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We obtain an expression for the superfluid current density in 3He-B in a magnetic field, taking 
into account terms stemming from the internal angular momentum of the fluid. By direct 
calculation of the contribution, linear in the magnetic field and in the angular velocity of the 
container, to the energy of the fluid we find the magnitude of the internal angular momentum 
of 3He-B in a magnetic field at arbitrary temperatures; it turns out to be small to the extent 
that the particle and hole distributions are asymmetric near the Fermi surface. We also discuss 
the role played in the calculation of the angular momentum in 'He-B by non-unitary 
corrections to the order parameter in the B phase, which are linear in the angular velocity of 
the container and in the magnetic field. 

1. INTRODUCTION J = 0 there must also appear an average orbital angular mo- 

It is well known' that the superfluid A-phase of 3He in 
which there is a Cooper pairing of particles in a quantum 
state with an angular momentum component m = 1 along a 
preferred direction I has an orbital angular momentum. In a 
vessel with 3He-A there flows an undamped superfluid cur- 
rent which produces an orbital angular momentum 

2- (Alms)p.Trl; 

here Vis the volume occupied by the fluid, andp, the density 
of the superfluid component. At the same time due to the 
strong overlap of the Cooper pairs the internal orbital angu- 
lar momentum per unit volume of the fluid, due to the rota- 
tion of the particles in the Cooper pairs, turns out to be a 
negligibly small quantity: 

mentum 
<Li>=-Rai(Sa>.  

The magnitude of the orbital angular momentum of a con- 
tainer with 'He-B in a magnetic field turns out to equal (see 
Ref. 5) 

pi-- ( x n I v )  HaRaiV. (1.6) 
Herex, is the magnetic susceptibility of the normal Fermi- 
liquid, y the gyromagnetic ratio, and V the volume of the 
container. This orbital angular momentum is produced by a 
boundary current arising in 'He-B when there is a magnetic 
field present: 

Lint- ( T , l e F )  In ( e p / T , )  ( $ 1 ~ )  As in the A-phase, inside the volume occupied by 3He-B in a 
(see Ref. 2 and the references in that paper). magnetic field there occurs almost complete compensation 

In connection with the discovery"f a gyromagnetic of the orbital motion of the pairs, and the internal orbital 
effect in rotating 'He-B the problem of the angular momen- angular momentum per unit volume turns out to be of the 
tum has recently become urgent also for the B-phase of 'He order of 
in a magnetic field. The order parameter of the B-phase (see Lint- (T , /EP) '  In ( E F I T ~ )  (21~). (1.7) 
Ref. 4) 

Aai= AoRaiei@ (1.1) 

is given by the three-dimensional matrix Rai of rotation of 
the spin space (index a)  relative to the orbital space (index 
i ) ,  A,, is the modulus of the order parameter, and ei* is a 
phase factor. The wave function ( 1.1 ) corresponds to a state 
with total angular momentum J = 0. Here J i s  an eigenvalue 
of the operator 

f i=Li+RaiSa, (1.2) 
A 

and Li and $a are the orbital and spin angular momentum 
operators: 

Lid,=-ifieijkA,, (1.3) 

BaA,i=-iAea,,A,i. (1.4) 

The average values (2) and (g) vanish in the state ( 1.1 ), 
i.e., there are no orbital and spin angular momenta in the B- 
phase. However, when there is a magnetic field present the 
Cooper pairs in the B-phase acquire an average magnetiza- 
tion, i.e., (S) f 0, and thanks to the rigidity of the state with 

The results ( 1.6) and ( 1.7) obtained in Ref. 5 (see also 
Refs. 6 and 7)  contradict the results of Ref. 8 where a gener- 
alized gauge transformation was used to find that the inter- 
nal orbital angular momentum is of order 

L n t -  (p*lp) ( $ 1 ~ ) .  

