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The properties of the characteristic energy loss spectra for fast electrons in 4d-metals are 
discussed, and formulas are derived for calculating the loss spectra by the density functional 
method. Numerical calculations for the 4d-metals give results in good qualitative and 
quantitative agreement with experiment. The nonuniform energy distribution of the electron 
states above the Fermi level and, particularly, the deep trough in the state density N ( E )  
between the d- and thep-bands, are primarily responsible for the distinctive features of the loss 
spectra in the transition metals. These features depend on the relative position and width of the 
d-, p-, andf-bands and the extent to which they are filled, i.e., on the atomic number of the 
metal and its atomic volume. The crystal structure merely determines the fine structure of the 
frequency dependence of the loss spectrum and is of secondary importance. 

INTRODUCTION 

The characteristic energy loss spectra for fast electrons 
passing through thin films or reflected at the surface have 
been under active experimental study ever since the 1950s, 
and a great deal of knowledge has been gained regarding the 
loss spectra in metals, semiconductors, and  dielectric^.'.^ It 
was discovered quite early that there is a wide class of mate- 
rials (simple metals and semiconductors with s-p valence 
electrons) whose characteristic energy loss spectra exhibit a 
strong plasma resonance which corresponds to the excita- 
tion of collective oscillations in the conduction electron den- 
sity. For zero momentum transfer q = 0, the plasma reso- 
nance frequency is almost identical to the frequency w, 
= (4me2/m ) ' I 2  for classical plasma oscillations in a homo- 
geneous electron gas (here n is the electron density). The 
plasma resonance frequency shifts as the momentum q var- 
ies; these shifts characterize the spectrum of the collective 
excitations of the electron density in the crystal and also 
agree quite closely with the values calculated for a homogen- 
eous electron gas. Perturbation theory based on expansions 
in the weak electron-ion pseudopotential accurately de- 
scribes the small discrepancies in the plasma oscillation 
spectra for simple metals as compared with the homogen- 
eous electron gas model (we refer the reader to Sturm's re- 
view3). 

However, there are many materials (e.g., the transition 
and noble metals) whose characteristic energy loss spectra 
differ from the predictions of the homogeneous electron gas 
model. In this case the loss spectra typically contain several 
peaks, which are frequently quite broad and unsymmetric. 
D. Pines4 observed 20 years ago that this behavior is due to 
the strength of the electron-ion interaction in the transition 
metals, which greatly distorts the electron structure (as 
compared with the case of nearly free electrons) in a wide 
energy interval AE-&I, near the Fermi surface. 

The last three decades have seen great advances in ex- 
perimental techniques for analyzing the characteristic ener- 

gy loss spectra. In particular, synchrotron radiation can be 
used to analyze the collective oscillations in the electron gas 
in metals at energies &up 5 40 eV by means of purely optical 
techniques. Although less progress has been made in the 
theoretical domain, our understanding has improved re- 
garding the dielectric permittivity of the electron gas, which 
determines the loss spectra. So far, only empirical models 
have been proposed to describe the loss spectra for the transi- 
tion metals, and these models suffer from a lack of reliable 
data on the electron structure for these metals. The proper- 
ties of the characteristic energy loss spectra for the transition 
metals thus remain unclear. 

Recent improvements in methods for calculating the 
electron structure have made it possible to calculate the opti- 
cal properties of metals ab initio. Several such calculations 
were carried out in Refs. 5 and 6. We use this method here to 
calculate the loss spectra for zero momentum transfer q = 0. 
The calculations were carried out for all eight of the 4d- 
transition metals from yttrium to palladium, and the results 
are in close agreement with experimental data. We are thus 
able to analyze the characteristic energy loss spectra for the 
transition metals in detail and to identify the factors that 
affect the losses. This analysis constitutes the principal goal 
of this paper, which is organized as follows. In Sec. 1 we 
derive formulas for calculating the loss spectrum by the den- 
sity functional technique and present the fundamental re- 
sults for the permittivity of metals. In Sec. 2 we briefly de- 
scribe the computational procedure and its accuracy, discuss 
the basic properties of the electron structure in the 4d-met- 
als, and compare the calculated loss spectra with experimen- 
tal data. Section 3 is devoted to an analysis of the primary 
factors responsible for determining the loss spectrum in the 
4d-transition metals, and the dependence of the spectrum on 
the crystal and electron structure of the metal is discussed. 
The paper closes with a brief summary of the main results, 
and suggestions are given for extending them to a wider class 
of materials. 
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I. CALCULATION OF THE LOSS SPECTRUM BY THE 
DENSITY FUNCTIONAL TECHNIQUE 

In the Born approximation, energy and momentum 
transfer from a fast electron to the electrons in a metal is 
described by the differential scattering cross section 

