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A study is made of the scattering of light and extinction in nematic liquid crystals allowing for 
the optical anisotropy. An expression is obtained for the intensity of the scattered light and the 
geometries in which there is no scattering by fluctuations of the director are considered. An 
analysis is made of the case of a weak optical anisotropy. It is shown that in some cases a 
relatively weak anisotropy may result in a considerable redistribution of the intensity of the 
scattered light. Calculations are made of the extinction coefficient and it is shown that the 
coefficient of an extraordinary ray is several times higher than that of an ordinary ray, and it 
depends on the angle between the ray and the director. 

Nematic liquid crystals are uniaxial in respect of their 
optical properties. They differ from conventional (solid un- 
iaxial crystals by strong fluctuations of the director orienta- 
tion. The Fourier components of these fluctuations are of the 
same form as at a second-order phase transition point, which 
gives rise to a logarithmic divergence of the total scattering 
cross section at low angles. The extinction coefficient calcu- 
lated in the first approximation for the kernel of a polariza- 
tion operator depends on the dimensions of a sample.' 

Investigations of the scattering of light in the nematic 
phase are usually carried out in the approximation of an 
optically isotropic r n e d i ~ m . ~  However, the optical anisotro- 
py of the majority of nematic liquid crystals is not weak3 and 
it gives rise to a number of specific amounts. For example, an 
investigation of the extinction coefficient of nematic liquid 
crystals showed4 that after allowance for the optical anisot- 
ropy the divergence of the total scattering cross section dis- 
appears for certain geometries. The extinction coefficient 
found experimentally for MBBA liquid crystals in three 
such geometries was found to be 5-15 cm-', depending on 
the geometry. Moreover, the conditions of propagation of 
the ordinary and extaordinary rays were quite different. The 
ordinary ray passed along all directions without distortion, 
whereas the extraordinary ray was converted from coherent 
to diffuse as a result of a strong forward scattering and this 
was accompanied by a considerable broadening of the ray. 
The effect depended on the thickness of the sample and on 
the angle between the ray and the director." 

We shall carry out a general analysis of the propagation 
and scattering of light in a nematic phase. We shall show 
that, in particular, even a relatively weak optical anisotropy 
of the medium can cause considerable changes in the scatter- 
ing intensity for specific experimental geometries. 

In the case of the ordinary ray we shall show that the 
total scattering cross section is finite for any direction of 
propagation and we shall calculate the extinction coeffi- 
cient. We shall also show that in the case of the extraordin- 
ary ray the total cross section is finite only for the propaga- 
tion along or across the director. For all other directions the 
total scattering cross section still diverges. The extinction 
coefficient can then be calculated in a single-loop approxi- 
mation for the kernel of a polarization operator allowing for 

the finite size of the sample. It exhibits a strong angular de- 
pendence and is approximately an order of magnitude higher 
than the extinction coefficient of the ordinary ray. 

1. GREEN FUNCTION OF AN ELECTROMAGNETIC FIELD IN 
AN ANISOTROPIC MEDIUM 

Since strong fluctuations of the orientation of the direc- 
tor should result in significant scattering losses, a correct 
description of the propagation and scattering of light in ne- 
matic liquid crystals should allow not only for the optical 
anisotropy of the scattering medium, but also for the influ- 
ence of fluctuations of the permittivity on the propagation of 
light. 

It is known6 that a consistent allowance for the correla- 
tion effects in the problem of propagation of light makes the 
effective permittivity E of the medium a nonlocal quantity: 

eaB (a, k) =east  (a, k) + t e a /  (a, k), (1)  

where k is the wave vector; o is the angular frequency; 2' and 
C" are real tensors. If we assume that the intrinsic absorption 
by the medium is weak, then the term E" in Eq. ( 1) describes 
the wave attenuation which is entirely due to the light losses 
as a result of the scattering, i.e., it is governed by the fluctu- 
ation contribution to &. In the case of non gyrotropic media, 
which include nematic liquid crystals, the tensors 2' and 
are by definition symmetric. 