One can find a discussion of this contradiction in Ref. 5. 
Equations (1.6), ( 1.7) were derived in Ref. 5 in the 

Ginzburg-Landau region as T-T, (although they are inde- 
pendent of the temperature!). In that paper it was shown 
that the orbital angular momentum in the B-phase is due to 
the non-unitary corrections to the B-phase order parameter 
in a magnetic field. In the same paper it was noted (for more 
details see Ref. 6 )  that there is a local angular momentum in 
the B-phase itself in a magnetic field (i.e., neglecting the 
non-unitary corrections to the order parameter), due to the 
appearance of a correction, linear in the field H, to the gradi- 
ent energy. The magnitude of that angular momentum is in 
the region T+T, a fraction 1 - T / T ,  of L'"' given in ( 1.7). 

We show in the present paper that the results (1.6), 
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obtained in Ref. 5 in the region as T+TC, are valid at any 
temperature. Thus, we summarize the discussion raised by 
the appearance of the papers by Dombre and Combescot9 
and by Yip1', in the latter of which it was stated that the 
internal angular momentum density in 3He-B at T = 0 is 
( - 2xn /3y)Ha Rai . We show that this statement is incor- 
rect notwithstanding the fact that the expression for the cur- 
rent density obtained in Refs. 9 and 10, on which it is based, 
is correct. Through a direct evaluation of the internal angu- 
lar momentum as the response of the energy of the fluid to 
the angular rotational velocity of the container - SF/S f l  
we show in the present paper that at any temperature, neg- 
lecting the non-unitary corrections to the order parameter, 
we have 

where a is a coefficient which is non-zero only due to a small 
asymmetry in the particle-hole distribution near the Fermi 
surface. The discussion of the results of Refs. 9 and 10 and a 
correct determination of the magnitude of the internal angu- 
lar momentum in the B-phase, neglecting non-unitary cor- 
rections to the order parameter at arbitrary temperatures, 
comprise the topic of the second section of the present paper. 
The corresponding very cumbersome calculations are given 
in Appendices A, B, and C. 

The third section is devoted to the evaluation of the 
orbital angular momentum of ,He-B in a magnetic field, tak- 
ing into account non-unitary corrections to the order param- 
eter. In it we generalize the corresponding results of Ref. 5 to 
the case of non-unitary order-parameter corrections arising 
in a container rotating with an angular velocity Q. 

2. CURRENT, GRADIENT ENERGY, AND ANGULAR 
MOMENTUM 

The superfluid current density in the B-phase in the 
approximation which is linear in the magnetic field as T-+Tc 
has the form (Ref. 6) " (here and henceforth f i  = m, = 1 ) 

In a constant magnetic field and neglecting density gradi- 
ents, the last term in (2.1) can be written as 4 curl L, where 

has the meaning of the internal angular momentum density 
of the Cooper pairs, and M is the spin density of the Cooper 
pairs in 3He-B. The coefficient a is of the order of (T,/ 
~ ~ ) ' l n ( & ~ / T ~  ) and therefore, as we have already noted, if 
the non-unitary corrections to the order parameter of the B- 
phase are neglected the internal angular momentum density 
of the B-phase in a magnetic field as T+TC is a fraction 
1 - T/Tc of Lint of (1.7). 

The statement that the internal angular momentum in 
the B-phase in a magnetic field is small was criticized in the 

papers by Dombre and Combescot9 and Yip," who used a 
gradient expansion of the equation for the density matrix9 
and the Gor'kov equations1' to obtain an expression for the 
superfluid current density in the B-phase in a magnetic field 
at T =  0: 

j k 'MvPL'vk - '12e~<jVi  ( M v P R v j )  . (2.3) 

Here 

~ , k = ' l z e a ~ ~  ( V k R a j )  R g j  (2.4) 

is the spin superfluid velocity and 

MvP=2xnH,/3y 

is the spin density of 'He-B at T = 0. 
The last term in (2.3) has the form 4 curl L, where 

L.=-M v P R v j .  (2.6) 

The expression for the current in 3He-B in a magnetic field at 
T = 0 is thus the same as the expression for the current of a 
superfluid Bose-liquid consisting of molecules in the same 
quantum state as the Cooper pairs in ,He-B (see Ref. 10). 
The quantity L in (2.6) was interpreted in Ref. 10 as the 
internal angular momentum density of the B-phase in a mag- 
netic field. 

