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We propose a molecular theory of the nonlinear inelasticity of polymer nets having strongly 
tangled subchains, with allowance for the constraints imposed on the possible conformations 
by entanglement of various subchains (topological constraints). The analysis is based on the 
model of a polymer chain in a net of impenetrable obstacles, and permits calculation of the 
net's free elastic energy, which is found to depend on the method of network synthesis. We 
study the uniform swelling of the nets and the uniaxial tension and compression of a dry 
network produced by instantaneous crosslinking of polymer nets in a melt or solution, as well 
as of a swollen net. A molecular interpretation is offered of the known Mooney-Rivlin 
corrections in high-elasticity theory; it is shown that these corrections decrease for swollen 
nets as well as for dry nets prepared in the presence of a solvent. The theory proposed is 
compared with the experimental data. 

1. INTRODUCTION T=Y T (A-h-') /Vo, (1 

A polymer net (or gel) constitutes in the simplest case where Tis the temperature, v the number of subchains in the 
an aggregate of polymer chains crosslinked to one another sample, and VO its volume in the underformed state. 
by valent chemical bonds and forming a single three-dimen- Relation ( 1 ) agrees well enough with the experimental 
sional body (see Fig. 1 ). The crosslinks can be produced, for data in the compression region (A < 1 1, but at A > 1 consid- 
example, by y irradiation of a polymer solution or a melt; erable deviations appear right away. These deviations are 
there are also many other methods.' The physical property described by an empirical formula first proposed in Refs. 7 
of a polymer chain depend strongly on the method of its and 8 and known as the Mooney-Rivlin formula: 
preparation. 

If the crosslink density is low, the polymer chains have 
the property of high elasticity, i.e., the ability to withstand 
exceedingly high elastic strains in the region of the nonlinear 
dependence of the strains on the stresses. The development 
of a molecular theory of nonlinear high elasticity of polymer 
chains is one of the fundamental problems of macromolecule 
statistical physics. 

The classical theory of high elasticity was developed in 
the 40s independently by a number of (see also 
Ref. 6). The main simplification of the classical theory is the 
assumption that the subchains of a chain (i.e., chains 
between two neighboring crosslinks, can take on with equal 
probability an arbitrary conformation compatible with the 
given distance between the ends of the subchain, i.e., 
between the crosslinks that limit the subchain. The elasticity 
of a polymer chain is in this case of purely entropy nature 
and is produced because when the network is deformed the 
distances between crosslinks are correspondingly altered, 
thus decreasing the set of possible conformations for the ag- 
gregate of subchains. For uniaxial tension and compression 
of a dry (containing no solvent) polymer net, classical the- 
ory yields the following dependence of the stress 7 (per unit 
cross-section area of the sample in the initial state) on the 
relative strain il = 1 /lo (I, and 1 are the sample dimension in 
the direction of the stretching axis before and after applica- 
tion of the stress, respectively) : 

where the constants c, and c, are in general of the same order 
of magnitude. 

The explanation of this fact, as well as of a number of 
other observed deviations from the classical theory of high 
elasticity, is the subject of a large number of papers (see the 
review in Ref. 9). According to present-day notions, the rea- 
son for these deviations is that the individual subchains of 
the polymer chain are strongly intertwined; since one chain 
cannot pass unbroken through another, not all possible con- 
formations of a given subchain can be realized, and con- 

FIG. 1. Schematic representation of polymer gel. 

728 Sov. Phys. JETP 63 (4). April 1986 0038-5646/86/040728-09$04.00 @ 1986 American Institute of Physics 728 



FIG. 2. Model of "polymer chain in a tube." 

straints, called topological, are imposed on choice of the con- 
formations. 

In the papers of the last few years topological con- 
straints are described as a rule within the framework of the 
model of a "polymer chain in a tube" (see Fig. 2). It is as- 
sumed that for each subchain there exists some preferred 
contour that joins its ends (the axial line of the tube in Fig. 2: 
this contour is also called the primitive path). The topologi- 
cal constraints permit only relatively small fluctuations of 
the subchain about this contour; it is this circumstance that 
is simulated by regarding each subchain as enclosed inside a 
certain tube of finite diameter (see Fig. 2). In theories based 
on this model (see Refs. 10-1 5) the possible set of conforma- 
tions of each subchain turns out to be substantially smaller 
than in the classical theory. 