In the case of a homogeneous medium it follows from 
the system of the Maxwell equations that 

where sasp = k ,  kp  / k  2; c is the velocity of light in vacuum; 
E is the electric field intensity; P is the polarization vector. 
We shall define the Green function Ta8 of an electromagnet- 
ic field in the medium by 

Here, the factor 47~  is introiuced for convenience in further 
calculations. We can find T simply by inverting the matrix 
on the left-hand side of Eq. ( 2 ) .  If the condition det e#O is 
satisfied, then Td can be represented in the form 
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where 

Here D"' are the eigenvectors of a two-dimensional sym- 
metric tensor of second rank considered in a plane or- 
thogonal to the vector s: 

where p,,, are the corresponding eigenvalues; i = 1, 2. 4 
complete convolution of the vecttrs f, g, with the tensor t 
will be described by fa ta@gS = (ftg). Lax and Nelson7 ob- 
tained Eq. (4) for the case when E& = E, ( w  ); this formula 
also follows from the results of Ginzburg8 on the emission of 
radiation by a charge in an anisotropic medium. 

It should be noted that if s is a real vector, then in the 
uniaxial case when there is a preferred vector n, the vectors 
D'" in Eq. (6) are real and one of them is coplanar with the 
vectors s and n, whereas the other is orthogonal to these 
 vector^.^ 

The attenuation coefficient for the intensity of a plant 
wave with a wave vector k = k' + ik" is 

z (k) --2k", (7) 

where k is a root of the dispersion equation 

The factor (&s) in Eq. (8) corresponds to longitudinal 
waves, which we henceforward will ignore. 

If we assume that the inequality bn<b' is satisfied in Eq. 
( 1 ), then in the first order with respect to b" we can describe 
the quantity k  :, in Eq. (5)  by1' 

where 

The index "0" (used as a subscript or superscript) means 
that the corresponding quantity in Eqs. (5) and ( 10) is cal- 
culated for E" = 0. Then, 82' is the angle between Ef' and 
Df) = zoE?'. Equations (7) and (8) yield the following 
expression for the attenuation coefficients of normal waves 
in the investigated medium: 

Here, x is the angle between k' and k". In the case of homo- 
geneous waves, which we shall henceforth consider, we have 
k l ( ( k  " and cosx = 1. 

In the case of a uniaxial medium we find that neglect of 

the fluctuation contribution gives the following expression 
for the real part of bl.* 

In this case, we have 

[snl 
eo(l)P - (1)- 8811 cos 9-n(ell cosZ $+el sin' g )  

sin I# ' eo 
sin $ (ellz cosa Q+elz sinz g)  ' 

ell cosa Q+E, sina 9 
cos 80 ("1 1, cos 6;') = 

(el: cosa $+elZ sinZ g) '" ~ ( 1 3 )  

cos $=sn. 

Here, E, = E, ,  - E~ ,where E,, and E, are the permittivities 
along and across n. It is known that the solutions of the 
dispersion equation (8) are then k,,, and k,,, representing 
the ordinary and extraordinary waves, and we shall use the 
indices (1) and (2) (superscripts or subscripts) to identify 
these waves. 

The problem of light scattering can be solved if we have 
an explicit expf;ession for TUB (o, R) at large distances R. We 
can calculate T conveniently in the coordinate representa- 
tion using the stationary phase method. A consistent appli- 
cation of this method to the Green fuction of an anisotropic 
medium, allowing for the curvature of the wave-vector sur- 
face at the stationary phase point was made in Ref. 10. It was 
found that in the case of a uniaxial medium the required 
expression is 

a 
1 0  (0 (4) 

Tap (a, R) a - (; )' n:(i) 
eoa eoe fo(i) exp (ik!:' R) , 

4nR i-I (ey)loe(:)) 

( 14) 
where 

are the vectors of the steady-state phase of the ordinary and 
extraordinary waves, and 

All the quantities n,,,, , ec) ,  fo,, in Eq. ( 16) are calculated 
for the appropriate vector of the steady-state phase k = kj:', 
where i = l ,2 .  

2. SCATTERING OF LIGHT IN A NEMATIC LIQUID CRYSTAL 
WITH AN OPTICAL ANISOTROPY 

The scattering of light occurs on fluctuations of the per- 
mittivity tensor SE,~. Using Eq. ( 14), we can readily obtain 
the expression for the intensity of light scattered in a uniaxial 
anisotropic meidurnlo: 

