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The l/f noise problem in the low-temperature limit and in the vicinity of the metal-dielectric 
transition point is reduced to the problem of the strong interaction between the long-range 
correlations of the diffusional and critical types. The physical causes of the enhancement of the 
frequency dependence of the current-current four-electron correlators as the metal-dielectric 
transition line is approached are elucidated. The critical-point exponent a is computed by the 
&-expansion method in d = 4 - E dimensions. 

The difficulties that must be overcome in order to find 
the general solution to the l/f noise problem is, for the pres- 
ent, even hard to imagine.Iv2 But the universality hypothesis 
suggests we look for the manifestations of similar phenome- 
na in those temperature and frequency regions and in those 
models for which we have well-developed methods of theo- 
retical investigations. In the present paper, as the simplest 
model, we choose the electron Fermi gas in which the parti- 
cles are acted upon by a weak short-range repulsive force, 
and undergo scattering on fixed spinless impurities. In the 
low-temperature limit this system has two relaxation times: 
the momentum relaxation time T, and the energy relaxation 
time T, . The problem is to find a way of computing the spec- 
tral composition of the noise in the frequency region 

l I / ~ . < ~ < ~ * = = m i n ( l / ~ ~ ,  TI, (1)  
where 1/r, - T 2 / ~ f  ( E ~  is the Fermi energy). 

We shall show that, within the framework of the model 
in question and in the broad frequency range ( 1 ), the spec- 
tral composition of the noise both in the case of a prescribed 
constant current and in the case of a prescribed constant 
voltage potential has the intrinsically singular character 

S.-UO-~. (2) 
Here a is a dimensionless and nonuniversal quantity, called 
the Hooge constant. The critical exponent a will be comput- 
ed in (d  = 4 - E )  -dimensional space both in the far-metallic 
phase and in the high-frequency region in the vicinity of the 
metal-dielectric transition point. The low-frequency region 
w( l/r,, where r4, is the electron-phase breaking time,3 re- 
mains outside the purview of our analysis, since the model 
under investigation has r4, - T ~ .  But in practice, in the low- 
temperature limit 1/rP % 1 / ~ , ,  which drastically narrows 
the region of applicability of our results. 

The critical exponent a, by the scheme of its computa- 
tion and by its physical meaning, resembles the correspond- 
ing exponent for the specific heat of a material in the vicinity 
of a second-order phase transition point. It is on this analogy 
that the above-mentioned universality hypothesis is based. 

In Sec. 1 of the present paper we derive the first, experi- 
mentally measurable terms of the expansion of the spectral 
correlator in powers of the constant current and in powers of 
the constant voltage potential. It turns out in this case that 
the corresponding expansion coefficients can be expressed in 
terms of four-current irreducible correlators differing in the 
signs of the frequencies of the single-particle electron Green 
functions. 

In Sec. 2 we show that the four-current correlators can 
be expressed in terms of two-current four-electron correla- 
tors, which in turn can be expressed in terms of scalar four- 
electron irreducible vertex parts. In this section we also write 
out for the scalar vertices a system of nonlinear equations 
that is valid in four-dimensional space, and is determined by 
the long-range interaction between the electronlike excita- 
tions. Section 3 is devotee to the computation of the expo- 
nent a in ( 4  - &)-dimensional space. To do this, we find the 
asymptotic solutions to the system of coupled (renormaliza- 
tion-group) equations obtained in Sec. 2. A n ~ + 1  extrapola- 
tion furnishes the results pertaining to three-dimensional 
space. In the far-metallic phase a = 5/8, and the singular 
character of the spectral density is governed by the interac- 
tion between the diffusional and Cooper4 excitations. As the 
transition point is approached in the direction of the dielec- 
tric phase, the a increases, and attains a value of unity, this 
being made possible by additional (critical) fluctuations of 
the metal order ~a rame te r ,~  which are important at fairly 
high frequencies in the vicinity of the transition point: 

l>>W/Eo>> 1 tl">'>l/gEo. (3  

Here T is a dimensionless quantity characterizing the prox- 
imity to the metal-dielectric transition point (hereafter: M- 
D transition); E~ is a characteristic energy not exceeding the 
reciprocal momentum relaxation time. In the region of lower 
frequencies 

4> I ~ ~ ' ~ > > W / & ~ > l / ~ e ~  (4)  

the critical vibrations are unimportant, so that we again find 
that a = 5/8-as before, in the E approximation linear in E. 