There arises thus a contradiction, wherein the internal 
angular momentum density of 'He-B in a magnetic field can 
be both the negligibly small quantity (2.2) as T-+TC and of 
the order of the spin polarization of the whole liquid at 
T = 0. We see that this contradiction has its origin in the 
incorrect interpretation assumed in Ref. 10, of the quantity 
(2.6) as the internal angular momentum of 'He-B in a mag- 
netic field. 

Equation (2.3) for the current density is valid under the 
assumption that the particle-hole distribution is symmetric 
near the Fermi surface. A simple calculation (see Appendix 
B) shows that, if this assumption is not made the following 
correction is added to the current density (2.3): 

jL=lIz rot Lint, (2.7) 

where 

with L given by Eq. (2.6). Such a correction to the current 
density should alert one, as it reminds one ofthe situation for 
the A-phase of 3He, in which".12 the superfluid current den- 
sity has not only a term (curl l)j term, but also a term f 
curl Lint corresponding to a contribution from the internal 
angular momentum which is small as the asymmetry in the 
particle-hole distribution is small. 

It is impossible to find out directly from the expression 
for the superfluid current density which of the quantities 
(2.6) or (2.8) has the meaning of the internal angular mo- 
mentum of ,He-B in a magnetic field. To do this it is neces- 
sary to have an expression for the free energy F of the fluid 
in a container rotating in a magnetic field with an angular 
velocity a. After that the internal angular momentum is 
sought for as 

It was shown in Refs. 5 and 6 that the quantity (2.2) has, 
indeed, the meaning of the internal angular momentum in 
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3He-B in a magnetic field in the Ginzburg-Landau region as 
T-T,, since it corresponds to Lint evaluated using Eq. 
(2..9). At the same time it follows from the expression for the 
free energy of 3He-B in a rotating container in a magnetic 
field that at T = 0 the orbital angular momentum (2.6) has 
the meaning of the orbital angular momentum generated by 
the superfluid current, while the magnitude of the internal 
angular momentum and its contribution to the current are 
given by Eqs. (2.8) and (2.7). 

We formulate the results more precisely. The free ener- 
gy of 3He-B, which is quadratic in the gradients and linear in 
the magnetic field, assuming symmetry of the particle-hole 
distribution, is equal to 

F~ = J (vs-vn) js ~ v + F ~ ~ ,  (2.10) 

where F,, is that part of the energy which is independent of 
v, - v, and therefore does not contribute to the current den- 
sity, and j, is the superfluid current density obtained assum- 
ing symmetry of the particle-hole distribution. At T = 0 the 
quantity j, is the same as (2.3), and as T+TC it is the same 
as expression (2.1 ) without the last term. It is immediately 
clear from (2.10) that the internal angular momentum de- 
termined from (2.9) vanishes. The orbital angular momen- 
tum (2.6) is thus the orbital angular momentum of the su- 
perfluid current. Since the vortex term in the current (2.3) is 
concentrated near the surface of the vessel, it leads to the 
existence of an orbital angular momentum of the fluid in the 
integral sense (see Ref. 5 ) ,  i.e., for the vessel as a whole. It is 
shown in Ref. 5 that the energy (2.10) turns out to affect the 
orientation of the order parameter in 3He-B only near the 
surface of a rotating vessel (in a layer of thickness of the 
order of the magnetic length 6 ), and only under non-equi- 
librium conditions, i.e., when there is a countercurrent 
v, - v , .  At equilibrium there is in a rotating container a 
vortex lattice such that the surface countercurrent is greatly 
weakened by the vortices: v, z v ,  . 