2 

where I"' is the intensity (modulus of the Poynting vector) 
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of the incident light; V is the scattering volume; R/R is the 
direction toward an observation point separated from the 
scattering volume by a distance R) V'I3; a and f3 are the 
polarizations of the incident and scattered light which are 
not summed in Eq. ( 17 ); q(i, j )  = k,, j )  - kici, , where 
k,, j ,  = k(R/R ) is the wave vector of the scattered light and 
k,,(, is the wave vector of the incident plane wave; the angu- 
lar brackets (...) denotes statistical averaging. The quanti- 
ties with the index ( j) are calculated for the wave vector 
k,, ,) and those with the index (i) are calculated for the wave 
vector k,,,, . The formula (17) is derived on the assumption 
that the incident and scattered waves travel inside the medi- 
um. The effects associated with the refraction and the boun- 
daries of a sample were discussed in detail in Ref. 10. Equa- 
tion ( 17) was derived using the following expression for the 
modulus of the Poynting vector in an anisotropic medium: 

where E$) is the intensity of the electric field; use was also 
made of the relationship n:,, cos2 = (eci' 2e") ), and of 
the fact that in the case of a spatially inhomogeneous medi- 
um, we have 

In the nematic phase the correlation function 
GaBVS (q) = SE;~ )q includes contributions from Eq. 
( 17) and these contributions represent fluctuations of three 
types: fluctuations of the director f ,  and &,, biaxial fluctu- 
ations 6, and f4, and longitudinal fluctuations a (Refs. 11- 
13). Since the strongest fluctuations are those of the direc- 
tor, they can be discovered against the background of weaker 
f,, f,, and a modes if the experimental geometry is such that 
it suppresses the contributions of[, and 5, to the scattering. 
The problem was considered in Refs. 11-13 for the case 
when E, = 0 and the conditions for the absence of scattering 
by f ,  and f, were found to be 

We can easily show that in the case ofan anisotropic medium 
the relevant conditions are given by Eq. ( 19). The only dif- 
ference is that a and f3 should coincide with the allowed 
directions of the polarizations in the anisotropic medium. As 
a result of this restriction, the conditions of Eq. (19) are 
obeyed in the following cases: 

where Qo is a plane containing ki and k,. It is interesting to 
note that the condition 1 ) of Eq. (20) in fact means that if 
the incident beam is ordinary, then the whole light scattered 
by the director fluctuations has the extraordinary polariza- 
tion. 

Using the expression for the correlation function 
GaDys (q) found in Ref. 13 and also Eq. ( 17), we readily 
obtain the following expressions for the scattering intensities 
in the case of these three geometries: 

- 4paappt sin-' cpo] 

where I, is the intensity of the incident light; p = q/q; cos 
p, = pn; 19, is the scattering angle formed by the vectors ki 
and k, . 

The degree to which the geometric conditions of Eq. 
(20) are obeyed is determined by the inequality 

where 

is the constant for the scattering by the director fluctuations; 
k,  is the Boltzmann constant; K,, is a Frank modulus; 6 is 
the angle of deviation of a, P, and n from the vectors which 
satisfy exactly the conditions of Eq. (20); R, (f,, f4, a) is 
the scattering constant related to fluctuations of the quanti- 
ties f,, g4, and a .  If E, - 1 and K,, - dyn, then 
R,, (&,, c2) - 1 cm-I. Assuming that R,, (f,, f4, 
a) zR,, ( a )  - low2 cm-' (Ref. 14), we obtain S<1.5". 

Even when the conditions of Eq. (20) are satisfied ex- 
actly, fluctuations of the director make a contribution to the 
scattering because of repeated absorption and reemission. 
The condition of smallness of this contribution is the inequa- 
lity 

which for E, - 1 limits the scattering volume to v ' I2  < 
cm. This estimate is obtained for the geometry 1) in one- 
constant approximation for the Frank moduli allowing for 
the contribution of double scattering of light.15 The influ- 
ence of extinction is ignored: v'I2r < 1. 

It follows from the above estimates that the contribu- 
tions described by the expressions in Eq. (2  1 ) are easiest to 
detect by selecting nematic liquid crystals with the smallest 
values of E, . 
3. CASE OF A WEAK OPTICAL ANISOTROPY 

If the optical anisotropy of a nematic liquid crystal is 
weak, so that (E, ((E,, , E ~ ,  it is usual to assume that the inten- 
sity of the scattered light is always the same as in the case of 
an isotropic m e d i ~ m . ~  Since we then have cos = 1 and 
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n,,, = n,,, , i t  follows that in the case ofapurely ordinary or 
a purely extraordinary ray Eq. (17) does indeed reduce to 
the formula for the scattering in an isotropic medium. How- 
ever, if we consider the geometry when both rays travel in a 
medium, then the intensities of the scattering in an isotropic 
medium and in a medium with a weak optical anisotropy 
may differ quite considerably. 

