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A study is made of the properties of strongly correlated metals (containing heavy fermions) 
for which the degeneracy temperature is much less than the value corresponding to the plasma 
frequency. It  is shown that a semiquantum liquid model proposed for ,He by Andreev and 
Kosevich [JETP Lett. 28,556 ( 1978); Sov. Phys. JETP 50, 12 18 ( 1979) ] accounts for the 
temperature dependences of the thermodynamic and transport parameters above the 
degeneracy temperature. The conductivity is then of the order of the Mott minimum metallic 
value and the spin susceptibility behaves in accordance with the Curie-Weiss law. At low 
temperatures the cross section for the scattering of quasiparticles by impurities is much larger 
than atomic. The feasibility of applying these results to doped semiconductors near the metal- 
insulator transition is considered. 

1. There are metals (containing heavy fermions) for ,He is played by the Debye frequency.) 
which the effective mass m* deduced from the low-tempera- If the temperature Tof a metal is low compared with the 
ture specific heat is one or two orders of magnitude greater characteristic energy U of the interaction between neighbor- 
than the mass m of a "bare" electron," whereas the quantum ing electrons, the motion of such electrons is mainly in the 
degeneracy temperature defined by form of small oscillations about some equilibrium positions 

and such motion has a characteristic frequency R, much 
Td=prZ/2m*, pr= ( 3 d h 3 N )  'I' higher than the reciprocal of the lifetime r-' near this equi- 

( p ,  is the Fermi momentum and Nis the electron density) is librium position. If T4fiflp, these are basically zero-point 

anomalously low. For example, in the case of UPt,, UBe ,, oscillations and the delocalization time 
(Refs. 1 and 2), and CeAl, (Refs. 1 and 3 ), the degeneracy 
temperature is Td -- 10 K, whereas in the case of V203 at 
pressures p > 18 kbar, we have Td -- 60-600 K (Refs. 4-6). 
A review of experiments on heavy fermions is given in Ref. 1. 

The analogy with a different Fermi liquid (,He) has 
been invoked frequently (see, for example, Ref. 7 )  to ac- 
count for the thermodynamic properties of heavy fermions 
at temperatures T(Td. Our aim will be to show that this 
analogy helps to understand the universal transport and 
thermodynamic properties of heavy fermions at tempera- 
tures Td, as well as their anomalous transport properties 
at T-4 Td . 

The energy U = e2N 'I3 of the Coulomb interaction of 
electrons at interatomic distances and the plasma frequency 
fl, = (4ne2N /m) 'I2 defined in terms of the electron density 
N=: 10'' cm-, and the mass of bare electrons, differ several- 
fold for these compounds and are of the order of 1 eV. 

It therefore follows that the electron liquid in these 
compounds has two characteristic energies, T, and fin,, 
where 

The inequality (1)  allows us to consider such systems as 
close to electron crystallization. 

According to Frenkel,8 at moderately high tempera- 
tures the properties of liquids are close to those of solids. 
Castaing and NoziCres9 pointed out that an inequality simi- 
lar to Eq. ( 1) and the consequent proximity to crystalliza- 
tion apply also to liquid ,He. (The role of R, in the case of 

T=Q,-' exp [ (alh)']  BQ,-', h=a (hQ,/U)'" 

is governed by quantum tunneling. Here, A is the amplitude 
of zero-point electron oscillations and a = N -'I3. 

Over a time scale longer than T we can expect electrons 
to interchange places and the effects of indistinguishability 
of electrons, i.e., the exchange effects, to become important. 

In view of the finite value of T the energy indeterminacy 
fi/r governs the order of magnitude of Td, since Td can be 
regarded as the width of an allowed band associated with 
translational tunneling of a particle. The inequality ( 1 ) cor- 
responds to the condition R, 7% 1 of validity of the Frenkel 
liquid model. 

If the strong inequality 

is satisfied, electron crystallization takes place. The phase 
transition from an electron crystal to a Fermi liquid occurs 
when 

1. ( a c )  la,= [ t iQ,  (a , )  lU  ( a , )  1% 1 

and the question whether the inequality ( 1 ) is satisfied by 
the Fermi-liquid phase is related to a large numerical param- 
eter exp [a,/A (a, ) ] & 1 (a, is the critical distance between 
electrons at which the transition to a Winger crystal takes 
place). 

There are therefore two characteristic temperature in- 
tervals: T-4 Td and Td ( TgfiR,. 

2. If Tg  T,, we can expect the usual Fermi-liquid behav- 
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ior with an effective mass m* zfiT/a2>m. The spin suscepti- 
bility in this temperature range is also high: 

p2N paN 
xs.=-, 

h7-I T d  

where p is the Bohr magneton. This is due to the fact that 
indistinguishability of electrons is important at times longer 
than T and, therefore, the spin exchange energy is of the 
order of 101 zfi /7zTd.  

