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The temporal correlation function Gq (t) of the concentration fluctuations in a solution of 
linear macromolecules is investigated. It is shown that there exist three characteristic long- 
wavelength regions, differing in the behavior of this function: R EN "2a<2.rr/q41, A,<217/ 
9 4 ,  and 217/qsR,, with A ,  -N ' 1 2 ~  and A,-NR, where N is the number of links in one 
polymer chain. In the first region the correlation function is described by two exponentials 
with substantially different relaxation times. In the second region the term corresponding to 
the slower relaxation becomes essentially nonexponential. In the third region the dependence 
G, ( t )  again becomes exponential, with one relaxation time. 

1. INTRODUCTION 

A solution of flexible-chain linear macromolecules is 
said to be connected if the volume fraction of polymer in it 
is not small in comparison with unity. The spatial size R of 
the polymer coils in a concentrated solution is close to the 
"ideal" size: R = N 'I2a (Ref. 1 ), where N is the number of 
links in the chain and a is the length of one link. 

A large number of both theoretical and experimental 
papers1-' have been devoted in recent years to the study of 
the dynamical and equilibrium behavior of polymer-concen- 
tration fluctuations c(q) with wavelength 2r/q consider- 
ably greater than the length of one link. In the case of long- 
wavelength fluctuations (with wavelength 27r/q)R ) the 
main attention has been paid to the study of the dependence 
of the cooperative-diffusion coefficient D, on the concentra- 
tion and other characteristics of the solution. 'v4-' In the pres- 
ent paper it is shown theoretically that the relaxation of very 
long-wavelength concentration fluctuations is far from al- 
ways described by a single coefficient D,. On the contrary, 
the relaxation of these fluctuations in the general case has a 
complicated, nonexponential character. 

In the first part of the next section we describe the tradi- 
tional version of the theory, and an analysis of its applicabi- 
lity is concluded by the construction of a more complete 
system of dynamical equations. The third section is devoted 
to an investigation of these equations and to a description of 
the results. 

2. HYDRODYNAMIC DESCRIPTION OF CONCENTRATION 
FLUCTUATIONS IN A POLYMER SOLUTION 

The temporal correlation function of the concentration 
fluctuations in the q-representation is defined as 

Gq (I) = s-Iqr (&e(O, O)&c (t, I) ) at-. (2.1) 

For the calculation of this function it is convenient to use the 
fluctuation-dissipation theorem. Let an external field h(t,r) 
act on each link of the macromolecule. The response of the 
system can be represented in the form 

where x, (7) is the generalized susceptibility, and 6cq (t) 
and h, ( t )  are the Fourier transforms of the functions Sc (t,r ) 
and h (t,r), respectively. The relationship between the corre- 
lation function and the generalized susceptibility in the non- 
quantum case has the form8 

T x ,  ( t )  =-dG, ( t )  /at, t>O. (2.3) 

Thus, to determine G, ( t )  it is sufficient to calculate the gen- 
eralize susceptibility x, ( t). 

In the limit of very large wavelengths the concentration 
change induced by the action of an external field can be de- 
scribed by the diffusion equation 

where p - ' is the effective mobility of a link, andp = p (c) is 
the chemical potential of a link. The expression found from 
Eqs. (2.3 )-(2.5 ) for G, ( t )  for small q can be called the tra- 
ditional expresssion' : 

The cooperative-diffusion coefficient D, is equal to 

where Il is the osmotic pressure. The expression (2.6) is not 
specific to polymers, inasmuch as the dependences P ( c )  and 
p (c) in a concentrated polymer solution have the same char- 
acter as for a system of broken links. 

An important feature specific to polymer systems is the 
fact that the region ofapplicability ofthe law (2.6) should be 
limited to extremely small q. For q # O  the chains move with 
different phases, i.e., each distinct chain should be displaced 
relative to the polymer matrix that surrounds this chain. 
This displacement is strongly impeded by the meshing ef- 
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fect: which reflects the fact that a given chain in motion 
cannot intersect the contours of other chains. As a result, as 
shown below, the law (2.6) can be violated even for q(2?~/R 
(i.e., for wavelengths considerably greater than the size of 
one molecular coil). 

