DW), but in terms 
of the DW bend. 

The band width (23) determined by the bending inter- 
action can be compared with possible splitting of the natural 
oscillations of two BL as a result of their magnetostatic inter- 
action. The energy of the magnetostatic interaction of two 
BL separated by a distance L can be determined from an 
expression that follows from Eq. ( 1 ) of a paper by Khoden- 
kov13 for L exceeding significantly the film thickness h: 

E,=*8 (nA,.llh)2/L. (24) 
The coupled oscillations of two magnetostatically interac- 
tion BL are given by the following two equations, which are 
obtained by adding to Eq. ( 13) for each BL the interaction 
forces: . , , 1 a%,, , ,, 

where x, and x, are the displacements of the BL from the 
equilibrium positions. From (25) follows an expression for 
the magnetostatic splitting of the natural oscillations of the 
BL: 

The splitting (23) due to the bending interaction of the BL is 
substantial when kL- 1. To estimate the magnetostatic 
splitting at these distances we can substitute L z l/k in (26). 
We find from this that the magnetostatic splitting is small so 
long as 

Substituting the values A, = 5.6 - cm, M = 15.5 G, 
k = (K,/u,)"~ = 6.4. lo3 cm-l, and K,  = 160 erg/cm3 
used in the numerical experiment of Matsuyama and Koni- 
 hi,^ and assuming a film thickness h = lop4 cm, we obtain 
in the left-hand side of the inequality (27) the value -0.1. 

As already mentioned, our theory is valid so long as the 
length l/k = (a,/K,)"* of the DW bend exceeds the di- 
mension A of the Bloch line. The very same case was consid- 
ered recently by Zvezdin and Popkov14 for nonlinear motion 
of one BL. In the linear case their results agree with those of 
Ref. 5. They considered also nonlinear BL motion in the 
opposite limiting case A, (a,/K,) 'I2, when the BL causes 
no noticeable DW bending suppressed by a strong gradient 
of the field that fixes the DW position. In this case the main 
contribution to the longitudinal mass of the BL mass is simi- 
lar in its origin to the Doring mass for DW. On the other 
hand, the mass of gyrotropic origin becomes insignificant. 
Just such a case was considered earlier by Ignatchenko and 
Kim,15 who likewise investigated linear oscillations of a BL 
chain. 

4. INDUCED OSCILLATIONS OF A DOMAIN WALL WITH 
BLOCH LINES 

Owing to the gyrotropic character of the BL motion, 
the oscillations of DW with BL can be excited both by the 
field Hz and by the field H, . The BL oscillations are always 
elliptically polarized. 

As can be seen from Eq. ( 11 ), when an alternating field 
Hz acts on DW, the oscillations excited in the DW are indif- 
ferent with respect to the topological charge vi, although the 
latter determines the direction of the BL motion along the 
elliptic trajectory. In a uniform field H z ,  the BL oscillations 
are in phase if they have the same signs of vi . 

However, the force exerted on the BL by the uniform 
field Hz depends on the sign of the quantity 
vi sign [JMx (xi )/ax]. If this sign alternates along the BL 
chain, the uniform field Hz excites an oscillation with a wave 
number x = T/L corresponding to the boundary of the Bril- 
louin zone. If the DW contains sections with a different type 
of alternation of the topological charge vi, splitting of the 
peaks corresponding to the spectral bands will be observed in 
the spectrum oscillations excited by the uniform alternating 
field H, . Such a picture was qualitatively observed in Ref. 4 
(see Fig. 4 of that reference). A noticeable splitting occurs in 
this case in a field parallel to the magnetization in the subdo- 
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mains, in agreement with the theory. On the other hand, the 
splitting turns out to be of the same order as the value pre- 
dicted by Eq. (23), one assumes the values k = 0.3. lo3 
cm-' determined in Ref. 5 and Lz lo-* cm. A detailed 
quantitative comparison with experiment, however, is made 
difficult by the lack of exact values of the parameters of the 
theory. 

The results of our theory can be compared also with the 
numerical experiments of Matsayuma and K ~ n i s h i . ~  In 
these experiments they modeled the motion of a DW con- 
taining BL and acted upon by a magnetic-field step. This 
caused oscillations of a chain of BL situated in a potential 
relief. The frequencies of these oscillations can be compared 
with the values of the frequencies that follow from our ana- 
lytic theory, using the parameters cited in Ref. 9: 
A = 2.63 . lop7 erg/cm, A, = 5.6. cm, M = 15.5 G, 
KO = 7.76 . lo6 erg/cm4, K, = 164 erg/cm3, 
L = 5.28 . cm, and y = 1.83 lo7 g-'I2 cm'I2. Solv- 
ing Eq. ( 18) for these parameters on the bottom of the low- 
est band, where x = 0, we obtain a frequency 01/27 = 7.61 
MHz, 20% higher than the frequency 01/2,rr = 6.50 MHz 
obtained from the numerical experiment. These small dis- 
crepancies can be attributed to the fact that the numerical 
experiment was carried out for a rather dense BL chain, with 
spacing L = 4A, and account was taken of damping and 
nonlinear effects disregarded in the theory developed above. 

CONCLUSION 

We have constructed in this paper a theory for the oscil- 
lations of a regular chain of BL placed in potential wells. The 
Bloch lines execute oscillations, moving along elliptic orbits, 
and bending thereby the domain wall. The overlap of bends 
due to neighboring BL is the main mechanism of the interac- 
tion between the BL; this is confirmed by the agreement with 
the results of the numerical experiments. 

It must be emphasized that the applicability of our the- 
ory is not confined to materials with high quality factors, 
when the dimension A of the BL is substantially larger than 
the thickness A, of the DW. Although the Slonczewski equa- 
tions are usually derived for the case A>Ao, satisfaction of 

the last inequality is needed only if these equations are to be 
used inside the BL, where the structure of the wall differs 
strongly from that of a Bloch wall. In our theory, however, 
they are used only to describe small D W  oscillations in a 
region free of BL, where a sufficient condition for their valid- 
ity is that the characteristic length of these oscillations ex- 
ceed the domain-wall thickness. This can be varified by fol- 
lowing the derivation of Slonczewski's equations. Equation 
(5) for the BL, derived by Tiele,l0 from the Landau-Lifshitz 
equation (see also Ref. 1,§ 12F), can be used for any quality 
factor (i.e., at any ratio A/Ao). A low quality factor, how- 
ever, can decrease greatly the range of validity of our theory 
with respect to nonlinear effects. 
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