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Splitting of a photon in a strong electromagnetic field of general form (with both field 
invariants different from zero) is considered by using the operator-diagram technique. Explicit 
expressions are obtained for all the amplitudes of the process at arbitrary values of the 
parameters. An expression is derived for the cross section of the process under photon- 
absorption conditions. A representation of the amplitudes in a quasiclassical approximation is 
obtained. The possibility of observing the field of the axes of a single-crystal is analyzed. 

1. INTRODUCTION 

Virtual creation and annihilation of electron-positron 
pairs is known to induce nonlinear self-action of an electro- 
magnetic field. A characteristic process of nonlinear quan- 
tum electrodynamics is the scattering of light by light. In 
external fields, a photon can be split into two (y-+y, + y,) 
as well as deflected (coherently scattered, y-y'). At low 
photon energies ( o 4 m )  the splitting process can be ana- 
lyzed by using the Heisenberg-Euler effective Lagrangian 
(see, e.g., Ref. 1, $6 129, 130). For arbitrary photon energies 
and field intensities, an exact calculation (in terms of the 
field) is required. Photon splitting in a constant and uniform 
external field was considered in Refs. 2-6, where earlier 
works, containing errors, are cited. Photon splitting was 
considered by Z and I. Bialynicki-Birula2 and by Adler et 
al.,' who used an effective Heisenberg-Euler Lagrangian; 
polarization selection rules, especially with allowance for 
dispersion, were also obtained in Ref. 3. Adler4 analyzed in 
detail the process in an external magnetic field and obtained 
the allowed-transition amplitude for the general case of an 
arbitrary photon energy; the expressions for this amplitude 
turned out to be too unwieldy for further use. He used a 
Green's function for an electron in an external magnetic field 
in the Schwinger proper-time representation.' Papanyan 
and RitusJ." considered photon splitting in a crossed field 
ElH, E = H, using likewise the electron Green's function in 
the proper-time representation. 

In the general case, the photon-splitting probability de- 
pends on three dimensionless invariants'' 

where F and 9 are the field invariants: 

Q=-il,Fu;Pv= (EH) , Fv:=l/a~vIDPaB, 

while E, and H ,  are the quantum-electrodynamics critical 
fields: 

The fields E and H in ( 1.1 ) are the electric and magnetic 

field in a special reference frame in which EIIH. If the invar- 
iants H /H, and E /E, are small compared with unity and 
with the photon-energy-dependent invariant x ,  they can be 
neglected. This is equivalent to transforming to the case of a 
crossed field (or to the quasiclassical approximation, see 
Ref. 8, p. 68). For the results obtained in a constant and 
uniform field to be valid, it is necessary that the field change 
little over the length (duration) of the process formation. 
For the process considered, the formation length is8 

l ,  - min(L5 m E'm L5). H 

Photon splitting in a Coulomb (substantially inhomogen- 
eous) field was considered in Ref. 9. 

We derive here a general expression for the amplitude 
for splitting of a photon into two photons in a constant and 
uniform electromagnetic field at arbitrary values of the in- 
variant ( 1.1 ). We use for this purpose the operator diagram 
technique developed by Katkov, Strakhovenko, and one of 
us." It was found that the solution of this (technically quite 
cumbersome) problem can be substantially simplified. The 
amplitudes obtained in the particular case 9 = 0, when the 
magnetic (or electric) field strength is zero, was found to be 
noticeably more compact than those obtained in Ref. 4. 

The process discussed is not solely of general theoretical 
interest. A number of practical observations have been pro- 
posed for it. In Refs. 3 and 4 the process was considered as a 
possible mechanism for production of linearly polarized 
photons in pulsar fields (assuming that the pulsar fields 
H-H,,). It was also proposed to observe this process in in- 
teraction between hard (tens of GeV) photons with a laser 
wave.' We analyze here one other possibility, viz., observa- 
tion of photon splitting in the fields of axes made up of atom 
chains or crystal planes in a single crystal. Production of 
electron-positron pairs by high-energy photons has by now 
been investigated in considerable detail (see, e.g., Ref. 11) 
and it has been established that the constant-field approxi- 
mation can be used if the photon entry angle (the angle 
between the momentum k and the single-crystal axis) is 
a,,( V,/m, where V, is the scale of the potential of the axis 
made up of a chain of single-crystal atoms. The first experi- 
ment on the on pair production in the field of an axis has 
already been performed. l 2  Photon splitting in a single crystal 
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FIG. 1. Diagram of photon splitting in an external electromagnetic field. 