We turn to the construction of a more complete system 
of equations describing the dynamics of concentration fluc- 
tuations with q<2rr/R in a polymer solution. Following the 
general scheme of Ref. 10 for the description of hydrody- 
namic fluctuations, besides the concentration field c( t,r) we 
also introduce the field v(t,r) of the macroscopic velocities 
of the polymer links. Strictly speaking, a complete descrip- 
tion of the solution should include two more fields: the total 
densityp(t,r) and the mass flux j(t,r), related by the contin- 
uity equation 

However, if we assume that the solution as a whole is incom- 
pressible, i.e., p = const, the flux j will not affect the concen- 
tration fluctuations; therefore, we can set j = 0. 

The linarized equations of motion in an external field h 
have the form 

mcav/dt=-VII-cVh-cgv+qVZv+(f+q/3) V (Vv), (2.8) 

where m is the mass of one line, r] and g are the viscosities of 
the solution, and D, is the self-diffusion coefficient of the 
macromolecules in the solution. Equation (2.8) differs from 
the usual Navier-Stokes equation only in the term - c pv, 
which is the density of the force exerted on the polymer by 
the solvent. In view of the large dissipation caused by the 
friction between the polymer and the solvent, we can neglect 
the inertial term mcbJv/bJt in Eq. (2.8). The flux J of polymer 
links in the second formula of (2.9) consists of two terms: a 
hydrodynamic term cv, and a diffusion term, which corre- 
sponds to the flux arising from the self-diffusion of the ma- 
cromolecules in the matrix of the surrounding chains under 
the influence of the external force - N( pv + Vp + Vh). 

For a low-molecular-weight solution, the last two terms 
in Eq. (2.8), which are due to the viscosity, would be negligi- 
bly small in comparison with the frictional force - cpv. 
Omitting these terms, after simple transformations we can 
reduce the system of equations (2.8), (2.9) to the system 
(2.4), (2.5). In the case of a polymer solution the "viscous" 
terms cannot be discarded, since the viscosity of the solution 
is anomalously large.9 

The viscosity of the polymer solution and the self-diffu- 
sion coefficient of the macromolecules have been calculated 
on the basis of the reptation model of Ref. 11: 

where Go is the characteristic shear modulus of the system, 
T, is the characteristic relaxation time, and N, and T~ are 
phenomenological parameters: N, has the meaning of the 
average number of links between meshings along the chain 

(usually, Ne - lo2); the parameter T, is of the order of the 
time taken by one link to diffuse over a distance a. The for- 
mulas (2. lo),  (2.11 ) are correct for sufficiently long macro- 
molecules with N>N,. Such a strong dependence of the vis- 
cosity on the number of links in the polymer chain (7, a N 3, 

which follows from the reptation theory) is due precisely to 
the meshing effect mentioned above. 

In Ref. 11 it was found that the viscosity of a polymer 
solution has considerable dispersion: 

where the sum is taken over odd positive n. Using the meth- 
od of Ref. 11, it is not difficult to show that the second viscos- 
ity 5 of the polymer solution is proportional to the first vis- 
cosity: 

Introducing the Laplace parameter p = iw, we can trans- 
form the expression (2.12) to the form 

where 

After Fourier transformation with respect to the spatial 
variables and Laplace transformation with respect to the 
time, the system of equations (2.8), (2.9) is reduced to the 
form 

where c = c(p,q) and v = v(p,q) are the Fourier-Laplace 
transforms of the corresponding functions, c, is the average 
concentration of the solution, and y, = (an/dc). = ,  is the 
inverse compressibility of the polymer component. 

3. RESULTS 

From the quantities appearing in Eqs. (2.15), (2.16) 
we can construct the dimensionless parameter 
E = /?ND,/T- N,/N, which is small by virtue of the inequa- 
lity Ne (N. Solving Eqs. (2.15), (2.16) in leading order in E, 

we find 

We introduce one further important dimensionless param- 
eter: 

Depending on the structure of the polymer, the quantity a 
can take any value; for polymers with a chain of not very 
high rigidity, a -0.1-0.01. 
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Using the relations (3.1), (3.2), and (2.3), it is not 
difficult to find the correlation function G, ( t ) .  Depending 
on the wavelength 2?r/q, three different relaxation laws are 
possible. If 

then 

where 

.f~,= ( i + a )  yo/@= ( i + a )  D,, D2=2ND8GOlcoT=Dcea. 

