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A description is given of a new model proposed for the description of binary reactions of the 
(e, 2e) type. It is a logical extension of the impulse approximation, which retains its simplicity 
and at the same time is valid in a much wider range. The advantages of this model compared 
with the currently popular eikonal impulse approximation are discussed. The results of the 
calculations are compared with a large amount of data on the (e, 2e) scattering on atoms of 
helium and other rare gases. The wave function of the Ne2p state is found to deviate somewhat 
from the Hartree-Fock function. 

1. INTRODUCTION 

The present paper deals with some theoretical aspects 
ofthe (e, 2e) reactions which is a topic in atomic physics that 
has been growing explosively in the last fifteen years. At 
present many research terms in Australia, West Germany, 
Italy, Canada, U.S.A., and France are engaged in precision 
measurements of the various characteristics of the target it- 
self and of the many-body scattering processes manifested in 
coincidence experiments. Large amounts of experimental 
data have been accumulated. However, a theoretical de- 
scription of the ionization processes still shows inadequacy 
of our ability to represent these complex many-body reac- 
tions by simple models in a wide range of angles and ener- 
gies. 

Two types of the (e, 2e) reactions are distinguished in 
the cases when the energy E of an ion incident on a target is 
much greater than the binding energy of an electron is an 
atom (we speak here of the outer shells of the atoms). In the 
case of binary reactions the energies of the final electrons E, 
and E, are close to one another and approximately equal to 
half the energy of the incident particle. The scattering angles 
of the final electrons are within the range 30-60" relative to 
the line of incidence, i.e., they are within the quasielastic 

1-2 keV) energies of the incident electrons, to much lower 
energies by allowing for the interaction of electrons in the 
final state. We shall see later that such an allowance makes it 
possible to describe not only the behavior of the differential 
cross section curve in relative units, but also on the absolute 
scale. 

2. THEORY 

Various theoretical models used to describe the binary 
(e, 2e) reactions are based on the theory of scattering of 
three particles. Reduction of the many-body reactions, such 
as the general case of the ionization 

to the three-body case is possible only at sufficiently high 
energies of the emitted electrons. We may assume that dur- 
ing the time of quasieleastic knocking out, the residual ion 
whose field affects the electron being knocked out remains in 
the same state, i.e., A = ( A  + + e ) .  In other words, we shall 
consider the equation (here, and later, we shall assume for 
convenience that 2m, = 1 ) 

peak. These reactions are characterized by a large momen- 
to which the many-body equation reduces under the above 

tum transfer Q = p, - p, and are described reasonably well assumption. In the coordinate representation we have 
by the simple impulse approximation. H ,  = - a '/arf, Vi ( r )  = - e2Z(r) / r  is the Hartree-Fock 

In the second type of reaction the energy of one of the 
potential, VI2 = e2/lr, - r,l. The effective charge Z ( r )  is 

electrons E, is close to E and the angle of scattering of this 
calculated in the usual way: 

electron lies within the range 0-10". Such reactions are char- - 
acterized by a small transfer of a momentum to a target Z ( r ) =  N - r z ' n ~  j d 3 r 1  q A 2 ( r f ) / i r - d l .  
atom. Theories based on various modifications of the im- ( 3  1 

pulse approximation fail to describe satisfactorily the var- 
ious features of these reactions, particularly the profile and 
position of a recoil peak. 

A detailed description of the state of experiments and a 
theory of fast ionization processes can be found, for example 
in Refs. 1-3. It is worth noting also the great practical impor- 
tance of the (e, 2e) methods in quantum chemistry, plasma 
physics, and surface physics. 

Our aim will be to extend the impulse approximation, 
which describes well binary reactions at high (of the order of 

Here, N i s  the total number of electrons in an atom; n ,  is the 
number of electrons in a shell R; p, (r ' )  is the wave function 
of the shell. The sum with a prime in Eq. (3 )  means that one 
electron is lost from the shell R ', i.e., Z (  ) = 1. 

Since the mass of the residual ion is m, > m e ,  the laws of 
conservation of energy and momentum in a reaction of the 
( 1) type can be written in the form 

E=E,+Ez+Eo, po=pi+p,+q, 

where E, is the binding energy of an electron in the investi- 
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gated shell and q is the momentum of the residual ion or the 
recoil momentum. 