Taking the asymmetry of the particle and hole distribu- 
tion into account adds additional 9, terms to the free ener- 
gy: 

F = F s + F a ,  (2.11) 

Fa = I dV[a'M.pR&.+o~~M,p~.ieijkvj(u.-vn)~]. (2.12) 

Here a =  4 curl v, is the angular velocity of the vessel. Both 
coefficients a' and a" are of order ( Tc /cF )21n (cF/TC ) . In 
accordance with (2.9) the internal angular momentum of 
%e-B in a magnetic field equals 

L,~"~=- (af+a") dlV1'Hvi, (2.13) 
where M f is given by Eq. (2.2). The coefficient a in ( 1.8 ) 
and ( 1.9) thus equals a' + a ". We note that under equilibri- 
um conditions, i.e., when a = +(curl v, ), the internal angu- 
lar momentum is determined solely by the coefficient a'. 

jL=-6Fa/6v,. (2.14) 
In the Ginzburg-Landau region this is the last term in 

(2.1). If T = 0 this is the current (2.7) with the internal 
angular momentum (2.8), or, what is the same, (2.13). 

The calculations leading to the results formulated here 
can be found in Appendices A, B, and C.  

3. NON-UNITARY CORRECTIONS TO THE ORDER 
PARAMETER 

We describe in this section a method of taking into ac- 
count non-unitary corrections to the order parameter of the 
B-phase in order to find an internal orbital angular momen- 
tum which generalizes the results of Ref. 5. For clarity we 
consider only the region T+Tc, although the conclusions 
formulated here remain valid in the whole temperature 
range. The free energy, linear in the external field Hand in 
the angular rotational velocity fk of the vessel, of a spatially 
homogeneous superfluid Fermi liquid has in the case of p- 
pairing the form 

S r = F , + F n + F o .  (3.1) 

Here 

9 - 0  = J dV{-aApimAfii+ptApi*ApifAvjAvj+fi2ApiiAp*Av;Avj 
+ $sAfi<'AviwAvjA~+b~Api*AviAvj'A~+pApi'AviAvjAfij'} (3.2) 

is the condensation energy; the complex 3 X 3 matrix Aai is 
the order parameter of an arbitrary state of the superfluid 
Fermi-liquid in the case ofp-pairing with Roman orbital and 
Greek spin indices. In the weak coupling approximation the 
coefficients a and B equal 

where No = m*pF/2rr2 is the density of states on the Fermi 
surface for a single spin component. The energy linear in the 
field H is 

with (see Ref. 13) 

N ;  is the derivative of the density of states with respect to 
energy on the Fermi surface. The energy linear in $2 is 

with (see Ref. 2) 

The order parameter of the B-phase of 3He 

minimizes expression (3.2). Minimizing (3.1 ) we find the 
equilibrium order parameter with account taken of the non- 
unitary corrections: 

Substituting (3.9) into (3.1) weget the increment, quadrat- 
ic in H and R, to the equilibrium energy of 3He-B on account 
of non-unitary corrections to the order parameter: 
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Equation (3.10) adds to the gyromagnetic energy of 3He-B a APPENDIX A 
contribution which is ( 1 - T/Tc ) - ' times larger than 
expression (2.12) which holds when one neglects the non- 
unitary corrections to the order parameter of the B-phase. 
Far from Tc both expressions (3.10) and (2.12) are of the 
same order of magnitude. 

The magnitude and internal orbital angular momenta 
are given by the equations 

6 0  g,' (g~'Ha-g~'RakQk) M ---=- a -  
(3.11) 

6 H a  3pi-p4+8ss 
I 

which generalize the corresponding expressions (3.14) and 
(3.15) of Ref. 5'' to the case of non-unitary corrections that 
depend on the rotational angular velocity a. 

The integral orbital angular momentum of a rotating 
vessel with 3He-B in a magnetic field produced by the surface 
current has, in accordance with Eq. (2.12) from Ref. 5 the 
form 

2 = 2  (K,+K~) (A,:12V(L>, (3.13) 

where 

(Li>=-iei&A,'A,/I Av,'l2, KZ+K3=7% (3) N,~ ,~ / l20n~T,",  

(3.14) 
V is the volume occupied by the fluid. Substituting expres- 
sion (3.9) into (3.14) we get 

whence 

9ilV-vp2 (gHiRaiHa-golQi). 