is analogous to pair production, although its probability is 
smaller by a factor (a/v),. Since the fields of single-crystal 
axes amount to 1010-10" V/cm, the photon energies needed 
to reach a value x 2 50 (when the effect is a maximum) are of 
the order of 100-1000 GeV. 

2. CALCULATION OF THE PHOTON-SPLITTING AMPLITUDE 

Consider the amplitude of photon splitting 
(k-+k, + k,) in a constant and uniform electromagnetic 
field F,, for which k = k, + k,. On the mass shell we have 
k = k = k = 0, k = (w,k) etc. Strictly speaking, dis- 
persion takes place in an external electromagnetic field, i.e., 
the photon acquires a mass that depends on its polarization. 
This mass is determined from the polarization operator in 
the given field (see Refs. 13 and 10). The mass acquired, 
however, turns out to be small and is manifested in fact in the 
polarization selection rules. This question will be analyzed 
below. The analysis can be carried out (cf. Refs. 1-5) on the 
mass shell in the approximation called collinear (kllk, Ilk,); 
it is useful then to introduce the vector 

It is conveneient to use for the analysis a special reference 
frame in which E ( ( H  [the fields E and H in this frame are 
given by Eqs. ( 1.1) and ( 1.2) 1. We choose the common 
direction of these vectors to be the 3-axis of a Cartesian sys- 
tem. The field tensor can then be represented in the form 
(see Ref. 14) 

Here 

where g,, is the metric tensor. 
We use the operator diagram technique developed in 

Ref. 10. In the lowest order of perturbation theory in the 
interaction with photons, represented by the diagram of Fig. 
1 where the double line is the electron propagator in an exter- 
nal field, we write the amplitude of the process in the form2' 

h 

where P = y , (id, - eA, ),A, is the vector potential of the 
external field, P = P (k) ,  &(k, ) = are the photon po- 
larization vectors i? = y, e,, . It is necessary to add to the am- 
plitude (2.4) the amplitude T, = T,(k,++k,,e,++e,). The 

total decay amplitude is T = T ,  + T,. In this approach, the 
main problem is to calculate the mean value over the states 
x = 0: (01 ... lo), which includes an aggregate of noncommut- 
ing operators P, , and the calculation procedure is based on 
the closure of the algebra of the operators 
[P, ,P, ] = - ieF,, . Direct application of the operator-dia- 
gram-technique'O rules to the calculation of the amplitude 
(2.4) leads to an extremely cumbersome expression. An es- 
sential element of the present paper is therefore a transfor- 
mation of (2.4). We square the electron propagators and use 
the identities 

the amplitude (2.4) then takes the form 

where terms with odd numbers of y-matrices have been 
omitted and it is recognized that e, k, = 0 in the collinear 
approximation. This transformation was aimed at decreas- 
ing the number of y matrices in the terms containing the 
operator P, in the numerator; since these terms make the 
most cumbersome contribution to the amplitude of the pro- 
cess. As a result, the expression for the amplitude (2.6), 
while seemingly more complicated, is noticeably simplified 
and the calculation can be continued directly with the aid of 
the rules of the diagram technique of Ref. 10. 

We present explicit expressions for the mean values that 
appear in the calculation following an exponential parame- 
trization of the propagators, 

( N ,  N,, N,,, N,,&)=(OI (1, P,, P,Pv, P ,PJ 'A)~IO) ,  (2.7) 

where 

@=exp ( i P z s l )  exp [ i  ( P + k , )  's,]  exp [i ( P + k )  2s,] . (2.8) 

We introduce a notation that permits a noticeable sim- 
plification of the expressions: 

where t ,  = s,, t, = s, + s,, t, = s,  + s, + s,. The quantity N 
was calculated in Ref. 10 [Eqs. (2.43 ) and (2.47) ] : 

eE eH 
Rs = - RH=-. 