In a number of cases, theories that use the model of a 
"polymer chain in a tube" make it possible to improve some- 
what the agreement with experiment when individual prop- 
erties of high-elasticity polymer nets are described. A careful 
analysis of the entire assembly of these proper tie^,'^^" how- 
ever, has shown that none of the theories in Refs. 10-15 can 
claim satisfactory agreement with experiment. This is not 
surprising, since the tube model is a rather crude approxima- 
tion of the real situation and should furthermore, when non- 
linear properties are studied, be supplemented by a number 
of phenomenological assumptions that are unfounded from 
the molecular viewpoint (see Ref. 18). 

The present paper is devoted to the development of a 
molecular theory of high elasticity of polymer nets on the 
basis of a new microscopic model that describes the real situ- 
ation much more fully than the tube model. Assume that 
each subchain of the net constitutes a random walk through 
a framework of straight lines that are the edges of a cubic 
lattice (see Fig. 3a; Fig. 3b shows a two-dimensional variant 
of this model). The topological constraints are simulated 
here by the fact that as the polymer chain moves it cannot 
cross any obstacle (a straight line in Fig. 3a or a point in Fig. 
3b). As a result, the set of conformations of a subchain with 
fixed end points becomes much smaller. Clearly, our model 
has a number of important advantages over the "chain in a 
tube" model: a )  the unphysical concept of tube thickness 
does not enter explicitly in our model; b) the tube walls in 
this model are not continuous-parts of the chain can "leak 
out" through the gaps between the fixed crosslinks, form 

sections of spare length (or loops); c) in our model we can 
consider in a natural manner the cases of relatively short 
subchains, with only a few crosslinks per chain, etc. We shall 
show next that the model shown in Fig. 3 can be used, with- 
out additional phenomenological parameters, to construct 
for highly elastic properties of polymer nets a theory that 
describes a large group of experimental data. Moreover, it 
becomes possible, for the first time ever, to investigate on the 
molecular level within the framework of this theory the de- 
pendence of the elastic properties of nets on a number of 
characteristics of the process of their preparation. The for- 
mulation of the problems of the theory of high elasticity for 
the model shown in Fig. 3 poses also a number of interesting 
problems of general physical character. 

It should be noted that the behavior of a polymer chain 
inside a lattice of uncrossable obstacles was investigated in a 
number of recent papers,'9-22 but this model was not consid- 
ered before as applied to high-elasticity theory. 

2. FREE ENERGY OF A POLYMER NET 

We proceed now to a quantitative formulation of the 
problem. We assume that in the initial (undeformed) state 
each subchain of the polymer net is in a lattice of obstacles, 
as shown in Fig. 3. We assume for simplicity that all the 
subchains of the net are equal and contain N links, each with 
dimension a. We denote also by c the period of the obstacle 
lattice. We suppose that the net is weakly crosslinked, so that 
the subchains are long enough, Na2>c2, i.e., each subchain 
occupies many cells of the obstacle lattice. In a concentrated 
polymer system such as a polymer net, it is permissible to 
disregard in first-approximation analysis of the high elasti- 
city the volume interactions of the links.' Individual chains 
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FIG. 3. Polymer chain in a lattice of obstacles: a-three-dimensional case; 
b--two-dimensional case; c--coarsened trajectory of chain; d-primitive 
path of chain. 
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will therefore be regarded as statistically independent. 
We introduce a coordinate frame connected with the 

obstacle lattice, and assume that we have applied to the net a 
certain stress that changed the dimensions of the sample, 
along each of the coordinate axes, by a factoril, (i = x, y, z in 
the three-dimensional case). The simplest examples are 
here: isotropic swelling (A, = A, =A,  ) and uniaxial ten- 
sion or compression of a dry net.- he latter takes place at a 
constant sample volume (since dry net respond very weakly 
to isotropic compression), so that in the three dimensional 
case we have A, = A, A, = A, = R - ' I 2 .  It is natural to ex- 
pect the obstacle lattice to be deformed affinely with the net 
sample. Thus, in the deformed state its unit cell is a right 
parallelepiped with sides A, c. 