It is important to note that a strong rise of m* andx is 
associated with one large parameter rap SO that the densities 
of states calculated from the low-temperature measurements 
of these quantities should be of the same order of magni- 
t ~ d e . ~ '  

Finally, we shall estimate the residual conductivity of a 
Fermi liquid of heavy fermions in the limit T 4 .  We shall 
assume that impurities have a potential with a small radius 
of the order of a. The proximity of an electron liquid to a 
Wigner crystal results in a giant enhancement of the scatter- 
ing cross section a of a quasiparticle with an effective mass 
m* compared with a2 (in the approximation which is linear 
with respect to the electric field intensity the attainment of 
the Wigner crystal state is hindered by one impurity and we 
havea = a). 

We shall estimate a using reasoning similar to that in 
Ref. 8. A Fermi liquid moving relative to impurities at an 
average hydrodynamic velocity v experiences a force due to 
impurities and this force is of the order of the stokes force 
F = nagv, where n is the impurity concentration and 7 is the 
dynamic viscosity. 

Applying the Drude-Lorentz formula a = e2N/p,na, 
we find that a = qa/Np,. By analogy with Ref. 7, we can 
estimate g = (ax) - I ,  where 

is the electron mobility which in this case is related to the 
processes of electron tunneling to neighboring equilibrium 
positions. As a result, we obtain 

Therefore, the cross section is much larger than atomic 
and the distance at which an electron liquid differs from a 
Wigner crystal is of the order of a(m*/m) ' I 2 .  This behavior 
has been observed experimentally on many occasions (see, 
for example, Ref. 5 ) . 

3. We shall now consider the temperature range Td 
4 T<fiQP. The properties of heavy fermions in this tempera- 
ture range can be explained in a natural manner by the model 
of a semiquantum liquid proposed by Andreev and Kose- 
vich".12 to account for the high-temperature properties of 

3He and 4He. 
The inequality a T d  means that an electron liquid is 

nondegenerate and the effects associated with the indistin- 
guishability of electrons are unimportant. The electron spins 
are then disordered. On the other hand, the inequality 
T<fiSZp implies that at times shorter than T the electrons are 
still localized near certain equilibrium positions. As a result 
we obtain in a natural manner the Curie-Weiss susceptibility 

of localized moments ( C, z 1 ) : 

The contribution to the specific heat from the spin de- 
grees of freedom in the case whenpH4T is of the order of 

where C 2 z  1. In view of the condition T4fiSZp the orbital 
degrees of freedom are hardly excited and the main contribu- 
tion to the specific heat from these degrees of freedom is 
made by the mechanism proposed by Halperin, Anderson, 
and VarmaI3 to account for the low-temperature properties 
of glasses and used later by Andreev" to account for the 
properties of 3He and 4He. A more detailed analysis of the 
thermodynamic properties of 3He can be found in Ref. 14. 
Similar results have been recently obtained using the vari- 
ational method for solving the Hubbard model." 

Since there is no long range-order in an electron liquid 
and the equilibrium positions of electrons are distributed 
irregularly, over time intervals shorter than T such a liquid 
behaves like a glass. In the electron liquid under considera- 
tion all the barriers are permeable and the low concentration 
of excitations is ensured by the fact that the temperature is 
low compared with this characteristic scatter of energy at 
neighboring equilibrium positions, which is of the order of 
U. Consequently, the contribution to the specific heat made 
by the orbital degrees of freedom is of the order of YT (Ref. 
1 I) ,  where vzzN/Uis the density of states oftwo-level sys- 
tems which is assumed to be independent of energy at low 
excitation energies, and z 2 1. 

Consequently, the temperature dependence of the elec- 
tron specific heat Ca t  temperatures D Td is of the form 

Bearing in mind that at temperatures T < Td the specif- 
ic heat is CzNT/Td,  we reach the conclusion that C has a 
singularity at T z  Td in agreement with the experimental re- 
sults. ' The existence of such a singularity is associated with a 
significant contribution to the specific heat of the spin de- 
grees of freedom at T z  Td and a reduction in this contribu- 
tion on increase in temperature. The electron contribution to 
the specific heat at temperatures II, Td is difficult to observe 
because of the growing contribution of the phonon specific 
heat. 

At relatively low temperatures the temperature depen- 
dence of the electrical conductivity is governed by electron- 
electron  collision^.^ At temperatures T <  Td the mean free 
path in the case of electron-electron collisions is long in 
terms of the parameter Td/- 1 and it decreases on increase 
in temperature. 

However, at T=: Td, on the one hand, there is no small 
parameter which can ensure that the frequency of the e-e 
collisions is low and, on the other, the e-e collisions are as 
frequent as the normal e-e collisions. A natural estimate of 
the mean free path of an excitation at T z  Td is then provided 
by the electron-electron distance a, which gives the mini- 
mum metallic conductivity3' a,,, ze2/fia. 

A further increase in temperature alters little the degree 
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of disorder in the electron subsystem because the spin sub- 
system is completely disordered at T> T, and the orbital 
degrees of freedom are weakly excited in terms of the param- 
eter T/fifi, (1. This is the reason for the weak temperature 
dependence a( T )  in the range TB T,. A strong frequency 
dependence of the conductivity begins at &a > T, ( w  is the 
frequency of an electromagnetic field). 