4nshy  ' 4n sin x 

The phase is here 
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*a=. [ ( a 2 - a 1 a 2 )  cos x-coal cos xi-amz cos xz 
2eH sin x 

whered=RC2R =RB2/1 = 1 -A:. 
The quantities N,, N,,, and N,, are expressed in 

terms of N in accordance with Eqs. (2.26)-(2.28), (2.14), 
and (2.46) of Ref. 10: 

QP=-[U-'(U(tt-tt) ki+ U(t3-t2) kz)] 
u - U  ( t , ) ,  U ( s )  = (e-2eF*-1)leF. 

The procedure of calculating the amplitude (2.6) consists of 
exponential parametrization of the electronic propagators, 
transformation of the expressions with the aid of formulas 

exp ( isP2) Pp exp (-isP2) = [exp (-2eFs) PI ,, (2.13) 

i 
exp( $ r o ~ s )  r, exp ( - 5 eoFs) = [ 1 exp (SeFs) I,, 

where UF = f lv  F,, , f l v  = ti [ y, , y, 1, and calculation of 
the traces of the matrices followed by the use of Eqs. (2.7)- 
(2.12). The second and third terms of (2.6) contain only 
two electron propagators, and the corresponding equation 
can be obtained from the general one by equating one of the 
parameters s, to zero. 

To calculate the photon-splitting amplitudes for arbi- 
trary polarizations it suffices to find two amplitudes: 

All the remaining amplitudes are obtained from these by 
interchanging the frequencies and fields 

After rather laborious calculations we get for the amplitude 

where we have for the B-CC transition 

1 
I n - -  [ ( ~ i  cos X ~ + O ~ C O S  X ~ ) C O S  X-a] 

sin x 

a c h y  2 - X r  Iso = - sin( -) exp{iq, ( a )  1, 
sin x 2 

a2a2 (cos x - COS 5%) 

2eH s i n x  7 

( 1  - cos x cos x i )  ( 1  - c h  y ch  y l )  
X [ s i n x i s h y i +  sin x sh u 1 

sin xi  sh  $!I 
f a =  s i n x i c h y i +  -- ( c h  y - c h  yr) 

sh Y 

( c h  ys - chy2)  
-I--- ( 1  - cos x cos x 2 )  ( 1  - ch y ch yi) 

sin x shZ y 

and for the C-CC transition 

cos X I  sh(ya-yi) 1 
~ ~ = a a ~ a ~ ( s h  yi cos r, + 

2 c h y  

cos z 
-2ieEat -7 (ch  ys - chyz) 

sh Y 

yi * -y2, @ i ~ + a r )  ; 
(2.18) 

COS 5 lCo - s h ~ ( y ! ! )  (aei*t(*)- aiei*,(mt)-azei*t(r" ) 9 

s h  Y 
1 

h, =- ( a z  ch y -I- at ch  y,-a ch  y,), 
s h  Y 

1 
h r e -  

s h  Y 
( a t  ch  y f  a2 c h  ya-a ch y,). 
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The amplitudes (2.16) and (2.18), with relations (2.15) 
taken into account, solve the problem of photon splitting in a 
uniform and constant electromagnetic field at arbitrary val- 
ues of the invariants ( 1.1 ) . 