In the presence of a lattice of topological constraints, 
the partition function of a subchain of N steps with fixed end 
points, which coincides in our case with the number of possi- 
ble conformations, depends not only on the arrangement of 
the end points of the subchains (just as in classical theories), 
but also on form of the trajectory of the chain between these 
points. To cast light on this circumstance, consider Fig. 3. 
Figure 3b shows the true microscopic trajectory of a sub- 
chain (for simplicity, in a two-dimensional case), while Fig. 
3c shows the same trajectory, but "coarsened" to a scale c 
(i.e., with trajectory details of scale smaller than c left out). 
Further coarsening can be achieved by eliminating from Fig. 
3c all the loop sections of the trajectory, i.e., those sections 
on which the trajectory is closed 2nd not crossslinked with 
any of the obstacles (see Fig. 3d). The trajectory obtained on 
Fig. 3c will hereafter be called coarsened, and that of Fig. 3d 
the primitive path of the given subchain (cf. Refs. 19-2 1 ) . 
Note that all the subchain conformations having one and the 
same primitive path are topologically equivalent, i.e., they 
can be obtained one from another by continuously deform- 
ing the trajectory without crossing the obstacle lattice. It is 
readily understandable that it is just the primitive path of 
each subchain which is invariant to deformation of a poly- 
mer chain, and that the partition function of the subchain is a 
functional of its primitive path. 

We shall show later that out of all the characteristics of 
the primitive path, the partition function of the subchain 
numbered a (a = 1,2, ..., v, cf. ( 1 ) and (2)  ) depends only 
on the numbers k,, of steps that the primitive path makes 
along the coordinate axes (k, = 3 and k, = 4 in Fig. 3d). 
Thus, Z, = Z(N, k, 1, k, is a vector with coordinates k,,, 
and the partition function of the net is, by virtue of the statis- 
tical independence of the subchains, 

a= 1 

We denote by v(k)  the number of chains in a net with 
primitive paths characterized by parameters k,, and by 
P(k)  = v(k)/v the corresponding distribution of the primi- 
tive paths in k,. This distribution is determined by the meth- 
od used to prepare the net; it is not altered by elastic defor- 
mation of the latter. We can then write for the free energy 
9 = - T In Z of the polymer net, taking (3)  into account, 

b = - v ~ z  P(k)lnZ(N, k).  (4)  

We proceed to calculate the partition function Z(N,k).  
We denote by Qi the total number of steps of the coarsened 
trajectory (see Fig. 3c) taken along the ith coordinate axis. 
Some of these steps belong to the primitive path, and the 
remainder pertain to the loop sections. Therefore the differ- 
ence Qi - k, is a non-negative even number. Even for a fixed 
topological state (primitive path) of the considered sub- 
chain, the quantities Q, do not remain unchanged on defor- 
mation, meaning that the loop sections become redistribut- 
ed. 

In the deformed states, the steps of the coarsened trajec- 
tory along the different coordinate axes are generally speak- 
ing not on a par, since their lengths A, are different. There- 
fore different numbers of polymer-chain links go to these 
steps on the average; we denote the corresponding quantities 
by G, .  Since the total number of subchain links is N, we 
should have in any conformation 

I 

Next, along each of the axes, a coarsened-trajectory 
step containing G, steps of the true (microscopic) trajectory 
can be effected by many different methods. To take this cir- 
cumstance into account we assign to each coarsened-trajec- 
tory step along the ith coordinate axis a weightp,. Then the 
total coarsened trajectory corresponds to a weight py .  
The calculation ofp, is considered in Sec. 4. 1 

Taking the foregoing into account, we can write the par- 
tition function of a subchain in an obstacle lattice in the form 

Z ( N ,  k) =rz ' H P ~ Q ' Y ( Q ,  k), ( 6 )  

where I' is the total number of conformations of a chain of N 
links, Y(Q, k )  is the number of methods of realizing the 
coarsened trajectory with Q, steps along the axes for a speci- 
fied primitive path (with parameters k,. The prime on the 
summation sign means that the summation is over all possi- 
ble values of Qi that satisfy condition (5) .  

This condition can be taken into account by writing 

where q is a vector with components 

and w(q,  k)  is the generating function for the quantities 
Y(Q, k) :  

The integration in (7)  is along a closed loop enclosing the 
point x = 0 and located in its entirety inside the convergence 
region of the series (9) .  

Allowance for the supplementary condition (5)  re- 
duces thus to the renormalization (8)  of the statistical 
weights pi. The sum ( 9 )  will be calculated in the next sec- 
tion, where we shall use a generalization of a method pro- 
posed in Ref. 9. 
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FIG. 4. Method of numbering the direction for a three-dimensional cubic 
lattice of obstacles (u = 3 ) .  