To conclude the paper, we present various estimates for 
the time T,, and discuss the question of the extrapolation of 
the results obtained into the region of extremely low fre- 
quencies and finite temperatures, where the l/f-type noise is 
usually observed. 

1. FORMULATION OF THE PROBLEM AND GENERAL 
RELATIONS 

The spectral density (2)  is the first nonvanishes term 
(attached to j2) of the expansion of the spectral function of 
the mean-square current-current correlator (j,jo ),, . For 
the purpose of using the thermodynamic diagrammatic tech- 
nique, it is convenient to express the quantum current-cur- 
rent correlator in terms of the retarded Q fo and advanced 
Q to correlators with the aid of the dissipation-fluctuation 
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theorem (see Ref. 6 )  : 

Using the principle of analytic continuation, we express the 
correlator difference in terms of the product of the retarded 
and advanced electron Green functions, which has to be 
averaged over the random disposition of the impurity 
centers. In the limit Iw 14 T the integration over the internal 
frequency is replaced by the product of w and the mean of the 
product of the Matsubara Green functions, one of which is 
taken at on = (2n + 1 )TT> 0 and the other at w, < 0. The 
proof of this assertion is entirely equivalent to the proof that 
is given in the computation of static conductivity (see, for 
example, Ref. 7 ) . 

In a system with a prescrnibed total current the Hamilto- 
nian has an additional term, jv, where v is a Gagrange multi- 
plier proportional to the mean current and j is the current- 
density operator in second quantization. E~panding each 
thermodynamic Green function in powers of jv up to second 
order, we obtain the required coefficient S, . Thus, the prob- 
lem reduces to that of computing the four-current and four- 
electron Green functions that do not break up into irreduci- 
ble two-electron correlators (Fig. 1 ). At each vertex in the 
diagrams in Figs. la, lb, and lc, in which the sign ( + or 
- ) of the frequency does not ch~nge  during the motion 

along an electron line, the operator j, represented by a cross, 
is scalar-multiplied by the average velocity v. The spectral 
density, ( 1 ), of interest to us is proportional to the sum of the 
four-current correlators without the factors v, vg, i.e., 

Here and below we do not write the vector indices a ,  8, y, 
and p; r, (w,,w,,w,,w,)r r, (1,2,3,4) is the four-current 
vertex, which is invariant under cyclic permutation of the 
indices: 

r j ( l ,  2, 3, 4)  =r,(2, 3, 4, 1) 
=rj(3, 4, 1, 2)=rj(4, 1, 2, 3). (7)  

The decisive role played by the four-current correlators and 
their scale invariance in the determination of l/f noise is 
pointed out in the review in Ref. 8. Usually, in experiment, it 
is not the mean current that is prescribed, but a constant 
potential difference. In this case the two-current spectral 

FIG. 1 .  The various types of current vertices, written in the zeroth-order 
approximation. 

density (5) should be expanded in powers of the constant 
electric field E. Slightly more complicated, but entirely simi- 
lar arguments lead to the conclusion that we must, in the 
low-frequency limit, average the sum of the three four-cur- 
rent correlators with the alternating-sign thermodynamic 
Green functions, as shown in Figs. Id, le, and If. Separating 
out the factor E, Ep ,  and using the cyclic-permutation in- 
variance, we obtain 

sBmr,(+-+-). (8)  
In the present paper we do not propose to compute the 

Hooge constant, i.e., the constant of proportionality 
between S, , Sj and Ti; the problem is to find the exponent a 
only. For this same reason, it is not necessary to compute the 
vertex parts Ti in the zeroth and first approximations in the 
number of critical and diffusion propagators (see below). 
Let us only note that in the zeroth approximation the cur- 
rent-current vertices are constants; in the first approxima- 
tion they contain the factor I/&, but these singularities are 
completely canceled out in the final formula (6).  