If the divergence between the ordinary and extraordin- 
ary rays formed as a result of the incident of light on the 
boundary of a crystal can be ignored compared with the ray 
diameters, then the electric field vector in an anisotropic 
medium is given by 

where a'" and a',' are the polarization vectors of the ordi- 
nary and extraordinary waves; E "' and E '2' are the ampli- 
tudes of these waves; kit ,, /k,, ,, = k,,,, /k,,, is the direc- 
tion of propagation of the waves. 

The field of a wave scattered in a medium with a weak 
anisotropy can be represented by the following expression 
which is derived from Eqs. (3 )  and ( 14): 

!2 

In the case of anisotropic medium, we have 

and ED (R)  obtained using the relationship 

assumes its usual form 

where 

E= [E(')2+E(2)2]'lr a,[a(l)E(l)+a(2)E(2) 
7 IIE. (26) 

In an isotropic medium the vectors e"' and e"' can be regard- 
ed as arbitrary and it is assumed that they form a set of three 
unit vectors with k, /k, . 

We must draw attention to the fact that in calculation of 
the intensity of the scattered light in an anisotropic medium, 
it follows from Eq. (18) that in the quantities 
(ED (R)E$ (R)  ) which are being averaged only the terms 

, SE - q2 ) differ from zero and these have identical vec- 
tors q = k,, j ,  - k,,,, . Then, in the case of a medium with a 
weak but finite anisotropy we generally have, when neither 
k, nor k, are directed along n, we have 

In the case of an isotropic medium, we find from Eqs. (25) 
and (26) that 

It follows from Eq. (24) that all the correlation functions in 
Eq. (28) are finite and Eq. (27) contains only four out of six 
in terms that occur in Eq. (28) and these terms are charac- 
terized by I, = I, and j, = j,. This naturally can give rise to 
large differences beween the scattering intensities in an iso- 
tropic medium and in a medium with a weak anisotropy. The 
difference between Eqs. ( 17) and (28) can be of either sign. 
If f3 = e'l'or e'*'and a = a'" or a'2', then Eqs. (27) and (28) 
are identical. 

It should be pointed out that if k, Iln, then k,, = kicz, , 
and it follows from Eqs. (24) and ( 18) that Eq. (27) ac- 
quires four additional terms and the complete expression 
contains eight terms from Eq. (28) ,  wherej, = j,. A similar 
situation occurs also if k, Iln. In this case eight terms of Eq. 
(28) with I, = I, are retained. Finally, ifk, ((k, Iln, the contri-. 
bution to the scattering made for E ,  #O comes from all six- 
teen terms of Eq. (28).  Consequently, the scattering indica- 
trix of an anisotropic medium may have peaks and dips 
along the selected directions of k, and k,, i.e., even a weak 
anisotropy may give rise to a finite redistribution of the light- 
scattering intensity. 

This conclusion is based on Eq. ( 18), which is rigorous- 
ly valid only for an infinite volume. When the volume is 
finite and given by V a  L 3, the S function in Eq. ( 18) can be 
replaced by its approximation with a finite width of the order 
of 1/L. Therefore, the weakest optical anisotropy for which 
Eq. (27) becomes valid is limited by the inequality 
Ik(,, - k,,, ( ) l /Lor  An = In,,, - n,,, Ja/z/L, where/z is 
the wavelength of light. If the thickness of a liquid crystal is 
L -0.1 cm, then in the visible part of the spectrum this leads 
to the restriction An) which is known to be satisfied by 
nematic liquid  crystal^.^ Therefore, neglect of the optical 
anisotropy in any real nematic liquid crystal may in some 
geometries give rise to an error which is of the same order as 
the intensity of the scattered light itself. 

It should be stessed that Eq. (27) is derived on the as- 
sumption that the divergence beween the ordinary and ex- 
traordinary rays created by a single external beam incident 
on the boundary of the crystal is small, which imposes an 
upper limit on An: An(rn/L, where r is the ray diameter. 
Our discussion is valid if 

However, it should be pointed out that, for example, in the 
geometry in which the director is orthogonal to the scatter- 
ing plane, there is no divergence beween the ordinary and 
extraordinary rays for light incident normally on the bound- 
ary of a crystal' and in this case there is no upper limit set by 
Eq. (29).  
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It should be noted that a redistribution of the intensity 
of the scattered light may, in principle, be also observed in 
the case of an isotropic medium when a weak anisotropy is 
created in this medium by, for example, the Kerr effect or the 
elastooptic effect. 