3. POLYMER CHAIN IN A LATTICE OF OBSTACLES 

We denote by 20 the number of directions in which each 
next step of the coarsened trajectory in Fig. 3c can be made. 
We assign a separate number for each direction, and assign 
numbers that differ by u to opposing directions. In the usual- 
ly case, for a cubic lattice of obstacles we have a = 3 and the 
method of numbering the direction is indicated in Fig. 4. We 
shall indicate in the present section the method of calculat- 
ing sums over coarsened trajectories of definite classes, with 
each trajectory entering with a weight 

where q, is the weight of a step in the direction v, and L,  is 
the number of steps in this direction. The general results are 
of interest to us primarily as applied to the calculation of the 
sum (9), in which caseq, = q, + , . For example, for a three- 
dimensional cubic lattice of obstacles, 

We introduce the following definitions: 
1. A, (2m)-sum (in the sense indicated above) over 

all the closed trajectories (loops) not crosslinked with obsta- 
cles, having a length 2m and satisfying two conditions: a )  the 
first step is made in the v direction, b) the trajectory lands 
for the first time on the initial point after the last step. By 
definition, A, (0)  = 0. 

2. B, (2m)-sum over all closed trajectories, not cross- 
linked with obstacles, having a length 2m and returning to 
the initial point (not necessarily for the first time) from all 
directions except a forbidden one whose number is v. By 
definition, B, (0) = 1. 

3. C(2m)-sum over all possible not crosslinked closed 
trajectories of length 2m; C(0)  = 1. 

It is easily established that the quantities A,, B, , and C 
satisfy the following recurrence relations: 

(cf. Ref. 19). These recurrence relations can be solved by 
using the method of generating functions we put 

A*, B., C ( y )  = -4.9 B", c (2m) yzm. (11) 

Using the recurrence relations, we obtain 

Av ( y )  =y2qvqv+oBv ( Y ) ,  (12) 

where we have put 

v 

Solving the system ( 12)-( 15), we can easily obtain all the 
functions of interest to us. TO save space we shall not write 
out the corresponding solution in explicit form. We note 
only that we always have 

Inthecaseq, = ... =q,, = lwegetA, =.. .=A,, =A/2a,  
B, = ... B,, = B, where the functions A, B, and C coincide 
with the corresponding functions obtained in Ref. 19. 

We turn now to the calculation of the sum (9). This is in 
fact a weighted sum over all possible trajectories obtained by 
adding all possible non-crosslinked loops to the primitive 
path, which we assume here to be specified by a sequence of 
directions v , ,  Y,, ..., v k .  Using the quantities C(2m) and 
B, (2m) introduced above, we can represent the sum of in- 
terest to us in the form 

This equation is illustrated in Fig. 5. Taking the definitions 
( 11 ) into account, we can represent the right-hand side of 
(17) in the form 

V 

where I, is the number of primitive-path steps in the v direc- 
tion. We have thus proved that the only primitive-path char- 
acteristic on which the sum w (and hence the partition) de- 
pends are the numbers I .  In the case q, = q, + , , taking ( 16) 

FIG. 5. Illustration for Eq. ( 17). 
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into account, we see that w depends only on the numbers 
k, = 1, + I ,  + , . This is precisely the situation when the par- 
tition function (7) is calculated. As a result we obtain 

r ~ X C ( ~ = I )  ijj 
z ( ~ , k ) = - - $  2ni x N ; l  + [q tBi (y=l )  I". (18) 

i - 1  

The quantities C(y = 1 ) and B, (y = 1 ) can be easily 
determined from the system (12)-(15). Putting A(y = 1) 
= 1 - 2u we obtain 

where u is the non-negative solution of the equation 

We recognize now that in the case Na2>c2 considered 
the characteristic values k, ) 1. Therefore the integral ( 18) 
can be calculated by the saddle-point method. The result is 
of the form 

where the value ofx is determined from the condition that In 
Z(N, k) be a maximum with respect to x: 

We have left out of (2 1 ) terms of order In N, which do not 
contribute to the thermodynamic quantities. 

Equation ( 22 ) can be represented in the form 

where the quantities 

have the meaning of the mean values of the numbers of steps 
of the coarsened trajectory along the i axis in conformations 
with the given primitive path. 

Let us dwell also on the method of determining the 
numbers Gi of links per step of the coarsened trajectory 
(along the i axis). Within the framework of our approach it 
is natural to regard these parameters as variational and 
choose them to satisfy the condition that the number of con- 
formations Z(N, k )  for the given primitive path be a maxi- 
mum: a l n Z ( N ,  k)/aG, =O.  Taking (8) ,  (21), and (22) 
we obtain 

4. STATISTICAL WEIGHT OF A COARSENED-TRAJECTORY 
STEP 

To calculate the partition function Z(N, k )  in explicit 
form it remains to find the statistical weightsp, for the steps 
of the coarsened trajectory. In accordance with the meaning 
of expression (6), the quantity p,e' should be identified 

coarsened trajectory with parameters Q, . An approximate 
method of calculatingp, is described in this section. 