2. RENORMALIZATION-GROUP EQUATIONS FOR THE 
FOUR-VERTEX CORRELATORS 

In spite of the generality of the relations obtained be- 
low, all the specific intermediate calculations are carried out 
within the framework of the impurity model of the excitonic 
dielectric with a half-filled band. In doing this, we put in 
correspondence with each electron Green function a 2 x 2 
inverse matrix, i.e., we set 

Here lp is the electron energy, measured from the Fermi 
level, and satisfying two conditions: {, ={-,-parity; 
{, + = - Cp -full nesting. The functions 5 and A satisfy 
the self-consistency conditions9 

where rp is the relaxation time on the impurity centers, A is a 
constant quantity proportional to the antiferromagnetic or- 
der parameter, and w, = (2n + 1) rT .  In this case the pa- 
rameter r characterizing the proximity to the M-D transition 
point and entering into the relations ( 3 )  and (4)  is given by 
the difference r = 1 - 1 / ~ ,  A. The quantity 15, as a function 
of w in the vicinity of the M-D transition point, satisfies the 
same equation that the spontaneous moment as a function of 
the magnetic field satisfies: 

'GiS+a3=o. (11) 

Equation ( 1 l ) ,  which is in dimensionless variables, is the 
general self-consistency equation characterizing the M-D 
transition in the zeroth-order approximation of the self-con- 
sistent field. In this approximation the four-current correla- 
tors are computed with the aid of Fig. 1, in which we associ- 
ate with each line the Green function (9)  and with each 
cross an electron momentum p multiplied by the Pauli ma- 
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trix 7 L .  Any diagram with a dotted line encompassing a vec- 
tor vertex is, for simplicity, assumed to be equal to zero, it 
corresponding to a &function short-range potential. 

As in the theory of second-order phase transitions, we 
go beyond the self-consistent field method by taking into 
account the longitudinal and transverse order-parameter 
fluctuations. Corresponding to the transverse fluctuations in 
the model in question are the impurity-averaged pairs of 
electron lines with frequencies of opposite signs: diffusons in 
the case of momenta having the same direction and almost 
equal in magnitude and cooperons in the case of almost op- 
positely-directed electron momenta with different magni- 
tudes. The corresponding correlator has a singularity of the 
diffusional type4: 

Kg(q)=(Ial+DqZ)-'. (12) 
Here w  = w ,  + 0 2 ,  q2 = (p, + p2l2 and D is the diffusion 
coefficient. 

Corresponding to the longitudinal fluctuations are the 
impurity-averaged pairs of electron lines with low frequen- 
cies of the same sign both in the case of a small momentum 
transfer and in the case of a small total momentum. Accord- 
ing to Ref. 5, the corresponding correlator has a singularity 
of the Ornstein-Zernike type: 

K , ( q )  =(lz(+Ro2qZ)-'. (13) 

Here T is the dimensionless parameter characterizing the 
proximity to the M-D transition point: I T )  (1. According to 
Ref. 10, the correlation length Ro vanishes at points far from 
the M-D transition point. Near the transition point in the 
low-frequency region (4)  

D ~ R ~ ~ ( T ~ ' ~ ,  (14) 
so that the diffusional correlator has a stronger singularity 
for the same momenta q. 

In the high-frequency region (3) the dimensionless 
quantity 171 ' I 2  in ( 13) and ( 14) should be replaced by the 
metal order parameter 6 ,  which, according to ( lo ) ,  has in 
this region the order of magnitude 

(;jc"Oth. (15) 

In this case the diffusional and critical correlators have the 
same form: 

K,(q)-(lol'i3+Ro2qZ)-'. (16) 