For example, in the case of scattering by fluctuations 
of a scalar parameter with a correlation function 
GaBvS a 1 3 ~ ~ ~ 5 ~ ~  in a geometry in which the optic axis is or- 
thogonal to the scattering plane, the ratio of the scattering 
intensities in isotropic I &  and anisotropic I;o media is 

It follows in particular from this formula that if a+3 = 0, 
n, $0, and no #O, then I &  $0 and I &  = 0. 

4. EXTINCTION COEFFICIENT 

It follows from Eq. ( 12) that the extinction coefficient 
is governed by the imaginary part of the permittivity tensor 
E ; ~  ((w, k).  If we use the ladder approximation for the kernel 
of the intensity operator, we find that the nonlocal part of the 
permittivity is 

The imaginary part of this relationship represents an optical 
theorem which relates the attenuation of an electromagnetic 
wave in a medium to the scattering properties of this medi- 

If we ignore the longitudinal term2' in Eq. (4)  and 
allow for Eq. ( l l ) ,  we find that for k = b,,, this optical 
theorem becomes 

Here all the quantities with the index (i) are functions of 
$,i, and the quantities with the index ( j) are functions of q. 
In the derivation of Eq. (3 1 ) we have replaced e ( j )  and E in 
the integrand by eAJ' and i.,, and we have used also the equa- 
lity k:j, = k & j ,  + i k , , , , ~ ~ ~ ) ,  which is valid if rCj, /  
k,, j, (1. The smallness of the latter ratio allows us in most 
cases to go to the limit T( j, -0 on the right-hand side of Eq. 
J3 1 ),^which effectively corresponds to the replacement of 
Tby T,inEq. (30). Ifweuse 

then the resultant S function reduces the three-dimensional 
integral to a surface integral, and we obtain the optical 
theorem in its usual form 

where dohJ) denotes integration over the surface 
4 = k,( ,) (4). 

The main contribution to the scattering (and, conse- 
quently to the extinction) in a nematic liquid crystal comes 
from fluctuations of the director {, and l,, which are charac- 
terized by the correlation function 

2 

Gama (q) = z( (El 1 (eIae~Inm~+e~aeI~npn~ 
1-1 

+elge1ananT+elpetTnana), 

where 

( 1  E1l2)=kB TE: I [  Kllq2+ (K3$-K1l) (qn) 2], 
e2=[qn]/q sin 0, (34) 

el=[e2n], cos 0=qn/q. 

It should be noted that the existence of a pole l/q2 in Eq. 
(33) should result in a logarithmic divergence of the inte- 
grals in Eq. (32). However, if $#O between k, and n, the 
scattering vector k,, j ,  - k,,,, corresponding to j# i  always 
differs from zero because ks, j, #ki,i,. It therefore follows 
that a divergent contribution to the integral (32) can come 
only from the scattered light with the same polarization as 
that of the incident light. However, this divergence may be 
absent if for geometric reasons the scattering through zero 
angle is finite when i = j. Therefore, the geometries in which 
the integrals over all the angles in Eq. (32) are finite can be 
identified from the requirement that one of the conditions 
for the absence of the scattering of light by the director fluc- 
tuations (20) is satisfied for the scattering by zero angle in 
the case of rays with the same polarizations for the incident 
and scattered light. It follows from Eq. (20) that this re- 
quirement is always satisfied if k,,,, is the ordinary ray, 
whereas if k,,,, is the extraordinary ray, this is true only if 
$ = n-12. For $ = 0 the condition (20) is also satisfied, but 
this case applies to both the ordinary and extraordinary rays. 
We can easily see that all three geometries investigated in 
Ref. 4, i.e., ki Iln, ki I n  and a ln ,  ki I n  and alln, belong to one 
of these types. 

Substituting Eqs. (33) and (34) into Eq. (32) and inte- 
grating with respect to the azimuthal angle p, we find that 
the extinction coefficient of the ordinary ray [in view of Eq. 
(20) a nonzero contribution to Eq. (32) is made only by the 
term with j = 21 is described by the expression 

where 
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In the case of the extraordinary wave when 0 < $ < ~ / 2 ,  
both terms in the sum (32) contribute to the extinction: 
T ( ~ ,  = T::; + TI:;. The term with j = 1 is calculated by ana- 
logy with Eq. (35) and it is given by 

where 

the same notation is used in the above formula as in Eq. ( 35), 
with the exception ofp. 