We proceed now to discuss the dispersion effects due to 
the acquisition of mass by a photon in an external field. Pho- 
ton propagation in an external field is described by the Dy- 
son equation, which we write in the form 

(~:X)~~~-II, ,~) e:iI-0 (L=I, 11,111, IV), (2.19) 

where e,,, are the corresponding polarization vectors, k :,, 
is the photon mass, and II,, is the polarization operator in 
the given field. A solution corresponding to physical polar- 
ization can be written for this equation in the form 

Explicit expressions for k :,, and a are given in Ref. 10. Note 
that if only a magnetic field is present ( E  = 0)  then a-0, 
and in the presence of only an electric field (H = 0) we have 
a+ co : 

H=O: eIfi= (AC) ", eIIp=- (AB) 6. (2.21b) 

In the collinear approximation the probability of pho- 
ton splitting per unit time is expressed in terms of its ampli- 
tude as follows (up to the pair-production threshold): 

The polarization selection rules follow, in particular, 
from the 6 function contained in this expression. It is cus- 
tomary to use a refractive index n, defined by the relation 

the allowed transition should then satisfy the relation 

Here n , and n, are the refractive indices for the frequencies 
w ,  and w, that depend on the photon polarization. 

We present also the asymptotic forms of the amplitudes 
(2.16)-(2.18) for relatively weak fields and low photon en- 
ergies: 

T,=a~3H(13HZ-2E2), 
Tc=aoo5E (39P-k 24E2), ao=e"ooIo,/315namml. (2.25) 

The remaining amplitudes are obtained from these with the 
aid of the rules (2.15). In a magnetic field ( E  = 0),  these 
amplitudes are transformed into those obtained in Ref. 3. As 
noted above, the physical polarizations (2.20) must be used 
in the analysis of the process. In the case considered we have 
el a F A  and e,, c F *A, and if we transform from the ampli- 
tudes (2.25) to amplitudes in terms of e, and el, we get 

2'1-11 II=13a0 ( 4 0 )  3, TI-.I 1=24a0 ( d o )  ', (2.26) 

where x is defined in ( 1.1 ). Equations (2.26) are valid if 
x x l .  

Finally, substituing the asymptotic values of the ampli- 
tudes in expression (2.22) for the probability (disregarding 
the 6 function!), averaging over the initial-photon polariza- 
tions, and summing over the polarizations of the final ones, 
we obtain for the probabilities the expressions given in Refs. 
2 and 5. 

3. PHOTON SPLITTING IN A MAGNETIC OR ELECTRIC 
FIELD 

We proceed now to the important particular case when 
only a magnetic field ( E  = 0) or only an electric field 
(H = 0) is present. Only two types of selection rules are 
known'*3 for a magnetic field. The first is governed by CP 
invariance of the electromagnetic interaction. In terms of the 
polarizations (2.21a) (at E = 0) the CP-allowed transitions 
are 

Three other transitions (e.g., el, -+el e, ) are forbidden. 
These selection rules are valid, naturally, for all energies. 
The second type entails satisfaction of the condition (2.24). 
It is shown in Refs. 1-3 that the only (3.1 ) transition that 
satisfies relation (2.24) in the range where the effective La- 
grangian can be used is el -+el,. Using the dispersion rela- 
tions, it was shown in Ref. 4 that this conclusion is valid for 
all w  < 2m. At w  > 2m a channel is opened for pair produc- 
tion by a photon in an external field. The refractive index 
[see 2.23 ) ] acquires therefore an imaginary part. As a re- 
sult, the spatial component of the photon wave vector ac- 
quires a negative imaginary part and the incident wave at- 
tenuates as it propagates in the field. The integral with 
respect to the coordinate along k must therefore be taken 
between finite limits, and the probability d W(L) of photon 
splitting after negotiating a length L in the field becomes 
meaningful (these questions are analyzed also in Ref. 6). 
The expression ford W(L), which must now be used in lieu 
of (2.22), is 

where 
m 

1 l+e-ZTL-2e-7L cos ( (p-x) L) 
P ( L ) - - I .  * 0 7" ((B-x)' 

h, 
(3.3) 

In the limit yL( 1, PL) 1 (the photon absorption is negligi- 
bly small, the effect is considered over large lengths L 1, we 
havep(L) a L S ( P ) ,  so thatdW(L) = LdW [see (3.2) and 
(2.22) 1 in accordance with the definition ofd Was the prob- 
ability of the process per unit length (time). In another 
limiting case yL) 1 (under conditions of strong absorption), 

and in the limit IP/yl-+w we have asymptotically 
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p (  L) a 6( P)/y. It is clear therefore that in the limit as y+O 
the functionp(L) is proportional to 9( f l )  and the selection 
rules based on the inequality (2.24) are valid. In the general 
case, however, p (L) # 0 regardless of the sign o fp  so that all 
the transitions (3.1 ) are possible. 