Generally speaking, any subchain conformation corre- 
sponding to a given roughened trajectory can be subdivided 
into individual segments r, - r,, r, - r ,,..., re- , - re 
(XiQi = Q) such that the vector r, - , - r, joins the same 
cells of the obstacle lattice as the sth step of the coarsened 
trajectory. The sum over all the microconformations of a 
subchain for a given coarsened trajectory is thus the sum 
over all possible conformations of the segments of the chains 
between the points r,-, and rs and over all possible posi- 
tions of the points r, (s = 1, 2, ..., Q) in the corresponding 
cells of the obstacle lattice. For an approximate analytic cal- 
culation of this sum we make the following assumptions (an 
exact calculation is possible only by numerical means, but 
the proposed simple analytic method discerns the main 
qualitative features): a) we assume that the chain segment 
between the points r, - , and r contains exactly Gis links (is is 
the number of the axis along which the sth steps of the coar- 
sened trajectory is directed); b) we assume that all the con- 
formations of the chain segment of Gis links between the 
points r, - , and r, correspond to the given coarsened trajec- 
tory. Under these assumptions, the number R of microcon- 
formations, which corresponds to the given coarsened tra- 
jectory, is 

Q 

where v,, v,, ..., vQ are the volumes of the obstacle-lattice 
cells through which the roughend trajectory of Q steps 
passes in succession. On the other hand, according to our 
definition of the weightsp, we should have 

t 

The Gaussian functions cannot be analytically integrat- 
ed over the bounded volumes v,, v,, ..., vQ in (26). To sim- 
plify the resultant equations we assume that these integra- 
tions should be carried out over all of space, but with a 
suitable Gaussian weight: 

where (r,, ), are the Cartesian coordinates of the center of 
that obstacle-lattice cell in which the coarsened trajectory 
landed after s steps, and 6, is the characteristic dimension of 
the obstacle-lattice cell along the i axis. Since we assume that 
the obstacle-lattice cell is affinely deformed together with 
the net sample, we put 

where b is the characteristic dimension of the integration 
volumes in (26) in the undeformed state. It  is most natural 

I . . 

with the number of microconformations of a chain having a to assume that this dimension coincides with the dimension 
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of the cells themselves, so that 6-c. We shall not specify 
here more accurately the values of the parameters b /c (they 
are of the order of unity); this parameter will be used for 
adjustment when comparing the theoretical and experimen- 
tal results (see Sec. 6). 

If the approximation (28) is used, the integral (26) 
becomes Gaussian with infinite limits and can be exhaustive- 
ly investigated. The result of such an investigation is that for 
a primitive path of arbitrary form the value of R cannot be 
represented in the form (27);  this demonstrates the approxi- 
mate character of expression (6) for the partition function of 
the subchain. To determine the statistical weights pi in an 
approximation conforming to the approximation ( 6 ) ,  it is 
reasonable to use the following method. We calculate R for a 
straight-line coarsened trajectory along an appropriate axis 
(Q, = Q, Q, = 0 a t j# i )  and equate it to the expected value 

In this case R can indeed be represented in the form (30), 
with 

where we have introduced the notation 

and B is a normalization constant. that can be determined by 
starting from the condition p, = 1/2u in the undeformed 
state. 

A detailed analysis shows that the assumption of a 
straight-line coarsened trajectory is optimal for the calcula- 
tion of the statistical weightsp, from the point of view of all 
the assumptions made; attempts to take into account in one 
form or another the turns of the coarsened trajectory cannot 
be made in a noncontradictory manner, and are a patent 
exaggeration of the accuracy of the entire theory. 

5. AVERAGING OVER THE PRIMITIVE PATHS 

To calculate the free energy (4)  of a polymer net we 
must average the logarithm (2 1 ) of the partition function 
over the primitive path distribution P(k) .  This distribution, 
generally speaking, depends on the method of preparing the 
net. In contrast to the earlier  treatment^,^-'^ our approach 
takes into account the dependence of the net properties on 
the conditions of its preparation not via phenomenological 
parameters but directly with a molecular approach. 