Equation (2) has to be supplemented by the boundary 
conditions. In the case of a breakup reaction and short-range 
potentials, it is of the form 

<r,r,l$>- [ (-2iE") %/32n"i]T0 (p0 ;  pip2) exp  ( i ~ " p )  lp"8 (4)  

2 1 / 2  in the limit r , ,  r2+ co for p = (r:  + r2 ) . 
The majority of the theoretical models used to analyze 

the experimental data on the (e, 2e) scattering are based on 
the hypothesis of the short-range nature of the potentials 
occurring in Eq. (2). In this case this equation can be solved 
by the Faddeev method, expanding the function I $) as a sum 
of the wave functions of the individual channels followed by 
reduction of Eq. (2) to a system of coupled differential equa- 
tions. Solving this system by, for example, the method of 
successive approximations, we find that in the first order 
with respect to the ee interaction we can obtain a simple 
expression for the amplitude T,(p,; p,p,) of the ionization 
process: 

Allowing for the identity of electrons, the observed cross 
section can be calculated from the formula 

The functions /pi ) in Eq. (5)  are the functions of discrete or 
continuous spectra in the potentials V ,  and V, of the residual 
ion. 

Equation (5)  can be regarded as the starting point of 
the majority of approximations used in the theory of ioniza- 
tion. The simplest impulse approximation (plane-wave im- 
pulse approximation-PWIA) is obtained from Eq. (5)  by 
the substitution /pi (p))-+/p), i.e., by substituting a plane 
wave. In this case, we have 

where pol (q)  is the Fourier transform of the function of a 
bound state; t , ,  is the so-called seminonenergy amplitude of 
the free ee scattering, dependent on three arguments: the 
relative momenta in the initial and final states, and the rela- 
tive energy of an electron pair the explicit form of which is 
given, for example, in Ref. 4. Therefore, in the PWIA ap- 
proximation the amplitude is factorized into a product of 
two factors, one of which describes the structure of the target 
atom and the other the process of scattering in the final state. 

A model of the eikonal-wave impulse approximation- 
EWIA (Ref. 5)-has been proposed in order to retain sim- 
plicity of Eq. (5)  and at the same time to allow for the influ- 
ence of the residual ion in the hope of removing the discre- 
pancies between the experimental data and their description 
in terms of the PWIA at lower energies E. In accordance 
with this approximation, \pi (p ) )  is described by a plane 
wave but the quantum numbersp are then calculated allow- 
ing for the distorting potential of the ion V + iv, where 7 
and mare free parameters. A comparison of a large amount 

of experimental data with the EWIA theory can be found in 
Refs. 6 and 7. 

Attempts have been made to calculate Eq. (2)  using 
Coulomb wave functions5nd other variants of more phys- 
ical allowance for the influence of the residual ion within the 
framework of the distorted-wave impulse approximation 
(DWIA) have been proposed, but considerable mathemat- 
ical difficulties are then encountered and the attractive na- 
ture of Eq. (7)  is lost. 

In spite of the considerable improvement in the descrip- 
tion of some details of the experimental curves representing 
reactions with rare gases in terms of the EWIA model, some 
dissatisfaction has been expressed with the results for the 
range of angles 8-30-40" and with the description of the 
absolute values of the cross sections ( 6 ) ,  which had been 
measured quite recently. 

Characteristic features of the observed cross sections 
are as follows. Firstly, the cross sections at angles 40-70" for 
energies E k 300 eV agree on the whole quite well with the 
impulse approximation (7) .  Secondly, they seem to be shift- 
ed relative to the impulse approximation in the direction of 
higher angles and this shift increases on reduction in the 
energy. Thirdly, the absolute values of these cross sections 
are smaller than those predicted theoretically. All these fea- 
tures are used as the basis of the model described below. 

Let us turn once again to Eq. ( 5 ) . Its derivation pre- 
sumes a rapid fall of the potentials V,, V,, and V , ,  at infinity, 
which does not correspond to reality. Lifting of this restric- 
tion results in divergence not only of the iteration series of 
perturbation theory but also of the integrals corresponding 
to the separate Moreover, the function (4) has an 
incorrect asymptote with respect top (there are no logarith- 
mic terms in the argument of the exponential function). This 
makes it necessary to look for a model closer to reality. In 
particular, we have to allow more accurately for the long- 
range of electrons in the final state. Such attempts have been 
made before."-l3 For example,the long-range effects of the 
reaction products are allowed for in Ref. 12 by quasiclassical 
methods, resulting in a considerable reduction in the dis- 
crepancy between the theory and experiment in a wide range 
of angles and energies. 