Considerations similar to those given above lead to an 
estimate of the thermoelectric power amounting to 
I P I =: (a/e)ln2. 

We shall now consider the dependence of the specific 
heat Con a magnetic field. At temperatures T> T, this de- 
pendence is given by Eq. (4).  The specific heat decreases on 
increase in H and we have [C(O) - C(H)]/C(O) z 1 for 
pH=: T=: T,. 

At temperatures T<T, we must recall first of all that 
the model of an ideal Fermi gas with p H  2 Td predicts a 
reduction in the specific heat by a factor Z2l3. The Kondo 
effect (Kondo lattice) also reduces the specific heat on in- 
crease in H. The above model predicts an increase in C on 
rise ofH. In a situation when Eq. ( 1 ) is obeyed, the effective 
mass m* depends weakly on H, since T is governed primarily 
by single-particle subbarrier tunneling. The dependence of T 

on H is due to the fact that interchange of places by electrons 
with antiparallel spins becomes easier and this increases m* 
on increase in H. Similar behavior is exhibited also by the 
Hubbard model near the metal-insulator transition. l o  

It therefore follows from the above model that 

This is exactly the situation in UPt,. However, UBe,, and 
CeCu, behave in the opposite manner:AC also changes its 
sign at T- T,, but AC < 0 when T < T, and AC> 0 when 
T> T,. The reason for this behavior is not clear. 

4. We can see that the above model accounts for the 
following properties of strongly correlated metals. 

At low temperatures T(T,  these compounds exhibit 
the Fermi-liquid behavior. The specific heat depends linear- 
ly on temperature: C = yT, where y = m*p,/3fi3 is large. 
The Pauli magnetic susceptibility is also large and the densi- 
ties of states calculated from the specific heat and magnetic 
susceptibility are of the same order of magnitude. The con- 
ductivity is metallic, but the residual resistance remains high 
in the limit T-0, because the cross section for the scattering 
of quasiparticles by impurities is one or two orders of magni- 
tude greater than the atomic cross section. 

At high temperatures TB T, the susceptibility behaves 
in accordance with the Curie-Weiss law and the electrical 
conductivity is of the order of the minimum metallic value 
a,,, , varies slowly with temperature, and is independent of 
impurity concentration. Therefore, at temperatures T> T, 
these compounds demonstrate properties which distinguish 
them qualitatively from conventional metals. 

The electron specific heat rises on increase in Tin  the 
range T< T, but falls at T> T,. At high temperatures the 
specific heat is clearly governed by phonons. This behavior is 
not in conflict with the experimental results obtained on 

heavy fermions.' 
However, we cannot exclude the possibility that the se- 

miquantum liquid model can describe also doped (extrinsic) 
semiconductors at relatively high temperatures near the 
metal-insulator transition. 

Recent experiments indicateI6 that near the metal-insu- 
lator transition in semiconductors at temperatures close to 
the limit T-0 the conductivity does not exhibit a discontin- 
uity but vanishes smoothly, i.e., there is no minimum metal- 
lic conductivity effect. 

However, at relatively high temperatures T> To (To is 
usually of the order of 1 K )  there is frequently a temperature 
range where the conductivity is of the order of a,, and de- 
pends weakly both on temperature and on the proximity to 
the metal-insulator transition. In this temperature range the 
spin susceptibility exhibits the Curie-Weiss behavior." 
Therefore, at the metal-insulator transition a doped semi- 
conductor may exhibit a temperature range where all the 
transport and thermodynamic properties behave in the uni- 
versal manner discussed above. 

We shall conclude by noting that there is another class 
of compounds in which a strong electron-electron correla- 
tion results in a basically different type of behavior. These 
are substances of the Fe30, and V30, type (Ref. 6 )  which at 
low temperatures are electron Wigner  crystal^,^ i.e., which 
satisfy the strong inequality R(a. When temperature is in- 
creased, the electron subsystem melts and electrons become 
delocalized. Substances of this type clearly behave similarly 
to weak solutions of 3He in crystalline 4He when the energy 
of the interaction between electrons at interatomic distances 
is much greater than the width of an allowed band. Such 
behavior was investigated by Kagan and Maksimov.'' All 
the transport and thermodynamic properties then behave 
quite differently from those discussed in the present paper. 
The question of a transition between the two regimes is still 
to be considered. 

The author is grateful to F. A. Chudnovskii for suggest- 
ing this work and to A. F. Andreev, A. M. Dyugaev, K. A. 
Kikoin, A. E. Meierovich, D. E. Khmel'nitskii, D. I. 
KhomskiY, and B. I. Shklovskii for valuable discussions. 

"The mass of a bare electron is the mass associated with the single-particle 
band motion without allowance for the electron-electron interaction. 

"The model proposed here is in many respects similar to the model of 
Brinkman and Rice"' who used the variational method of Gutzwiller in 
the Hubbard model near the metal-insulator transition, and for this rea- 
son this model is valid only at the limit T 4 .  

"The author is aware that similar ideas have been put forward by A. M. 
Dyugaev in respect of the viscosity and thermal conductivity of 'He. 
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