Expressions for the photon-splitting amplitude, valid 
for arbitrary fields H and photon energies w ,  follow from 
(2.17), (2.18) and (2.15) in whichweletE+O (naturally,a 
similar conclusion follows from (2.6) if we substitute there 
directly the mean values (2.7) and (2.12) calculated in the 
magnetic field). To obtain the explicit form of the amplitude 
in a magnetic field we must substitute in (2.16) [see (2. lo),  
(2.17) I 

1 
R + -  RH, $=$B+$o, 

4n 

for the 1-11 I1 transition 

E 2i 
I ~ + I l - r l l  11 = [COS x ( 0 1  cos x r f ~ a  cos xz)-01 

02ts sin x 

we must let cosh y-1 in I ; .  The expression obtained is 
much simpler than that given by Adler4 [Eq. (2.5) 1. The 
amplitude T:-, ,, of the 11-1 I1 transition can be deter- 
mined from ( 3.5 ) by making the substitution T :-, ,, 
= TL,,  ,, (o- - a,)  [see (2.15)], while the amplitude of 
the TE, ,  transition can be determined from (2.16) and 
(2.18), viz., TL, ,  = TC(Ec+iH, u-tiu), after which one 
must put E = 0. 

If only an electric field is present (H = O), the polariza- 
tion CP-allowed transitions are (3.1 ). The amplitude 
T f-,, ,, of the transition follows from (3.5) when the substi- 
tutions E-iH, u-tiu, are made, the amplitude Ti,, ,, is 
obtained from TL,, ,, by the interchange w o  - w , ,  while 
the Tf-, , amplitude is obtained from (2.16) if R-RE/4n, 
11 = qE + go, and the limit H--+O is taken in (2.16) (all 
COS X ,  cos X ,  -1 ) 

The calculations with the obtained amplitudes T H  
( T ), which are relatively simple, are not too complicated 
and can be used to determine the photon splitting in single 
crystals. Recognizing that H = 0 and klE, we have from 
(1.1) 

where E is the electric field at a given distance from the axis 
(plane). As already noted, to reach the region x k 1 in which 
the splitting is a maximum, the photon energies must be very 

high, w>m. We must thus consider the quasiclassical ap- 
proximation in an electric field. Carrying out the standard 
expansions (see Ref. 14) in the amplitudes in the quasiclassi- 
cal approximation 

in which, for the polarization (2.21b), 

I ~ ~ ) I * I I  I1 =-2ita2 exp ( i c p o ) ,  

+ ( l + q )  [2~s~a(ta-t i )  (ti-ta+I) +qiqzI)r 

(3 .8 )  

I;O)I-I =2itZ2 [v i  exp (ivi2q0) +vz exp (iv,lp,) - exp ( i c p o )  1. 

In (3.7) and (3.8) we used the notation 

The third amplitude follows from (3.7) and (3.8) in accor- 
dance with (2.15 ) : 

1-11 11 
T ~ - ' I I = = T , ~  (u++-oi ) .  (3.10) 

Another representation of quasiclassical amplitudes was ob- 
tained in Ref. 5. The expressions obtained here for TQ are in 
our opinion more compact. At x < l  we have from (3.5)- 
(3.10) the known expressions (see Refs. 1-5, as (2.26) 1. At 
x,  1 the asymptotes of the amplitudes To agree with those 
obtained in Ref. 5. 