It follows from Eqs. (3.11), (3.12), (3.16) that the 
magnetic and orbital angular momenta of the fluid vanish 
when the following relation holds: 

Ha= (goi/g~')RakQk. (3.17) 

4. CONCLUSIONS 

The theory of gyromagnetic phenomena in superfluid 
3He-B when there is no vortex lattice in the rotating fluid was 
given in Ref. 5. The conclusions reached in Ref. 5 on the 
basis of calculations in the Ginzburg-Landau region T-T, 
remain valid for any temperature. The orbital angular mo- 
mentum in 3He-B in a magnetic field, as in 3He-A without a 
field, is practically completely concentrated in the current 
flowing along the surface of the vessel and only an insignifi- 
cant part - (T, / E ~  ) 'ln(~,/T, ), caused by a small asym- 
metry in the particle and hole distributions near the Fermi 
surface, is connected with the local rotational motion of the 
fluid. This is a manifestation of the specific nature of a super- 
fluid Fermi liquid and distinguishes its behavior from that of 
a superfluid Bose liquid consisting of molecules with the 
same wave function as the Cooper pairs in the Fermi liquid. 

I am grateful to G. E. Volovik for many useful discus- 
sions and also to R. Combescot, T. Dombre, and S. Yip for 
preprints of their papers. 

Gradient expansion of the Gor'kov equations 

To find the free energy of 3He-B in a rotating vessel in a 
magnetic field, and also for calculating the internal angular 
momentum of the A-phase of 3He (see Ref. 2) we shall for- 
mally assume that superfluid 3He-B is a charged Fermi liq- 
uid with Cooperp-pairing in an external magnetic field act- 
ing both on the spins and on the particle charges. The field of 
the vector potential A is then equivalent to the field of the 
normal velocity v, : 

and the rotational angular velocity of the thermostat is de- 
termined to be a =  f curl v, . In the present Appendix we 
obtain solutions for the Gor'kov equations for a charged 
Fermi liquid withp-pairing up to second order in the spatial 
gradients; the solutions are linear in the external magnetic 
field acting on the particle spins. 

We write down the Gor'kov equations for the charged 
B-phase of 3He (see Ref. 2) : 

{ i d - p  (r) --'/,(k-iV-ifQa/dk] ) 
-Bo)G(k, r, o )  -d(k+O, r )F+ (k, r, o) = l ,  (A.l)  

{-io+p(r) -'I2 (k+O-i [Qdldk] ) 2-Bu)F+ (k, r, o )  
+d+(k-iV, r)G(k,  r, 0 ) = 0 .  

Here 

we use the system of units in which lei = f i  = m = c = 1, H 
is the magnetic field which acts on the particle spins which 
we shall assume to differ from a = 5 curl A = f curl v, , the 
magnetic field acting on the particle charges, i.e., the angular 
velocity of the heat bath. The Green functions with a superi- 
or bar 

(k, r) = ) exp [-ik (r-r') ] C (r, r') d3 (r-r') , 
r (A.2) 

P+(k,  r) = 1 exp[-ik(r-r') IF+ (r, r')d3 (r-rr) 

are connected with the usual Green functions as follows: 
r 

Here and henceforth we shall omit the frequency depen- 
dence of F + and G to simplify the formulae. Under the gauge 
transformation A-A + VX the functions and I: + trans- 
form according to 

G-LG, F++Ff exp [ 2 i ~ ( r )  1. (A.4) 
The same relations hold also for the solutions of (A. 1 ) ob- 
tained to any order of the expansion in the slow gradients 
- iV, 0. The matrix of the order parameter of the B-phase 

A (k, r) =A, (T) iaada (k, r) ciu=Ao (T) 20aRaz (r) (k,/kF) ouetQ, 
(A.5) 

where a, = (a, ,a, ,a, ) are Pauli matrices, satisfies the 
equation 

dS1 kk' 
A(k,r)=-3€! j-, 4n kF ~ x ~ ( k ' , r ) .  
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One can expand the solutions of the set (A. 1 ) in power 
series in V, 0, and A: 
€=Go+Gt+G2+ . . . ,  F+=Fo++Fl++F2++ ..., (A.7) 

or, in matrix notation, 

As we are interested in effects which are linear in the 
field H, we write each of the functions Y i  as a sum: 

9,=9,"+9", (A.9) 

where 3; is the function 9, in the field H = 0, and 9 f i s  a 
correction linear in the field. For the functions 9; and 3 7  
we have the following set of equations: 

(A. lOa) 
' W .  