We shall consider the model called the plane-wave se- 
miclassical approximation (PWSC) in greater detail. Math- 
ematically this model is based on the work of Merkuriev.I4 
Following this work we shall divide the six-dimensional 
spacep = (r, ,  r )  so as to include the Coulomb "tails" of the 
potentials in the free Hamiltonian, for example, 

d2 dZ H o " = - - - -  
8rlZ drZ2 

+ [ V i  (rl) + V 2  (r2) + V i 2  (rt-r2) I0 (p-po). (8 

Then, Eq. (2)  becomes 

For convenience, we shall introduce V Out for the potentials 
occurring in Eq. (8)  and V i n  for the potentials in Eq. (9).  
Therefore, V '" is a short-range potential. 

We shall next expand the function I $ )  as a sum of two 
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components: 

14)=1912)+14(1,~,)~ (10) 

corresponding to the channels 12 and (1, 2) .  By definition, 
we have 

Such a division is indicated by an analogy with the case when 
one of the three particles participating in the scattering (in 
this case, the residual ion) has an infinitely large mass.I5 

Substituting Eq. ( 10) into Eq. ( 1 1 ) , we obtain 

which yields 

($(1 ,2 )>  =I @, (p,) ) + g,:,,, (I/'l'"+T/'zi") I *12), 

1 9 1 2 )  = g12cVi2in I 9(1,2)), 

whereg, ,,,, ( E )  and gf, ( E )  are Green functions of the type 

glzC (E) = (E-Hoe-V12'"+i@) -'. 

In turn, /@,(p,)) represents the solution of the equation 

which describes the initial state of an atom and an electron. 
If we ignore the "tail" in Eq. (13) described by Vyy', then 
l@,(po) )-f(q~,,~q~,(p,) ), i.e., this expression degenerates to 
a product of functions describing a bound electron and a free 
electron in the field of the residual ion. The equation ( 13) 
carries more information than the neglected term Vyyt and, 
in particular, this equation can be used to allow for the dipole 
interaction between the incident electron and an atom. 

Using a familiar operator relationship gi Vi = goti 
between the potential V and the scattering amplitude t, we 
obtain 

Here, g: ( E )  = ( E  - H ', + iO) - is a quasifree Green func- 
tion, and the operators 7-k and t '1', satisfy the formal equa- 
tions 

Iteration of the system of equations ( 14) gives the following 
expression for the function 1 +) : 

where 

T" ( E )  = r , ~ n + t 1 ~ n g 0 c ~ 1 ~ n + ~ l ~ n g 0 C t 1 2 i n g 0 r . t i +  . . . . ( 16) 

Retaining only the first terms in the sum ( 16), we can 
rewrite Eq. ( 15) in the coordinate representation: 

(rlr21~)=(rlr21@o (po) ~+~rlr21goc~~+~lPgoc)tlz"n~~o (pol ). 
( 1 7 )  

Outside the region bounded by the radius p,,, i.e., if r,, 
r, > ro = p,/d, we find from Eq. ( 17) that 

subject to the boundary conditions 

because the first term in Eq. ( 17) is exponentially small for 
r , ,  r,, > ro due to the bound state if r, is not less than the Bohr 
radius. 

We should mention in passing that the expression 
g', + g;r::g', in Eq. ( 18') can also be represented by a Green 
function: 

gc ( E )  = g,:,,) (E) = ( E - H ~ , , - H ~ , - V ~ - - V , - - V ~ ~ ~ - ~ - ~ O )  - I ,  

i.e., by means of an operator which is the reciprocal of that 
which occurs in Eq. ( 13). 