Consider, first, polymer nets obtained by instantaneous 
crosslinking in a dry undeformed state. That distribution of 
the primitive paths in k, , which obtains under conditions of 
random walks of the polymer chain in the undeformed ob- 
stacle lattice, is then "frozen." This distribution was investi- 
gated in Refs. 19-21. It can be shown that for a three-dimen- 
sional cubic lattice of obstacles this distribution has at 
Na2,c' a sharp maximum of width" - k ' I 2  near the point 

where G, is the number, determined from (25), of links per 
step of the coarsened trajectory in the initial undeformed 

state. The averaging in Eq. (4) can therefore be carried out 
for this case by directly substituting the values (33) in the 
expression for In Z: 

As another example we consider networks obtained by 
instantaneous crosslinking in a concentrated polymer solu- 
tion. Naturally, in this case the polymer chains are much less 
entangled than in crosslinking in the dry state, and the char- 
acteristic values of k, for them are much smaller than in 
(34). However, since the crosslinking is instantaneous, the 
obtained distribution P (k )  is as before a frozen distribution 
for random walks of the polymer chain in the initial unde- 
formed obstacle lattice, but now the period c of this lattice 
and the quantity G, a c2 (to avoid confusion, we shall hereaf- 
ter designate these quantities by Z. and G ~ )  turn out to be 
larger than for crosslinking in the dry state. The maximum 
of the P ( k )  distribution is then at the point 

where the parameter E = c2/F2 characterizes the degree of 
concentration of the polymer solutions under the crosslink- 
ing  condition^.^' We have therefore for the free energy 

For an arbitrary method of net preparation one should 
naturally expect the distribution of the primitive paths in k, 
not to coincide, generally speaking, with that obtained for 
free random walk in an arbitrary obstacle lattice. It can be 
assumed, however, that in many cases this distribution is 
isotropic and has a sharp maximum. For the free energy of a 
polymer net we can use, as before, Eqs. (35) and (36) and 
regard the parameter E as a phenomenological one that char- 
acterizes the degree of entanglement of the chains of the net 
at the given method of its preparation. 

Equations (33), (34) and (35), (36), (20)-(25) and 
( 3  1 ) determine completely the free energy of a polymer net 
with arbitrary deformation characterized by the parameters 
A i .  Calculations with these formulas were found to be feasi- 
ble and were performed with a minicomputer. The results 
are presented in the next section (the obstacle-lattice cell 
was assumed three-dimensional cubic in all cases). 

6. DISCUSSION OF RESULTS AND COMPARISON WITH 
EXPERIMENT 

1. The simplest application of the expounded theory is 
consideration of isotropic swelling of a net obtained with 
instantaneous crosslinking in the dry state. In this case 
E =  1, A, =A,-=A,-=m, G, =G, =G, =G=c2g/a2, 
S)x = oy = oz /Q /3, Q = N / G .  The results for this case are 
shown in Fig. 6 .  Figure 6a shows the g(m2) dependence 
(m > 1 in the case of swelling, but we can carry out formally 
the calculations also for m < 1 ). At m< 1 we get, as we 
should, g a m'. At m > 1, in view of the increased length of 
the primitive-path sections, the loop sections gradually van- 
ish, the total number of steps of the coarsened trajectory 
becomes equal to = k,, and G reaches saturation G = N / 
k,, = 3G0/2. Figure 6b shows the dependence on m2 of the 
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directly measurable quantity (see, e.g., Ref. 23) quantity 

S= ( l lmVo)  89"/8m= (vNTIVoGo) (P (a, m 2 ) ,  
cp (a, ma) = (3golm2g) {malg-[gl (g+am2) 1'"). 

As it should be when Na2sc2, in the case of instantaneous 
crosslinking in the dry state, which freezes the free distribu- 
tion of the chains, we have q ( a ,  1 ) = 0. As m 4  we have 
q(a,m2) a m-4, and at mS 1 we get p ( a ,  m2) = 4/3g0. 

If the crosslinking conditions are such that E #  1 [see 
Eqs. (35) and (36)], we get 

Thus, at E < 1 not too strong a swelling decreases the elastic 
part of the free energy (S < O), whereas at E > 1 the elastic 
part of the free energy always increases on swelling (S> 0).  

