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A study is made of the electron component of the adiabatic wave function of a molecular 
Rydberg state in the specific case of two Coulomb centers. An analytic expression for the 
quantum defect is obtained by the standard-equation method and the effect of modification of 
Rydberg states associated with superpromotion of the diabatic term is considered. 

1. INTRODUCTION 

Molecular Rydberg states are being investigated inten- 
sively both by experimental and theoretical methods (see, 
for example, Ref. 1 and the bibliography given there). A 
theory of molecular Rydberg states is considerably more 
complex than that of atomic states. Difficulties are encoun- 
tered already in the solution of the problem of classification 
of the states, i.e., in introduction of a complet set of quantum 
numbers. Currently the most highly developed is the method 
of the multichannel quantum defect in which the wave func- 
tion of a molecule can be represented by a superposition of 
states obtained by adiabatic separation of the electronic, vi- 
brational, and rotational degrees of freedom. 

We shall consider the most complex (electronic) part 
of the adiabatic wave function of a Rydberg state in the spe- 
cific case of two Coulomb centers. This system has specific 
features of a diatomic molecule and is fairly simple to ana- 
lyze, but its Rydberg states have not yet been investigated. 
We shall use the standard-equation method to obtain analyt- 
ic expressions for the quantum defect and we shall study the 
influence of modification of Rydberg states because of super- 
promotion to the continuous spectrum of a diabatic term 
discovered in Ref. 2. Such a modification affects the majority 
of states; it is not related to the one-electron nature of the 
system under consideration and it should play an important 
role in the general theory of molecular Rydberg states. 

The Schrodinger equation for the problem of two Cou- 
lomb centers can be modified by separating the variables in 
terms of prolate spheroidal coordinates 6, 7, q, 
( 1 <{ < cc , - 1 <7< l,O<q, < 277) and, on substitution of 
the electron wave function in the form 

reduces to the following system of equations3 
(fi=m, = e =  1): 

the intracenter (internuclear) distance. The terms E(R ) 
will be classified using spherical quantum numbers n, I, and 
m of a combined hydrogen-like atom with energy levels to 
which the adiabatic terms of the system reduce in the limit 
R = 0 (in the case of finite values of R the square of the total 
angular momentum of an electron is obviously not con- 
served and 1 is simply one of the indices labeling the states). 

Rydberg states have low values of the energy or, in 
terms of Eqs. ( 1) and (2) ,  low values of the parameter p. 
Near the limit of the continuous spectrum the terms of such 
a system can be represented in the form 

En,, ( R )  =-Z2/2 [n+Al, (R) ] '-to (n-') , ( 3 )  

where Z = Z, + 2,; A,, (R ) is a quantity which is indepen- 
dent of the principal quantum number n and which-by ana- 
logy with the theory of atoms-we shall call the quantum 
defect. The aim of our theoretical treatment will be to calcu- 
late the function A, (R).  

Before actual calculations of the quantum defect, we 
must mention one qualitative features of the terms in the 
problem of two Coulomb centers, which plays an important 
role in our discussion. A numerical calculation of the terms 
in the problem of two Coulomb centers in a complex plane R 
revealed2 diabatic terms W,, (R) which are promoted to the 
continuous spectrum. Promotion of a term W,, (R) to the 
continuous spectrum has the effect that all the adiabatic 
terms with a given set of quantum numbers (1,m) experience 
consecutive quasicrossing of levels, giving rise to the familiar 
minima at terms with I > o m .  This effect is called the super- 
promotion in Ref. 4. For m = 0 the points of promotion of 
diabatic terms to the continuous spectrum can be estimated 
approximately2 using the expression R, = (I + j )2/Z and 
in the vicinity of such points the adiabatic terms of a given 
{l,m) series change greatly. This effect is explained in Ref. 2 
by a modification of the states from a one-center geometry 
for R < R,, to a two-center geometry for R > R,, . Such a 
modification should be retained also in the limit n+co and 
should result in a specific behavior of the quantum defect in 
the vicinity of the point R, . 

2. QUANTUM DEFECT IN THE PROBLEM OF TWO COULOMB 
CENTERS 

where E is the energy of an electron in the field of two Cou- We shall obtain approximately expressions for the 
lomb centers with charges Z ,  and Z2 (adiabatic term); R is quantum defect and study modification of Rydberg states 
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FIG. 1 .  Effective potential for the radial equation ( 1 ): 1) a <A; 2) a >A. 

caused by superpromotion of a term W,,,, (R)  by the stan- 
dard-equation method in which we shall consider a andil as 
large parameters of the same order of magnitude. We shall 
assume that m = 0( 1 ) and p-t 0. This separation of large 
parameters distinguishes the present approach from the ap- 
proximation of a combined atom (a+ O,p+ 0) and from 
the approximation of separate atoms (a--t oo , p+ co ) . 