In the case of symmetric or slightly asymmetric kine- 
matics of the (e, 2e) experiments for initial energies E of the 
order of several hundreds of electron volts and for higher 
orbitals we can usually expect the following inequalities: 

e2Z (r,) lEiro << 1, e2/E12ro << 1, E,"lro >> 1, (19) 

where E, and E,, are the absolute and relative energies of the 
final electrons. Under these conditions we can expect that 
the approximation of the geometric optics for Eq. (18) is 
valid, i.e., if 

(rlr21$)= [(-2iE%)e/32n5f2] A (p) exp [ix (p) 1, (20) 

we obtain a system of first-order differential equations for 
the quantity A and the eikonalx: 

It follows from the theory of first-order differential equa- 
tions that a solution of Eqs. (21) and (21') depends on a 
certain parameter t and it determines the p( t )  curve in the 
six-dimensional space or the r; ( t )  curves in the ordinary 
three-dimensional space. The parameter t can be the length 
of a path S, or the "time." In the latter case the characteris- 
tic equations appear as ordinary equations of classical me- 
chanics and govern, subject to suitable boundary conditions, 
the electron paths in the outer region. If r i  (0 )  = (r,, O,, ), 
then r, ( co ) is the coordinate of the ith electron at the obser- 
vation point. A system of classical equations of motion, iden- 
tical with the system of characteristic equations equivalent 
to the differential equation (2  1 ), makes it possible to calcu- 
late corrections to the rectilinear paths of electrons in the 
ranger,, r, > ro, subject to the inequalities of Eq. ( 19). Obvi- 
ously, the sum of the force of attraction of an electron to the 
residual ion and of the force of the mutual repulsion of elec- 
trons in the outer region results in some bending of the paths 
in the direction of increasing angles compared with the an- 
gles of emergence from the region p<p,. A calculation of 
these corrections can be found in Ref. 12 and the explicit 
form of the angular shift is given below by Eq. (32). When 
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the path of a ray has been determined, the eikonal can be 
found from Eq. (21) in the form of a curvilinear integral 
along the ray path. 

We shall now consider Eq. (21'). We can write down 
out 

~ ~ = n ( p ) l , n ( p ) = ( ~ - ~ ~ ~ - ~ ~ ~ -  VtZ )', 

where I is a unit vector tangential to the p ( t )  curve at a point 
I. It follows from the Gaussian theorem that 

div (a2nl) d~ = $ n ~ ' l m  do. (22) 

If in the six-dimensional space we select a volume bounded 
from the sides by the rays p(t) and on the ends by elements 
of areas da ,  and do, of the surfaces X, = const and 
X, = const, we find from Eq. (22) that 

This is simply the law of conservation of energy. It follows 
From Eq. (23) that 

A2(t) =A2 (0) [n(O) ln ( t )  I [do (0) ldo(t) I .  
Since du  is an element of a spherical surface in the six-dimen- 
sional space, it follows that when the inequalities of Eq. ( 19) 
are satisfied, we have do( t )  ap5, i.e., 

It should be stressed that, in accordance with Eq. (22), we 
determine the density of the current along rays p( t ) ,  i.e., 
along classical electron paths. This means that if 
A *(0) = f (OI0, 02,), then A 2 (  00 = f (010 + hel ,  
O,, + A$,). It should also be noted that n ( co ) = E "* or 

It now remains to relate the quantity A(0) in Eq. (24) 
to the boundary condition ( 18'). This can be done using Eq. 
( 18') to construct a model of the function (r  ,r,l$) a tp  = pO 
either by simplifying the operators occurring in Eq. ( 18') or 
phenomenologically on the basis of certain physical consid- 
erations. Next, matching this model function to the repre- 
sentation described by Eq. (20), we can determine A (0).  

We shall ignore in Eq. ( 18') the Coulomb "tails" occur- 
ring in the quasifree Green function gg (E),  i.e., we shall 
assume that g: = g,,, where go(E) is a free-motion propaga- 
tor. Then, in the coordinate representation, writing down 
the matrix element in the form of an integral, we obtain 

d3p1 d3p2 exp (ip1r1+ipzr2) 
I * )p -m=J  m m  ~ - ~ ~ 2 - ~ ~ ~ + i O  

where qi are the wave functions of the spectrum of the V:" 
operators. Calculating Eq. (26) by the constant phase meth- 
od, which is justified at high values of E, we obtain the prin- 
cipal term in the form of a diverging spherical wave: 

In Eq. (27), we have pi = E "'ri /p, i.e., pi are the momenta 
of particles at the exit of a sphere p = po and p: + p :  = E. 
The last equality in Eq. (27) follows from the results of Ref. 
15, since r: is the scattering operator in independent sys- 
tems and this operator transforms plane waves into distorted 
waves in the relevant scattering channels. 