2. We consider now uniaxial tension and compression 
of a dry net obtained by instantaneous crosslinking in the dry 
state. In this case E = 1, Ax = A ,  Ay =A,  = A  -'I2. The 
dashed lines in Fig. 7 show the obtained dependence of the 
parameters g, = a2Gx /c2, g2 = a2Gy /c2 = a2Gz /c2 on A - '. 
It can be seen that at A -' values not greatly differing from 
unity the numbers of subchain links per step of the coarsened 
trajectory in various directions are far from equal. As A 4  
we have g, a A 2, g, = 9g0/4. As A- cc we have g, = 9g0/2, 
g2 a A - I .  It can be seen from the figure that these theoretical 
limiting relations are not realized in fact at the experimental- 
ly attainable deformations. At A = 1 we have 
Qx = Dy = QZ = N/3G0 = k,/2. The behavior of the quan- 
tity li = Qi (A)/Qi ( 1 ) is shown in Fig. 7a (dotted). When 
the loops having sections parallel to the i axis vanish, we 
should have gi = ki = ko/3 and li = 2/3. Thus, under 
strong tension (A -'-0) all the loops that are not cross- 
linked (I, = 1, = 2/3) become disentangled, while under 
strong compression (A - '- w ) the loop sections perpendic- 
ular to the deformation axis vanish (I2 = 2/3), but many 
loops (I,+m ) parallel to the deformation axis are formed. 

FIG. 6. Isotropic swelling of polymer net: plots ofg(m2) (a) and of 
p(a, m2) ,  (b) calculated at a = 12 and E = 1 .  

The nonmonotonic variation of 12(A - I )  in the tension re- 
gion is due to the fact that at first &(A - I )  increases because 
the steps along the axes y and z become shorter, but subse- 
quently all the loops parallel to the x axis become disentan- 
gled (I, decreases to the value 2/3) and with further tension 
the material to fill the long sections of the primitive path is 
drawn from disentanglement of the remaining loops. 

In the physics of highly elastic polymer net the depen- 
dence of the elastic stress T = ( l/Vo)dF/dA on the relative 
strain is customarily described in terms of the so-called 
Mooney-Rivlin coordinates ({,A - ' ) . Here E = r/rO, where 
r0 is the corresponding expression of the classical theory 
[see ( 1 ) 1. The deviations of the {(A -' ) plot from a straight 
line parallel to the abscissa axis describe the corrections to 
the classical behavior. According to the phenomenological 
Mooney-Rivlin formula (2 ) ,  which describes well the ex- 
perimental data in the tension region (A -' < 1 ), the plot of 
{ ( A  -I) in this region should be a straight line with a slope 
determined by the coefficient c; in the A -' > 1 region, how- 
ever, the classical theory works well, so that the{(A - I )  de- 
pendence is quite weak. These data agree well with the 
((A -I) dependence calculated by us (for the case a = 12, 
E = 1 ), shown by the solid line in Fig. 7a. Figure 7b shows a 
direct comparison of our theory with experimental re- 
s u l t ~ . ~ ~ ~ ~ ~  The best agreement was obtained for the param- 
eters a = 9 and E = 0.8. 

The correlation of the results of the theory with the 
theoretical data turned out to be much higher than for other 
published high-elasticity theories (see Ref. 16). The fact 
that E < 1 in both cases is not surprising and is due to the fact 
that the methods used in Refs. 24 and 25 to prepare the poly- 
mer net cannot be regarded as equivalent to instantaneous 
crosslinking. 

3. The following experimental fact' is well known in 
high-elasticity physics: when the r(A) dependence is investi- 
gated for uniaxial tension or compression of partially swol- 

czF FIG. 7. Uniaxial tension and compression of a dry polymer 
net: a--calculated plots ofgl.2 (A - ' ), I ,,, (A - ' ) andg/(N / 
G0)=cZF(A - I ,  a, E) at a = 12 and E = 1; b--comparison of 
the results of the theory (solid line) and the experimental 
results of Refs. 24 (circles) and 25 (triangles). The best 

f,O- to agreement (correlation coefficient better than 0.99 in both 
0.06 cases) is reached by choosing the parameters a = 9, E = 0.8 

- 5  and an ordinate scale corresponding to vNT/ 
VoGo = 1.35-10-4 Pa for polydimethylsiloxane nets (Ref. 
24) and vNT/V,G0 = 2.27.10-4 Pa for natural rubber (Ref. 