E30H-~BSo=0, (A. lob) 

E910+R,9,0=0, (A.10~)  
~ ~ ~ ~ - a B 9 ~ ~ + R ~ 8 ~ ~ = 0 ,  (A.lOd) 
E ~ , O + R , ~ , ~ + R ~ ~ ~ = ~ ,  (A. lOe) 

E ~ , H - U B ~ ~ ~ + R , ~ ~ ~ + R ~ % ~ = O .  (A. lOf ) 

Using the results of Appendix A and dropping the terms 
proportional to V p  and VH, we get 

I a A I a A 
Gi"=-iF (a') 'uB - OA+ + - AuBA+ - Oh+ 

ak DS ak 
1 dA 

(AuBA+) - - a* - 0 (A+aBe*+suBA+) +-A-- 
D3 dk i D3 ak 

-- (&+so) uBAkOA+ - - '* - kv  (AuBAt). (B.2) 
D3 D3 i 

Evaluating 4 Sp G 7 and dropping terms with the vector po- 
tential A, which cancel out when we take the Hermitian con- 
jugate in (B. 1 ), we get 
1 - Sp GI" 
2 

=-- AfeasT~b xx ads ad, { [ 2 & ~ 2 + e a * + ~ , ' ] 6 . b + 2 d a d ~ ~ ~ )  
D 

-- (&+a*) AhabTBad~kV dl. 03.3) 
DS 

Using the relation (see Ref. 10) 
adp adT ada ad, 

easTBadsda xz = easTBa -- ak ar ' 
Here we have 

1 v a I a2A Substituting (B.5) into (B. 1) we find 
--(T)z-+[Qz] -hwoioj ask ads adT 

Rz = 0' k 
2A02 (ee'+A.L) ea,TBa Kx j , - 2 J -~zk i [ - - -5 -  

----[a"] 
2 aktakj 2 i dk boa 4%A ' 

(A.13) - - D2 eapTB. - ak,arm ad. - a d  + ---+ D easT~adBk~dT]  . (e.6) 

The solutions of the set (A. 10) have the form 

(A. 14a) 

where 
D=JelZ+AA+. 

APPENDIX B 

Superfluid current in the B-phase in a magnetic fleid 

We now integrate the second term in (B.6) by parts: 

2602 ade adl 
+k,[ - -ii; (c"+Aoz) eaa~Ba--- dk, arm 

We consider the case T = 0. Using the relations 
( T =  0)  

The density of a current linear in the field H can be 1 2  4 I ~ E ~ = ~ ~  J ~ E % = = .  (B.9) 
expressed in terms of the Green function G r: 

1 
we get from (B.7) 

d3k 
j = I-? k~ &- sP G." (k, r) + h . ~ .  (B.1) 1 %=Ha 3 Rar. (B.lO) aRsm R,. - - eijk- j i  E3 - ~nea~THa - (2n) O 31 a ri 3.1 arj 
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In the absence of terms proportional to VH and Vp, Eq. 
(B.lO) is the same as (2.3). One proves easily (see Refs. 7, 
10, and 14) that when those terms are taken into account Eq. 
(2.3) is exact. 