We shall first consider the symmetric case when 
Z, = 2,. Then, b = 0 and in the limit p+ 0 the dependence 
on R disappears from the angular equation (2).  Using the 
conventional standard equation method with the large pa- 
rameters selected as above, we find that the separation con- 
stant is 

The problem then reduces to a study of just the radial equa- 
tion ( 1 ) , where il is described by Eq. (4) .  The effective po- 
tential for the radial equation contains not only the Coulomb 
interaction and the centrifugal interaction proportional to A, 
but also an interaction proportional to m2 - 1, which can be 
ignored in the first approximation, and the singularity of this 
interaction at ( = 1 (a second-order pole) is allowed auto- 
matically by choosing a standard equation which has the 
same singularity. Consequently, in the first approximation, 
the effective potential is 

Equation (5 )  has a Coulomb singularity at g = 1 and its 
important feature is a reversal of the sign of the effective 
charge q = (A - a )/4 at il = a, i.e., at R = R,,  . The reason 
for reversal of the sign of q can be explained as follows. In the 
case of a classical Coulomb path of an electron of zero energy 
with an angular momentum I + 1 the distance of the closest 
approach to a charge Z is5 r,,, = (1 + $)2/2Z. Such a path 

corresponds to the limit of a combined atom and describes 
approximately the motion of an electron in the case of low 
values of R. If the focus of the path is located at the geomet- 
ric center of the nuclei, then at low values of R the electron 
does not reach the nuclei and this is manifested by centrifu- 
gal repulsion at low values of 6 - 1 in the effective radial 
potential (curve 1 in Fig. 1 ). IfR> 2r,, = R,, the path may 
cross the nuclei so that the effective potential (5)  is qualita- 
tively similar to the effective radial Coulomb potential for an 
s state in the spherically symmetric case (curve 2 in Fig. 1). 
Reversal of the sign of q is accompanied by a change in the 
quasiclassical boundary condition in the region of c=. 1, 
which in the final analysis results in superpromotion of a 
diabatic term W, (R ) to the continuous spectrum. 

A uniform asymptote valid in the vicinity of the point 
R,,, where the effective charge q changes its sign, can be 
obtained by dividing the whole interval of{ into two regions 
(Fig. 1 ). In the region denoted by A the standard equation is 
the Whittaker equation 

which allows simultaneously for the singularity at < = 1 and 
for a turning point e l .  In the region B we can use the conven- 
tional quasiclassical asymptote F ( g ) ,  which is uniform at a 
second turning point c, and decreases in the limit g--too. 
Allowing the usual procedure in the standard-equation 
method,3f6 we obtain the quantization condition 

where n, = 1,2,3, ... is the radial quantum number; g'  = 1 
whena>/Zand('={, whena<il; y = q / k ;  

is the phase shift of the solution of Eq. (7) which is regular at 
{ = 1. The value of y is found from the condition 

which ensures that the turning point 5 ,  in Eq. ( 1 ) is the same 
as that in the standard equation (6) .  The quantization con- 
dition (7)  is the starting point in the calculation of the quan- 
tum defect. In general, this condition represents a transcen- 
dental equation for the energy, but in the limitp-t 0 it can be 
solved explicitly. Consequently, using the relationship 
between the quantum numbers n = n, + 1 and going to the 
limit n-too and n , - + ~ ,  we find that the quantum defect 
[A,, (R)  = &,, ( R )  + O(R -'I2) ] is described by 
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- 
its sign, we have A,, = (z3l2/7r - 1 ) (1 + 1/2). At high val- 
ues of R (a)A) Eq. (9) simplifies and in the first approxima- 

0 tion it becomes 
1 m-1 

&,(R) =21' (-i-) (2nZR) l h -1  + - + 0 (R-%) .  ( 11) 
2 

Figure 2 shows, for comparison, the values calculated using 
-0.5 Eq. (9) and the exact values of the quantum defect. These 

exact values of A,, (R) were obtained by extrapolation of 
the exact adiabatic terms with n,< 10 to the limit of the con- 
tinuous spectrum. We can see from Fig. 2 that the agreement 

-1.0 is good even in the case of low values of I. The major change 
in the quantum defect in the region of R zR,, represents 
quasicrossing of terms which in this case is due to promotion 

FIG. 2. Exact (continuous curves) and calculated from Eq. (9) (dashed (via Rydberg densification of levels) of a diabatic term 
curves) values of the quantum defect for H: . The curly brackets along w,, (R ) to the continuous spectrum. 
the curves give the values of the quantum numbers 1 and m. 

3. SUPERPROMOTION OF A DlABATlC TERM W,,,,(R) 

where K(z) and E(z) are complete elliptic integrals of the 
first and second kind, defined in accordance with Ref. 7. The 
value of y in Eq. (8)  is in this limit given by 

At first sight it seems that Eqs. (9) and ( 10) are different in 
the ranges a >A and a <A, but we an easily show (using the 
properties of complete elliptic integrals) that the two var- 
iants are analytic continuations of each other. We have writ- 
ten Eqs. (9) and ( lo)  in this form so that in each of the 
intervalsa >A anda < A  the arguments of the functions K(z) 
and E(z )  lie within the standard interval O(z < 1. 