0 2 Y 6 X' 25). 
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len polymer nets, the deviations from the corresponding 
classical behavior turn out to be much less pronounced and 
decrease with increasing degree of swelling (see, e.g., Ref. 
9).  To be able to describe the principal high-elasticity-phys- 
ics effects connected with topological restrictions, our the- 
ory must automatically account for this fact. Consider un- 
iaxial tension and compression of a net (having the same 
parameters as in Fig. 7b) subjected to preliminary isotropic 
swelling by m times: A, = mil, A, = A, = mil -I1'. In this 
case classical theory yields for the stress the expression [cf. 
( 1 ) ] r; = vTm2 (A - A -2)/V. It is therefore convenient to 
represent the experimental results in modified Mooney-Riv- 
lin coordinates3' f ' = r / r&  - A - I .  A family of calculated 
plots of6 '(A - ' ) for different values of m is shown in Fig. 8a. 
It can be seen that as m is increased the deviations from the 
classical theory indeed become less pronounced. Figure 8b 
shows, as functions of the degree of swelling, the phenomen- 
ological parameters c, and c2 that can be determined from an 
analysis ofthe curves ofFig. 8a (in accord with f ' = ( N / G , )  
(c, + A  -'c2), the approximation by a straight line was car- 
ried out in the interval 0.55 <A -' <0.95). At not too large 
values of m, these plots agree well with the known experi- 
mental data (see, e.g., Ref. 9). 

To demonstrate how our theory describes the depen- 
dence of the net properties on the conditions of its prepara- 
tion, we consider the results for uniaxial tension and com- 
pression of a dry net obtained by instantaneous crosslinking 
in a concentrated polymer solution, after which the solvent 
was removed. As noted above, it is necessary to use for the 
free energy of the net Eq. (37  ) [in place of (35) 1. A family of 

FIG. 9. Uniaxial tension-compression of dry polymer net prepared in the 
absence of a solvent. The function E'F(A - I ,  a, E ) E < ( N / G ~ ) - '  at a = 9 
and different values of E.  

FIG. 8. Uniaxial tension-compression of swollen poly- 
mer net: a-plots of 6 ' / ( N / G , ) E E ~ F ( A  -', a Em2) at 
a = 9 and E = 0.8 for different values of m; b-depen- 
dences of the Mooney-Rivlin parameters c, and c, on the 
degree of swelling m - ) .  

the r(A) curves in Mooney-Rivlin coordinates is shown for 
this case at different values of the parameter E in Fig. 9. It can 
be seen that, compared with the case of crosslinking in a dry 
state (E = l ) ,  the function ((A - I )  acquires a steeper maxi- 
mum; when E decreases this maximum shifts towards 
smaller il - '. We note also the appearance, at small E, of an 
additional singularity on the ((A - I )  curve in the region 
0.1 <A -' < 0.4. When E decreases the constants c, and c, 
decrease, in agreement with e~periment .~ 

5. If we consider the general case of uniaxial tension or 
compression of a partially swollen polymer network 
(m # 1 ) , prepared in the presence of a solvent (E # 1 ), the 
T(A) that results from our theory has the following struc- 
ture: 

The curves in Figs. 7-9 illustrate the dependences of the 
function F ( A  - I ,  a, Em2) on all its arguments. We note that 
as A -'--to this function approaches a value F = 4/27g,, that 
is independent of &m2. If Ern2 > 2.5, the dependence on this 
argument becomes very weak at all values of A - '. 

We can conclude thus that the molecular theory devel- 
oped in this paper accounts for a large number of experimen- 
tal facts. In particular, it explains the Mooney-Rivlin for- 
mula and the decrease of the corrections to the classical 
theory made necessary by the swelling of the polymer nets, 
and describes in terms molecular theory the dependence of 
the net properties on the preparation conditions. The earlier 
theories of high elasticity of polymer net with account taken 
of topological restrictions9-l5 could not account for so large 
a number of experimental facts. Therefore further general- 
ization and refinement of the present analysis, as well as its 
applications to other types of elastic deformation and of con- 
ditions of obtaining polymer net appears to be of great inter- 
est. 

The authors thank E. A. Zheligovskaya for help with 
the numerical calculations. 

" ~ t  k = Z, k, , l  the width of the maximum is much smaller than the 
number k of the primitive-path steps; the reason is that, on the one hand, 
k is proportional to N, and on the other, the distribution over this quanti- 
ty is governed by the presence of random loops of the coarsened trajec- 
tory, i.e., is diffusive. 

2'The parameter E decreases with decreasing volume fraction a, of the 
polymer in the solution under the crosslinking conditions. For example, 
for crosslinking in a semidilute solution (@,(l) it can be shown that 
.5 - @A/'. 
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3'The definition of the stress 7 = ( 1/V) (39/3A), is the same as before, 
but V = m3 Vo is the volume of the swollen sample. 
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