Everywhere below we set Ro = 1 and f i  = 1, so that all the 
quantities having the dimensions of frequency or energy, 
namely, w  and 6 ,  are assumed to be measured in units of the 
reciprocal characteristic relaxation time l/r,, while the 
quantities having the dimensions of momentum are nondi- 
mensionalized by the quantity l/Ro. Let us, for the purpose 
of writing down the renormalizing-group equations, consid- 
er the diagrams for the four-current correlators, which, on 
the whole, have the form of a closed quadrangle, and are 
connected by a certain number of electron-line pairs, each of 
which gives either a critical or a diffusional long-range cor- 
relator. It is clear that an electron-line pair forming a ladder 
with zero momentum transfer or zero total momentum can- 
not terminate at a current vertex, since the first ladder dotted 
line adjoining it will always give a null result in the integra- 
tion over the momenta. For this reason, the electron-line 
pairs can end only at the so-called scalar vertices, i.e., those 
from which the electron lines necessarily diverge and go to 
different vertices: current or scalar. The direct computation 
of the diagrams connected by a single pair of electron lines in 
the end yields a nonsingular correction because of the small- 
ness of the triangular diagrams. For the relevant calcula- 
tions, see the Appendix in Ref. 10. 

In the next approximation, the four-current correlators 
split up into products of two-current four-electron vertices 
connected by two pairs of electrons lines, which, after being 
averaged, furnish correlators of the diffusional and critical 
types. 

Discarding the diagrams containing closed loops, we 
obtain the nine diagrams shown in Fig. 2. As can be seen 
from the figure, the four-current vertices can be expressed in 
terms of two types of two-current correlators: rCb'  ( 1,2,3,4) 
and P'b' ( 1,2,3,4) (see Figs. 3a and 3b). The Fcb' ( 1,2,3,4) 
vertex has current vertices at opposite corners. By defini- 
tion, the first line enters into a current vertex, but at the next 
scalar corner the electron momentum changes its direction. 
At the F b '  ( 1,2,3,4) vertex the line with the number 1 con- 
nects two neighboring current vertices, and the line with the 
number 3 goes around along the electron line through the 
current vertices in the negative direction. Below we shall 
also need the vertices f '" '  (1,2,3,4) and T'"' (1,2,3,4) de- 
picted in Figs. 3c and 3d, and differing from FCb' ( 1,2,3,4) 

FIG. 2. The relations between the four-current and 
two-current vertices, as written in second order 
perturbation theory. 

d e 
4 3  3 4 
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FIG. 3. All the possible two-current vertices, as written in zeroth-order 
perturbation theory. 

and Fb' (1,2,3,4) by the fact that the momentum has the 
"correct" direction for the given direction of traversal. Two 
symmetry relations follow immediately from the definition: 

rca) ( l ,  2, 3, 4 )  =Pa'(3, 4, 1, 2 )  ; 

f ( b ) ( i ,  2, 3, 4 )  =Fb) (4 ,  3, 2, 1). (17) 

Let us assume that the external frequencies are equal to zero, 
and we are on the M-D transition line ( r  = 0). Then it is 
convenient to introduce in the four-dimensional space the 
logarithmic variable 

t=ln ( p , l q ) ,  (18) 

wherep, is the maximum cutoff momentum and q is one of 
the external cutoff momenta, which, by definition, have the 
same order of magnitude ( q q ,  ). Under these assump- 
tions, the renormalization-group equations coincide with 
the parquet equations, which can be rederived without any 
difficulty with the aid of second-order perturbation theory: 

Here and below the products of the coefficients derived from 
a pair of critical correlators are denoted by round brackets; 
the product of the coefficients from two correlators of the 
diffusional type give a factor, which is represented by curly 
brackets. 

The four-current vertices, which determine the fluctu- 
ations (6) in the case of a prescribed current, contain two or 
three lines with frequencies of the same sign. In this case the 
greater part of the diagrams is determined by the product of 
the critical and Cooper correlators, which is indicated by the 
square brackets: 

It is clear that at points far from the transition point (in the 
metallic phase) the critical vibrations do not make any con- 
tribution, so that we should retain in the relations ( 19)-(21) 
only the terms enclosed in the curly brackets. Then in four- 
dimensional space 

Exactly the same situation obtains in the low-frequency re- 
gion (4).  In this region the cutoff, which depends on the 
frequency, arises only from the two correlators of the diffu- 
sional type (since, according to ( 14), 171 > w / D ) ;  therefore, 
the terms that remain when the differentiation with respect 
to the variable (22) (with a given diffusion coefficient ( 14) ) 
is performed are those enclosed in the curly brackets. 