We can obtain a complete representation of the function 
(26) if Eq. (26') is supplemented by a similar converging 
wave, i.e., 

(-2iE") 5 
W 

32nS/zP5/a [TO (PO; pip,) exp (iE'"p) +y exp (-tE'"p) 1. (28) 

Matching Eqs. (28) and (20) at the boundary p =po  and 
assuming thatx(0)  = E 1'2po, we obtain 

- L ( A " + L ) ] - '  . (29) 
E'" A ( 0 )  2po 

On the basis of Eq. (24) and the inequalities of Eq. ( 19) we 
can readily show that the imaginary part of the denominator 
of the last formula has a higher order of smallness than the 
corrections to the real parts, so that the former can be ig- 
nored. Collecting now Eqs. (20), (24), and (29) we obtain 
the following expressions for (r,r,l$) in the limit 
p+oo (t-+co ): 

Here, we have 

It follows from the above that the quantity To[po; 
p l (  oo )p,( oo ) I  differs from T,(p,; P,, p,) in Eq. (27) by 
angular displacements AO, and AO, ofelectrons. It should be 
noted also that the wave function (30) has the correct as- 
ymptote, corresponding to the spherical eikonal the form of 
which was determined by Merkuriev.I4 

Equation (30) gives the following expression for the 
differential cross section in the PWSC model: 

where 8, is the angle of observation in coplanar kinematics, 
8 = Oi - ABi, and 

r ,  is the radius of the first Bohr orbit of the hydrogen atoms. 
The coefficient C is symmetric with respect to r, and r2 be- where 
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FIG. 1 .  Ratio of the absolute differential cross sections ueXq/o,,,,, for the 
He" orbital plotted for a wide range of energies (the experimental points 
were taken fom Ref. 6 ) :  0 )  200 eV; A ) 400 eV; 0) 800 eV; A) 1600 eV; 
0 )  2500 eV. 

cause it is governed entirely by the quantity n ( O ) ,  and it is 
identical for the direct and exchange amplitudes, amounting 
to 

A comparison with the experimental results shows that the 
cross section on the right-hand side of Eq. ( 3  1  ) can easily be 
calculated in the approximation of plane waves up to E k 200 
eV, so that we shall confine our treatment to this case. 

We shall now make several comments before presenting 
the results. It follows from Eqs. ( 1 5 ) - ( 3 0 )  that three impor- 
tant approximations were made. Firstly, we retained only 
the first term of the sum of Eq. ( 1 6 ) ;  secondly, we simplified 
Eq. ( 1 8 ) ;  thirdly, we replaced ( 18 ' )  with Eq. ( 2 8 ) .  We ob- 
tained corrections to (d 3u),,I, ofthe order of&, /E. It can 
be shown that the first two simplifying assumptions are of 
higher orders of smallness in respect to this ratio, but this is 
not true of the third, since g; -go-&,/E. Therefore, we 
cannot expect Eq. ( 3  1 )  to be in 100% agreement with the 
results of absolute measurements, especially as these mea- 
surements are not yet too accurate. On the other hand, Eq. 

( 3  1 ) reproduces quite satisfactorily the experimentally ob- 
served angular shift of the binary peak relative to calcula- 
tions based on the PWIA model, which is due to the bending 
ofelectron paths in the outer region. This occurs because the 
peak is fairly sharp and even a small correction ( 3 2 )  shifts it 
greatly. 

3. RESULTS 

In this model there is one parameter ro which in princi- 
ple is free. However, the physical meaning of the quantity ro 
is that it is of the order of the shell radius in which the ioniza- 
tion occurs. In fact, Fig. 1  shows the ratio ~ , ~ ~ / a , ~ , , ,  for a 
large number of data obtained by determination of the abso- 
lute cross sections for H e l Y n  the energy range 200 eV 
5 E S  2.5 keV. It is then found that ro = 0.7 a.u., which is 
practically equal to the average radius of the 1s shell taken 
from the tables. l 6  The ratio a,,, /ath,,, is the best of those 
used in other models. Figure 2  shows the results of a sym- 
metric experiment on H e 1 h t  E = 200 eV (in general, such 
an energy is fairly low) and the results of calculations car- 
ried out using various models. An increase in the energy 
alters the curves approximately in such a way that the differ- 
ence between them and the experimental points disappears. 
For E Z 1.5 keV all models reproduce the experimental re- 
sults. 