Thus, the relaxation consists of two stages: a rapid 
stage, which is characterized by a diffusion coefficient 5, 
(this coefficient does not depend on the number N of links in 
the macromolecule), and a slow stage, which is character- 
ized by a much smaller diffusion coefficient D, a 1/N. 

For 
Na/N,'h=h1<2n/q<aN"i:N,-'"[yo~o ( I f  a )  

the correlation function has the form 

where 

in which n are odd positive numbers. Consequently, the slow 
stage of relaxation in this regime is found to be essentially 
nonexponential, with a characteristic time T,. 

Finally, for very large wavelengths 27r/q,/Z, the relaxa- 
tion occurs in accordance with the law (2.6), corresponding 
to pure diffusion. 

As follows from (3.4)-(3.6), at the largest times the 
relaxation is always exponential: 

Gq ( t )  me-r', t+=, 

where the characteristic relaxation rate r depends on q in a 
highly distinctive way: 

We shall discuss the physical meaning of the results 
obtained, drawing attention principally to the dependence of 
the relaxation rate r on Nand q. The increment in the free 
energy of the system on account of a small change Sc in the 
concentration is equal to SF = 4 A (Sc) per unit volume, 
whereA is a coefficient that does not depend on N. The relax- 
ation rate at large times can be found by equating 
Sk = AScSc to the dissipation rate W. If the main relaxation 
mechanism is diffusion of macromolecules in the matrix of 
the surrounding chains, then 

where D is the diffusion coefficient, which depends on N in 
accordance with the law D-Do/N2 (see (2. lo)),  n = c,JN 
is the concentration of macromolecules, and v is their char- 

acteristic velocity, which can be determined from the contin- 
uity equation: 

Substituting (3.8) and (3.9) into the equation 

we find 

where const does not depend on N. Thus, the regime consid- 
ered corresponds to formula ( 3.7a). 

For large wavelengths 2r/q, a relaxation mechanism 
competing with the diffusion is the coherent motion of the 
macromolecules, in which the dissipation is due to the vis- 
cosity 77 -7JV3 of the polymer solution (see (2.10) ) : 

Comparing (3.8) and (3.11), we find that coherent motion 
becomes more favored if 

Substituting (3.11) into (3. lo),  we obtain 
r = 6 ~ / 6 c - - A c , 2 / q ~ N ~ = c o n s t ~ N - ~ ,  

which agrees with (3.7b). 
Finally, for still larger wavelengths the rate 

W = TD ; 'c,v2 of dissipation on account of friction 
between the polymer and the solvent becomes more impor- 
tant than the "viscous" dissipation. This occurs at 

In this case, 

which corresponds to the regime ( 3 . 7 ~ ) .  
Thus, the three long-wavelength regimes (a, b, c )  con- 

sidered above correspond to: a )  dissipation primarily on ac- 
count of diffusion of macromolecules through the polymer 
matrix; b)  hydrodynamic flow of the polymer component as 
a viscous liquid; c) friction with the solvent during the mo- 
tion of segments of the macromolecules. We note that the 
characteristic wavelength A ,  corresponds, in its geometrical 
meaning, to the total length of the "tube" introduced in the 
reptation model9; at the same time, the other characteristic 
length A, cannot be interpreted geometrically. 

Thus, in this paper we have shown that the relaxation 
even of very long-wavelength fluctuations of the concentra- 
tion of a polymer solution is not described by simple diffu- 
sion. This effect is connected with the presence of topologi- 
cal restrictions-meshings that strongly affect the motion of 
the macromolecules. It might appear that topological re- 
strictions could not influence the relaxation of concentration 
fluctuations, inasmuch as these fluctuations are most often 
formed with no change of the "topology." This argument, 
however, is incorrect, since the fact that fluctuations with a 
change of "topology" arise rarely is compensated by the fact 
that they take a long time to relax. 
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