Near the M-D transition point in the high-frequency 
region ( 3 ) all the singular correlators have one and the same 
form (16). Therefore, all the coefficients in the relations 
( 19)-(21) are equal, and the variable r depends on the fre- 
quency: 

Just as the four-current vertices can be expressed in 
terms of products of the two-current vertices so the latter 
can be expressed in terms of the products of themselves and 
the four-electron scalar vertices. The corresponding system 
of equations is derived in Ref. 10, so that here we limit our- 
selves to their graphical derivation. The equation for the 
two-current vertex F'"' can be obtained from Fig. 2i if the 
right current vertices are replaced by scalar vertices. The 
equation for the vertex p'b' has a similar form if the direc- 
tions of the third and fourth lines in the diagrams for F'"' 
are reversed: 

Here the dot denotes differentiation with respect to the vari- 
able (18) and the definition of the scalar vertex T, is clear 
from Fig. 4c. The equations for I"") can be obtained by 
discarding the two right current vertices in the diagrams in 

FIG. 4. All the possible scalar vertices, as written in the zeroth-order 
approximation. 
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Figs. 2a, 2b, 2f, and 2g and replacing them by scalar ones. 
The equations for l?'b) are obtained from the same diagrams 
by reversing the direction of the electron line connecting the 
neighboring scalar vertices: 

-r(a)(i, 2, 3, 4)=Pb)(1 ,  2, 2, 4)r2(2 ,  2, 3, 4) 

+r(b)( i ,  2, 4 ,4)  r2 (4,2,3,4) 
+rcb)(i, 2, 3, 4 )r3 (2 ,  3, 4, 3) 

+ F ~ ) ( I ,  2, I,  4 ) r 2 ( i ,  2, 3 4 ) ;  (25) 

-k(b)(f, 2, 3, 4) = F b ) ( l ,  2 ,2 ,4 )  rr (2, 3 ,4 ,2)  

+r(b)(i, 2,4,4) rk(2 ,3 ,4 ,  4) 

+r("'(l, 2, 3, 4)r3(3, 2, 3, 4) 

+Pb) ( l ,  2, 1, 4)I"(2, 3, 4, 1 ) .  

Thus, the two-current vertex parts satisfy a system of linear 
equations in which the scalar vertices act as nonlinear 
sources of metal-order-parameter fluctuations. The equa- 
tions (24) are independent of (25), so that the vertex parts 
l= ("sb )  play the role of linear sources for the vertex parts I?'") 
and . The corresponding homogeneous system of equa- 
tions of T'b) and l?,) has an independent subsystem in 
which the first index o is arbitrary and all the rest are identi- 
cal ( + or - ): 

The round brackets denote a cutoff at the value 

t=ln(p,lmax(1~1'", la \ '")) ,  
(27) 

r k ~ r k ( + + + + )  (----). 

If the second and fourth indices differ in sign, then the inde- 
pendent system is the system of equation for I"".b) (w,2,2,4) 
and l?("vb) (w,2,4,4,). The corresponding system of four ho- 
mogeneous equations has a cutoff at the value (27), and is 
investigated in the Appendix. But if the second and fourth 
indices coincide and the third differs from them in sign, then 
all the above-listed systems are independent of the following 
system: 

-t(qo, +-+) ={rCb)(a, +-+) r3(+-+-.)}, 
(28) 

The curly brackets denote the product of the diffusional cor- 
relators, which, at low frequencies, implies differentiation 
with respect to the variable (22). 