In the limit of a combined atom the quantum defect 
A, (R) vanishes, which is identical with the exact value of 
this defect when R = 0. At the point a = A, where q changes 

The analytic expression (9)  can be used to calculate 
sufficiently accurately the terms of highly excited states in 
the problem of two Coulomb centers. Nevertheless, it is im- 
portant to note that in rigorous numerical calculations an 
increase in n requires a much greater computer time and for 
n, > 10 such calculations become practically impossible. 
However, an even more important result is the explicit sepa- 
ration in Eq. (9)  of a logarithmic singularity associated with 
superpromotion of a term W ,  (R ). The usual quasicrossing 
of a pair of adiabatic terms is associated with a common root 
branching point.9 This situation differs from the convention- 
al case because superpromotion of a diabatic term W,, (R) 
creates an infinite chain of level quasicrossings. The corre- 
sponding branching points gn, form in turn an infinite 
series of points which are localized in a small region on a 
complex plane R and which become more closely spaced 
approaching a certain limiting point 9,, when n - a .  In 
the first approximation such a series is equivalent to a loga- 
rithmic branching point.' 

Equation (9)  has logarithmic branching points in the 
complex plane R where the argument of the I? function van- 
ishes: 

(m+1)/2*iy ( R )  --0. (12) 

A preliminary analysis shows that solutions of Eq. ( 12) are 
located in the region where (A - a ( / ( A  + a /  4 1, so that in the 
definition of the function y(R)  given by Eq. (10) we can 
expand complete elliptic integrals as Taylor series. Retain- 
ing in y(R) the first two terms of the expansion, we obtain 
from Eq. ( 12) two complex-conjugate values of a logarith- 

TABLE I. Exact %', and calculated from Eq. (13 )  approximate 3, logarithmic branching 
points in complex plane of internuclear distance R .  
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mic branching point: 

Table I gives the values of gIm from Eq. ( 13) and the exact 
numerical values of logarithmic limiting points of the 9,, 
type for several {Im) series. We can see from Table I that 
9,, can be calculated reliably using the simple formula 
(13). 

Knowledge of the complex quantity 9,, is of major 
practical importance. It is needed in the theory of atomic 
collisions when calculations are made of cross sections of 
nonadiabatic transitions caused by the interaction between a 
diabatic term Wlm (R ) with an infinite Rydberg series of lev- 
els': the real part of 9,, determines the range of impact 
parameters for which such transitions take place, whereas 
the imaginary part determines the probability of transitions 
(Massey criterion). 

The logarithmic branching point 9, relates the adia- 
batic terms of a given {lm) series so that they form a single 
analytic function Elm (R)  . We can see from Eq. (9) that a 
single trip around a point 9, changes the value of a, (R) 
by unity, which corresponds to a transition in Eq. ( 3 )  from 
the initial term En,, (R ) to the next term En * ,,, (R)  (the 
sign f is governed by the direction of the trip). The princi- 
pal quantum number n then acts as the quantum number of a 
sheet of a multisheet analytic function Elm (R). 

4. CONCLUSIONS 

IfZ,  = Z,, Eq. (9) for the quantum defect is not affect- 
ed and the only change is in the separation constant A, found 
from the angular equation (2).  Then, instead of Eq. (4),  we 
can use the approximate expression3 

h= ( I +  '1,)  '-b2/8 ( 1 + 1 / 2 )  ', (14) 

which is valid when 0 < R < ( 1  + 1/2)2/1Z, - Z,I, and 
which includes the region R z Rlm where the modification 
takes place. In the modification region the values ofA of Eqs. 
(4)  and ( 14) differ little from one another and the role of the 

charges Z, and Z, reduces mainly to a change in the scale in 
the complex plane of the internuclear distance: 
alm = XI, (ZR ) . 

Real Rydberg states do have large but finite values of 
the principal quantum number n, so that they are character- 
ized by three qualitatively different ranges of R governed by 
the size of an electron cloud r,, z [3n2 - 1(1+ 1) 1/22: a 
quasimolecular region O<R <r,, , a region of separate atoms 
r,, gR < co , and a transition region R =. r,, . These results are 
valid only in the quasimolecular range. 

It follows from the above analysis that the nature of the 
electronic part of the total wave function of a molecular 
Rydberg state and the magnitude of the quantum defect de- 
pend strongly on the ratio of the internuclear distance and 
the effective impact parameter of an electron (i.e., A and R ) 
in the region of R z R l m .  This effect is accompanied by a 
strong interaction between adiabatic states, which results in 
tangling (crossing) of a large number of such states in the 
total wave function of the molecule at R zz R,, . 

The author is grateful to D. I. Abramov, I. V. Komarov, 
S. Yu. Ovchinnikov, L. I. Ponomarev, and S. Yu. Slavyanov 
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