Similar results were obtained for the differential cross 
sections for the ionization of the outer shells of other rare 
gases. The experimental results were taken from Ref. 6 .  The 
values ofr, once again were close to the average radius of the 
shell being ionized. 

The only exception was the Ne2P state (Fig. 3 ) .  This 
state had been investigated by various authors under various 
kinematic  condition^^.'^ and it was always found that there 
was some discrepancy between the experimental results and 
calculations when the wave function was taken from Ref. 16. 
This was checked by assuming that at E = 2.6 keV, when- 
in principle-all the above models are practically identical 
with the results of the PWIA model and with the experimen- 
tal data, we can determine pol (q) from Eqs. ( 7 )  and ( 6 ) .  
This information was then used in Eqs. ( 3 1 )  to analyze the 
experimental data already at E = 800 eV. The results are 

FIG. 2. Comparison of the experimental data for He" at 
E = 200 eV (Ref. 6) with calculations carried out using var- 
ious theoretical models: the dashed curve represents the 
PWIA model, the chain curve represents EWIA, the dotted 
curve represents DWIA," and the continuous curve corre- 
sponds to PWSC. 
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d3u/dfl,df12dE, rel. units metric kinematics, and also for angles 19 < 30". 
In spite of the undoubted success of the plane-wave se- 

miclassical approximation, it is worth noting its competition 
with the eikonal-wave impulse approximation model, in 
which (in contrast to the plane-wave semiclassical treat- 
ment) an allowance for the interaction between an electron 
and an ion is basically made by a small metric distortion of 
the values of the momenta which occur in the reaction, i.e., 
pi = (E, + 7) Recent reports generalize this effect and 
make it possible to use the impulse approximation in describ- 
ing the capabilities of the plane-wave impulse approxima- 
tion. l 9  In the case of Eq. (3  1 ) , an allowance for the first Born 
term in the wave functions of Eq. ( 2 7 ) ,  i.e., a slight deviation 
from plane waves, distorts the plane-wave representations 
when the recoil momenta are q 2 2  a.u. This circumstance 
sets the limits to reliable predictions of the function p,, (q) 
on the basis of the ( e ,  2e) experimental data. 

FIG. 3. Symmetric experimentsh and calculations for NeZP: a )  E = 800 
eV; b) E = 2600 eV. The dashed curve corresponds to the Hartree-Fock 
wave function and the continous curve to the wave function calculated 
using the PWSC model. 

*Laboratoria di Metodologie Avanzate Inorganiche, CNR, Rome, Italy. 
"If we ignore not the whole Coulomb "tail" but only the residue V;;', we 
can drop this restriction and regard pi as the eigenfuctions of a Hamilto- 
nian with a potential V, . 

presented in Fig. 3. Therefore, in all probability neon is char- 
acterized by some static correlation beween closely spaced 2s 
and 2p shells, resulting in deviation of the wave function of 
the ground state from the Hartree-Fock function. This is 
esentially the first constructive prediction of the new effects 
found by the ( e ,  2e )  method. 

4. CONCLUSIONS 

The results of an analysis of a large number of binary 
experiments based on Eq. (3  1 ) showed that it is a natural 
generalization of the plane-wave impulse approximation, 
which makes it possible to extend the range of its validity to 
much lower initial energies and to angles 6 5 40". In princi- 
ple, the plane-wave semiclassical approximation can be used 
also to explain the processes of ionization from inner shells 
when Z(r , )  > 1. In particular, it accounts reasonably for the 
observed reduction in the ionization cross section in the case 
of the Ne2" orbital compared with calculations carried out 
using the plane-wave impulse approximation and this is be- 
cause of the coefficient in Eq. ( 3  1 ). Clearly, Eq. ( 3  1 ) be- 
comes invalid at low initial energies and for strongly asym- 
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