The amplitudes (3.7)-(3.10) were calculated numeri- 
cally in the region x 2 1, in which they reach their maximum 
values. Figures 2 and 4 whose plots of IT 12/o for the transi- 
tions 1-11 I1 and 1-1 I for which the distribution in v ,  is 
symmetric under the substitution v,t*v,, and for the transi- 
tion 11-1 11, for which there is no such symmetry. The value 
of I T 12/a is measured in units of = 4a3eE / ~ m .  The sets of 
frequencies for which the plots were drawn are given in the 
figure captions. Denoting the parameter x corresponding to 
the maximum ( T 12/o by x ,  , we have x ,  -- 80, ~ 3 0 ,  and 
=: 200 for 1-11 II,I-I I, and 11-1 11, respectively. It can be 
seen that the probability of the transition 11-11 I1 is always 
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FIG. 2. The value of ITJ2/u for the transition 1-11 I1 in units of 
{ = 4a3eE/rm.  Curve 1-for v, = v, = 0.5; curve 2-for v, = 0.35, 
v, = 0.65; curve 3-for v, = 0.2, v2 = 0.8. 

smaller than for the others, and in the region of its maximum 
the dominant transition is 1-11 11. We note also that at x> 1 
all the cited amplitudes reach their asymptotes most 
smoothly, so that the asymptotes can be used only at very 
large values of the parameter. 

To find the probability of the process we must substitute 
IT 12/u and the function p (L)  (3.3) in Eq. (3.2). To find 
p (L)  we must first findpand y [see (3.3)], i.e., the real and 
imaginary parts of the refractive index [see (2.23) 1. In the 
general case one must use the results of Ref. 10. Expressions 
for the refractive index in the quasiclassical approximation 
can be found in Ref. 8 (cf. also Ref. 15): 

where 

At X (  1 we have (see Refs. 1 and 8) 

I /  ~ I I ~ ~ ~ I I I ,  (3.13) 

and at x> 1 the function g,,,, decrease (see Ref. 8) : 

FIG. 4. Value of IT I2/w for the transition 11-1 I1 in units of {: curve 1- 
v, = 0.35, v, = 0.65; curve 2-v, = v, = 0.5; curve 3-v, = 0.65, 
v2=0.35;curve4-v, =0.8,v,=0.2.  

Plots of the real and imaginary parts of the functionsg,,,, are 
shown in Fig. 5. Calculation of the refractive index (3.11 ) 
yields 0 and y (3.3 ), after which we can obtain p ( L )  at all 
values of the parameters, whose choice is dictated by the 
experimental conditions. Note thatpand y depend on v,( , ,  . 

It is useful to consider the region yL( 1, from which we 
can estimate the upper bound of the splitting probability (for 
realistic experimental conditions). In this region p (L)  is 
given by the elementary function (3.4). The analysis is par- 
ticularly simple at x> 1. In this case 

and with increasing x  the imaginary part y decreases: 
y a  x - ' I 3  Since IT I2/u a x - ' I 3  in this region, the quantity 
dW(L) (3.2) tends to a finite limit at asymptotically large 
values x> 1. This result can be easily understood: actually, 
the length over which the photons have not yet been convert- 
ed into e+e- pairs increases in proportion to x ' I 3  and the 
probability d W(L turns out to be independent of energy in 
view of this effective lengthening of the region where the 
photon splitting takes place: 

FIG. 3. Value of 1 T I2/u for the transition 1-41; the callouts are the same FIG. 5. Plots of the functions g,,,, : Curve 1-Re g,, ; curve 2-Re g, ; 
as in Fig. 2. curve 3-Im g,, ; curve 4-Im g, . 
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W1,,, ,, ( L )  =0.15clZln2, WI-I  I ( L )  ~0.024a2/3t2. (3.16) 

4. CONCLUSION 

As noted in the Introduction, at 8,( Vo/m the process 
of pair photoproduction in the fields of axes (or planes) can 
be treated in the approximation in which the field is constant 
(over the pair-production length). This means that the pro- 
cess takes place at a given distancep from the axis (we con- 
sider hereafter, for the sake of argument, the axial case). The 
axis field is E = 0 at p = 0, increases to a maximum at p - u , 
( u ,  is the amplitude of the thermal oscillations), and then 
decreases. To obtain the probability for a single crystal we 
must therefore evaluate the integral 

whereS the cross-section area per axis. At 8,) Vdm the pair 
production is coherent, i.e., the Born approximation can be 
used. A general theory of pair production has been devel- 
oped, is valid for all angles a,, and applies in limiting cases to 
the cases mentioned ab~ve. '~" '  

The dependence of the probability on photon splitting 
on the angle of its entry into the discussed quasiclassical 
region ( E  /Eo) < 1 ) is perfectly similar to the dependence of 
the pair-photoproduction probability described above. The 
equations derived in Sec. 3 are therefore applicable at 
80(Vo/m. The range of validity of the Born approximation 
was discussed in Ref. 18. 