It must be noted that quite recently a similar problem 
(in the far-metallic region) was considered within the 
framework of perturbation theory. The first four nonvanish- 
ing-in the logarithmic approximation-diagrams for the 
four-current vertex parts, which in the present paper are 
shown in Figs. 2e, 2f, 2g, and 2h, were considered. Neglect- 
ing the logarithmic corrections to the two-current and scalar 
four-electron vertices, Kirkpatrik and Dorfman' ' obtain (in 
the same E approximation) a slightly smaller value for the 
critical exponent a(a = ~ / 2  instead of a = 5/8). 

3. COMPUTATION OF THE EXPONENT a 

Let us consider the solutions to the equations (24) and 
(25) in the asymptotic region t )  1. Using the scale invar- 
iance of the nonlinear equations for the scalar vertices, we 
shall seek their asymptotic solution in the form 

r k ( l ,  2, 3, 4)=yk(l ,  2, 3, 4)/t. (29) 

By substituting (29) and going over to the variable In t, we 
reduce the equations for the two-current vertices to a system 
of linear equations with constant coefficients y, ( 1,2,3,4), in 
terms of which we find all the eigenvalues. 

Near the transition point and in the region of high fre- 
quencies (3),  where all the correlators have one and the 
same form (16), and the logarithmic integrals are truncated 
at one and the same value ( 17), the coefficients y can be 
considered to be known from Ref. 10: 

r i ( l ,  2, 3, 4)=y2(l ,  2 ,3 ,  4)=-y3(l ,  2,3, 4) 

The dots denote either cyclic permutation of the indices, or 
the reversal of the sign of each of the frequencies. 

The substitution of (29) and (30) into the system (26) 
shows that this system does not possess growing solutions. 
Each of the remaining independent subsystems (24), (28), 
and (A. 1 ) necessarily has a linearly increasing solution. For 
(24) and (28) this follows directly from the symmetry rela- 
tion r, ( 1,3,2,4) = l?, (2,4,1,3 ) . For the remaining cases, see 
the Appendix. 

Substitution of the growing solutions into the relations 
(191421) leads in all the three cases to the growth of the 
four-current correlators according to the law 

t3=[ln(lal-"')I3, 

which in (4  - &)-dimensional space furnishes the value of 
the coefficient 

a=&. (31) 

(the l/f law). We should, of course, remember that this re- 
sult is valid in the narrow frequency range ( 3 )  and in the 
vicinity of the M-D transition point, where all the compo- 
nents of the metal order parameter fluctuate. In the lowest 
frequency region (4)  and in the vicinity of the M-D transi- 
tion point, and also at frequencies w< I/T, and in the metal- 
lic-phase region far from the transition point, to bring out 
the frequency dependence, we need only take account of 
those terms in the relations (19)-(21) which derive from 
the diffusional propagators: the cooperons and diffusons 
(enclosed in the curly brackets). The variable t then depends 
on the frequency (in accordance with the relation (22)) ,  
and the two-current vertices F(b) and I?(b) can be expressed 
in terms of the scalar vertices I?, with frequencies having 
alternating signs. Those corrections to these vertices which 
are determined by the product of correlators of the diffu- 
sional type derive from diagrams of the types shown in Figs. 
2e, 2f, 2g, and 2h. Replacing the current vertices in them by 
scalar ones, we obtain the following equations: 
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Here 

This system has the power-function solution (29) with the 
coefficients 

Substituting these coefficients into Eqs. (24) and (28), we 
obtain the two-current vertices in the region t ,  1, and for any 
w = o +  

The vertex f"b' ( + - + - ) turns out to be frquency in- 
dependent in the low-frequency region of interest to us, since 
the equation for this vertex does not contain diffusional cor- 
relators. 

Substitution of the asymptotic expansions (34) into the 
relations (24), (28), (19) and (20), (21) leads to the fol- 
lowing dependences in (4  - &)-dimensional space: 
I-,(+-+-) -rj(+++-) -rj(++--)mt6/~+o-58': ,351 

whence a = 5&/8. The formulas ( 3 1 ) and (35) solve the 
formulated problem in the linear approximation in E.  