We now note that the integration over d l  in Eq. (B.7) 
was performed for constant density of states, i.e., in the ap- 
proximation of symmetric particle and hole distributions 
near the Fermi surface. Bearing in mind that the density of 
states near the Fermi surface can be written as 

No ( t )  = N ~ + N ~ E / E ~ + N ~ ~ ~ / E F ~ ,  (B . l l )  

we get with logarithmic accuracy from the second and third 
terms of (B.7) a correction to the second term of (B. 10) or 
(2.3): 

see Eqs. (2.7) and (2.8). 
We go over to the case T-+Tc. In this case it is more 

convenient to start directly from Eq. (B.6). Retaining in it 
only the terms proportional to A: we have 

Here 1; = k/k and k = 2 (& + p ) .  It is convenient to inte- 
grate the term containing - ~ / E ~ E *  in Eq. (B.13) with re- 
spect to d& by parts taking into account the asymmetry in the 
distribution of the particles and holes distribution (B. 1 1 ) . 
We integrate the last term in Eq. (B. 13) by parts using the 
exact expression for the density of states in the weak cou- 
pling approximation: 

N,(E) =A (V-cl)". ( B .  14) 

After regrouping the terms we get thus 

One sees easily that after integration and summation over 
the frequencies the first term in (B. 15) goes over into the 
first term of (2.1 ), while from the second term of (B. 15), 
which contains an additional small factor ( T, /E, ) (E,/ 

T, ), we can separate the last term of (2.1 ). 
One should note that if in the limit as T-+T, one retains 

also terms a (A,)4 there appears in the expression for the 
current density (2.1 ) , apart from the term 

corresponding to the internal angular momentum with 
a- ( T , / E ~  ) * l n ( ~ ~ / T =  ), also a term 

-'IsB (p . lp )  ( x ~ H ~ I ~ )  enhViRvm, (B.17) 

wherep- ( AdTc )*. Thecontribution (B. 17) to thecurrent 
is larger than the contribution (B. 16) up to a negligibly nar- 
row, A, 5 ( Tc / E ~  ) T, , vicinity of the superfluid-transition 
temperature. 

APPENDIX C 

The gradient energy 

The energy which is quadratic in the gradients of the 
order parameters and is linear in the magnetic field acting on 
the particle spins can be expressed in terms of the Green 
function F,+ H(k,r) (see Refs. 2, 15) : 

1 

(C.1) 
Here F,+ H(k,r,A) is the function F,+ from (A.  14f ) in 
which we have made the substitution A---filA. From (A. 14) 
we have 

The evaluation of the gradient energy using Eqs. (C. 1 ) 
and (C.2) belongs to that category of calculations which are 
more easily done independently than by following their de- 
velopment. We give here the least cumbersome part of the 
calculations, namely we obtain the contribution to the free 
energy, which is proportional to the angular velocity of the 
heat bath, i.e., the first term in Eq. (2.12). 

From the first two terms in (C.2), separating in R, the 
contributions proportional to R, we have 

Moreover, 

hAoZ - - (2e2+&'&) f - 
= { D3 ( h )  

h'AO' )ea&adrk  [ Q &] dl. 
D3 (A) 

D ( h )  = I E I Z+hzAoZ. ((2.4) 

Integrating over il we get 
1 
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Dropping terms which are odd in the frequency we rewrite 
the expression in the braces as 

4t2/D2-4t2/le 14+2/1 el2-2/D. (C.6) 

Summing (C.6) over the frequency we get 

We must note here that it is essential to sum just over the 
frequencies, since the substitution 

a 

as T 4  is incorrect as C O .  We integrate next (C.7) with 
respect to 6: 

We have thus for the contribution proportional to to the 
gradient energy 

We have thus shown that the contribution linear both in 
H and in 0 to the free energy [the first term in (2.12) ] is 
non-vanishing only when we take the particle and hole dis- 

tribution asymmetry into account, and has therefore an ex- 
tra small factor ( Tc /EF ) 21n (&FITc ). 

Similar although considerably more complicated calcu- 
lations lead to the conclusion that the second term in (2.12), 
which is proportional to H and to curl (v, - v, ), is also 
small because the particle and hole distribution asymmetry 
is small. 

"The values of the coefficients in Eq. (2.1 ) are corrected as compared to 
Ref. 6 where all coefficients must be multiplied by 4. 

*'On the right-hand side of Eq. (3.13) of Ref. 5 a factor - 2/3 was omit- 
ted and hence all signs of the right-hand sides of Eqs. (3.14) to (3.16) of 
that paper must be reversed. 
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