We consider now the possibility of observing photon 
splitting in single crystals. We must bear in mind here the 
difference from the case of a magnetic field. There the pho- 
ton splitting can be dominant at x(  1 (pair photoproduction 
is exponentially suppressed), and for its observation it 
would suffice to use an energy interval corresponding to long 
paths. In single crystals, on the other hand, pair production 
in the field of the axes can be accompanied also by pair pho- 
toproduction on individual nuclei (the Bethe-Heitler mech- 
anism). The following circumstances must therefore be tak- 
en into account when planning experiments on photon 
splitting in single crystals: 

1. The photon mean free path must not exceed the radi- 
ation length (disregarding the technical difficulties entailed 
in the production of large single crystals). 

2. The experiment must be performed under absorption 
conditions (i.e., Eqs. (3.2) and (3.3 ) must be used), and the 
main absorption process is pair photoproduction in the field 
of the axes (or via the Bethe-Heitler mechanism). 

3. Under these conditions it is necessary to take into 
account, generally speaking, all the amplitudes of the pro- 
cess. To obtain a maximum effect, the experiment must be 
performed at an energy corresponding to maximum Wy+, 
(recall that the dominant transition in this case is I+IIII). 

4. The principal background process will be photon 
emission by the particles of the produced pair y+e+e- 
-+ye-y in the case when the photons carry away almost 
the entire energy of the particles. To suppress this back- 
ground the photons used must likewise have in the crystal 
shorter mean free paths than the radiation lengths. 

5. For electrons and photons moving near crystal axes, 

the radiation lengths at the energies in question are shorter 
by 10-100 times (depending on the material on the axis) 
than in the corresponding amorphous s~bstance.'~." 

6. Just as in the case of pair production, photon splitting 
in the field of the axis will be accompanied by photon split- 
ting on individual nuclei (9), with a probability that we de- 
note by w:;?. The ratio rY-w= Wg;r/ W :Z? can exceed 
unity substantially only in the region of the maximum 
Wg;;,W. From this standpoint, the effect can be separated 
only in the region of a maximum. 

In the region where ( T (*/a is a maximum we have x) 1. 
In this case, as can be seen from Fig. 5, Im g ,,,, ,Re g,,,, . 
When these conditions are satisfied and at yL(1 (the pho- 
ton absorption is small) we have p ( L )  = L in (3.2) and 
(3.3), and then d W(L)/L is the standard probability. Note 
that in this limiting case the expression for the probability of 
the process does not contain a 8 function. 

8. To obtain actual estimates we used an axis potential 
in the form assumed in Refs. 1 1, 16, and 17. The calculation 
was carried out for tungsten ( ( 1 1 1) axis, T = 77 K )  at an 
energy w = 400 GeV. Under this condition rY-W =. 1.3, but 
when the energy is increased the value of rYdYY in tungsten 
can exceed 2. In other substances, say germanium (at an 
energy corresponding to the maximum (T  12/0), rY-'"' can 
exceed 10. Under the indicated conditions we have 
W~;F/ w:;,+'- =0.3a2/7r2. Note that W;;;,"'- in tung- 
sten is 10 times larger than the probability of pair production 
on individual nuclei. 

"We use a system of units with fi = c = 1, a metric ab = aob - ab, 
a = e2/4n; and an electron mass m. 

2)Note that Eq. (2.1) of Ref. 10 was written for the case when all the 
photons are incoming; we included the factor (2a)  -' in the definition of 
the mean value (01 ...I 0).  
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