4. DISCUSSION OF THE RESULTS 

It is not difficult to see that the cause of the singularity 
(2) in the low-frequency region (4) is the interaction of two 
or more diffusional modes arising from the Cooper channel. 
This fact can be seen directly from Fig. 2, where each of the 
nine singular diagrams has two pairs of electron lines with 
momenta having identical directions. From this we conclude 
that the proposed mechanism of l/f noise is shut off in the 
region of frequencies w < 1/r, at which the Cooper singular- 
ity is cut off. As has already been noted, the most severe 
limitation arises as a result of the scattering on the paramag- 
netic impurities,12 when the Cooper singularity and, hence, 
the singularity (2) are cut off at frequencies of the order of 
the reciprocal spin-flip relaxation time l / rs .  In this case 
r9, -7, and not less than four orders of magnitude greater 
than rp, SO that, according to ( 1 ), the region of applicability 
of the relation (2)  with a = 5/8 is fairly broad, but is bound- 
ed from below by frequencies of the order of l / rs .  

A magnetic field also gives rise to the cutoff effect. Ac- 
cording to Ref. 3, for mean free paths of the order of the 
average distance between the electrons, l/r, - e H /  
mc-2 X 107H (Oe-sec) - I .  The effect of the magnetic field 
turns out to be especially important at H >  mc/e;r,, begin- 
ning from which low-frequency "nonwhite" noise can be 
suppressed only by a magnetic field. 

The effect whereby the exponent a increases in the 
high-frequency region ( 3 1, but not at points too close to the 
M-D transition point is quite interesting. The latter limita- 

tion is due to an increase in the spin-flip scattering in the 
vicinity of the transition point. The problem of the computa- 
tion of the quantity T, , which enters into the inequalities (3) 
and (4), requires a special investigation. 

It is important to note that the above-obtained results 
are valid in the low-temperature region, where the long- 
range metal-order-parameter fluctuations are the only 
source of fluctuations. At finite temperatures and in the fre- 
quency region w < l /rE the metal-order-parameter fluctu- 
ations are nonlinearity coupled to the temperature fluctu- 
ations, and this could lead to an increase in the critical 
exponent a. 

APPENDIX 

Assuming that, in the equations (25 ), w, = w, #w,, 
and then assuming that w, # w, =_ w,, and discarding the last 
terms with the "external force" I?, we obtain 

-f ("'(1, 2, 2, 4) =J?(b'(l, 2, 2, 4) (Bz+B3) 

Here we have introduced the convenient notation (i.e., one 
that takes account of the symmetry relations, obtained by 
the present author in Ref. 10, for the scalar vertices in the 
case when w, #a,): 

B,=r2(2,2,2, 4)  =r2 (4, 2, 4, 4), 

~ ~ = r , ( 2 ,  2, 2, 4)=r3(2, 2, 4, 2) =r5(2, 4, 4, 4) 

=r5(4, 2, 4, 4), 

B,=r,(2, 4, 4, 4)=r,(2, 2, 4, 21, (A.2) 

c2=r2(2,  2, 4 ,4)  =r2 (4,2,2,4), 

cl=r,(2, 2, 4, 4)=r4(2, 4,4, 2). 

It is easy to verify that all the terms on the right-hand side 
(A. 1 ) derive from the product of one critical and one diffu- 
sional correlator; therefore, in the case of zero external mo- 
menta the dot denotes differentiation with respect to the 
variable 

The system (A. 1 ) admits of a symmetric and an antisymme- 
tric solution Zh* ) = J?"' (1,2,2,4) + I"")(1,2,4,4), so 
that, after setting Bk = bk /t and Ck = ck /t, we find without 
any difficulty the asymptotic form of the solutions in the 
region tS  1 : 

Za*=tb*, 

where 
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Near the M-D transition point, the coefficients bk and ck can 
be determined, using the results obtained in Ref. 10: 

bz=-b3=br=-~z=-~ '= l .  (A.5) 

Here the maximum value il = 1 corresponds to the com- 
pletely symmetric solution Z j, + ' = Z + ' a t to the system 
(A. 1 ). The remaining solutions, which belong to the eigen- 
value il = 1, furnish damped solutions. 
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