The term with j = 2 diverges in the limit of small scat- 
tering angles. If this contribution to r,,, is calculated, inte- 
gration is carried out only for angles Omin -A /L, where L is a 
certain characteristic length. In particular, if a sample is 
completely illuminated, the Omin is the angle of diffraction 
and L is the size of the sample.' If a thin beam crosses the 
sample, we can easily show that L is the transverse size of the 
beam. Since the main contribution comes from the range of 
small angles, then in the approximation which is quadratic 
with respect to 6 we obtain 

ksT eaZeueL L 
= (2 ) --sin~2~ln-J drp 

1 
4nc K,, P A ,  PZ+Q cos" rp sin2 9 

ell2 cos" cos' cp 

X[ t P +  (t,Q+eL2) cosZ cp sin2 $ 

+ P2 sin" I tzP2+ (t2Q+eLa) cos" sin2 lp 
' 

where 

Integrating with respect to p, we obtain 

L 
x ln- ' 

where 

theformulasforr(,, (0)  = T ( ~ )  (O),T(,) ( ~ / 2 ) , a n d r ( ~ )  (v/ 
2)  can be found in Ref. 4. 

In the case of typical nematic liquid crystals at E, - 1 
and K- lovh  dyn when L -0.1 cm, we find that 

FIG. 1. Angular dependences of the extinction coefficients of the ordinary 
and extraordinary rays traveling in the following nematic liquid crystals: 
I ) ,  4 )  BMOAB ( p-n-butyl-p-methoazoxybenzene); 2),  5 )  MBBA (4- 
methoxybenzylidene butylaniline); 3 ) ,  6 )  N- 106. 

Figure 1 shows the angular dependences of the extinc- 
tion coefficients of the ordinary and extraordinary rays in 
three different liquid crystals. The values of K,, , E, ,  , and E ,  

were taken from Refs. 3 and 16, whereas L was assumed3' to 
be 1 mm. The main contribution to r(,, comes from the term 
ri2'. We can see that T, depends strongly on the angle 
between the ray and director, and is several times greater 
than the extinction coefficient for the ordinary ray. 

It should be pointed out that if the limit r( j )  -0 is not 
used on the right-hand side of Eq. (3  1 ), the integral over the 
angles becomes finite even for j  = 2 and the cutoff parameter 
is the attenuation length 7,:. This method of avoiding the 
divergence was used in Ref. 17 to calculate the extinction 
coefficient at the critical point. However, if we bear in mind 
that, strictly speaking, T = r(w, k) ,  we have to carry out 
calculations for a complex value of k = k,,, , which is a root 
of the dispersion equation, and not fork = kti, , so that-as 
is readily established-the divergence in the angular integral 
for T(W, k(,, ) is retained and the cutoff parameter is still 
o m i n .  

In the presence of an external magnetic field H the cor- 
relation function acquires an energy gap xaH *: 
G (  q)  a ( q2Kll + xa H ') - I ,  where xa is the magnetic sus- 
~eptibili ty.~ The total scattering cross section then becomes 
finite, but a significant reduction in the extinction coefficient 
occurs when the "magnetic coherence length" becomes 
much less than the characteristic length L: H- ' (K, , /  
xa ) 'I24L. For typical values of X ,  - lo-' and KIl - lop6 
dyn, and L - 1 mm, a reduction in the extinction coefficient 
by, for example, a factor of 2 occurs for H- lo3 Oe. It should 
be stressed that such fields have practically no influence on 
the scattering intensity. 

It should be pointed out that in view of the extreme 
elongation of the scattering indicatrix, almost all the light 
losses due to the scattering in the extraordinary ray occur 
because of the forward scattering. Consequently, the ex- 
traordinary ray is transformed because of multiple forward 
scattering from coherent to diffuse and it is broadened some- 
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what. This effect has been observed experimentally.' 
The authors regard it as their pleasant duty to thank L. 

Ts. Adzhemyan and E. I. Kats for discussing the results. 

"We shall show below that in the case of nematic liquid crystals we have 
E " / E ' - ~ / k -  

"Estimates indicate that the contribution to the extinction made by this 
term does not exceed 1% of the values obtained in Ref. 4 and 7-5-15 
cm-I. 

"The propagation of light in nematic liquid crystals was investigated for 
L - 1-2 mm (Refs. 4 and 5). The number of defects in these samples was 
sufficiently low to determine the Frank moduli to within 10-15% and to 
measure the extinction coefficienL4 
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