Here fik, and B, are the momenta of the fast electron before 
and after scattering, E, = fi2q2/2m, E ~ ,  is the electron energy 
after scattering, and = E~ - E ~ ,  . The dynamic structure 
factor S(q,w) is directly related to the macroscopic permit- 
tivity &, ( q , ~ )  by 

where V(q) = 4.rre2/q2. 
The permittivity is one of the most important character- 

istics of the electron gas in metals, because it not only deter- 
mines the spectrum of the collective electron density oscilla- 
tions but also yields information regarding one-electron 
excitations. The transverse permittivity E,, (q,w) with q = 0 
determines the optical properties of the metal." When q = 0, 
the loss spectrum can be found experimentally by letting a 
beam of fast electrons pass through thin films. On the other 
hand, the momentum transfer is not determined in experi- 
ments in which fast electrons are reflected by a surface-in 
this case, the recorded dependence of the characteristic ener- 
gy losses on w represents an average over a wide interval of 
momentum transfers. Since the permittivity determines the 
loss spectrum almost completely for fast electrons, we will 
discuss it more fully. 

The dielectric response functions of crystals are de- 
scribed by matrices7 in terms of vectors G and G' in recipro- 
cal lattice space. The macroscopic permittivity E, (q,w ) can 
be expressed in terms of the diagonal matrix element for the 
inverse permittivity E-' (q + G,q + G1,o) with G = G' 
= 0: 

In turn, we can express E-' in terms of the susceptibility 
matrix ,y (q + G,q + Gf,w ) for the electrons: 

We need to calculate E from data on the band structure 
of the metal. Since most modern band structure calculations 
(including ours) employ the density functional techniq~e'.~ 
(see also the reviews in Refs. 10, 11 ), it is important to have 
an expression for x which is derived using this technique. 

The density functional technique reduces the many- 
body problem to solving the Schrodinger equation for a sin- 
gle particle with a self-consistent potential V,, ( r )  : 

The potential V,, ( r )  depends explicitly only on the external 

field potential Vex, ( r )  (the ion potential for a crystal) and 
on the electron density n ( r ) ,  

vp,, ( r )  =Vex[ (r) + V H  (r) +V=c ( r ) ,  (6) 

where n ( r )  is expressible in terms of the eigenfunctions of 
Eq. (5 ) :  

Here f, is the electron distribution function, 

V ,  (r) =eQ dr' n (r') / 1 r-r' I 

is the Hartree potential, and V,, = 6Exc/6n(r) is the ex- 
change-correlation potential. The "local" approximation is 
generally used to derive explicit expressions for the ex- 
change-correlation energy Ex, and potential Vx, (r ). Since 
space is limited, we will not discuss all the problems involved 
in calculating these quantities, for which we refer to Ref. 10. 
However, we will sketch how ,y can be calculated in this 
approach; the static case11s12 will be considered first. 

A small perturbation S Vex, ( r )  in the external field pro- 
duces a change 6n ( r )  in the electron density, and the effec- 
tive potential is also altered: 

6V,, ( r )  =6 Vex[ (r) + e2 
6n (r') 

Solving (5)  to first order in 6Ve,, we find the change 
( r )  is the wave function and then use (7) to get the final 

result 

bn(r) = j ~ a ( r ,  r') S V ~ ~ ,  (r') drp. (9) 

wherex,(r,rl) is the static susceptibility for a system of non- 
interacting electrons described by the Schrodinger equation 
(5).  We now solve Eqs. (8) and (9)  simultaneously and 
recall the definition 

of the total electron susceptibility; the formally exact expres- 
sion 

for the static susceptibility matrix then follows without diffi- 
culty. 

The dynamic response functions at frequencies -up- 
not the static response functions-are needed to analyze the 
characteristic energy loss spectrum. Strictly speaking, the 
density functional method in its existing form is not ade- 
quate for this purpose. However, a simple generalization of 
this method has been suggested in Refs. 13 and 14 for calcu- 
lating the dynamic linear response functions. One assumes 
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that Eqs. (6)  and (8)  remain valid when a weak, time-de- 
pendent perturbation 6Ve,, (r,t) is applied, and that the 
functional dependence of V,, (r,t) on the density n (r,t) re- 
mains the same as in the static case. Retracing the steps used 
to derive (7)-( 1 I ) ,  we then readily obtain 

The dynamic susceptibility X, in ( 1 1 ) for noninteracting 
electrons is given by 

where IM ) is the Bloch wave function for an electron in 
band A with wave vector k and energy E, . 

Equation ( 12) implies that the dynamic susceptibility 
calculated under the above assumptions merges smoothly 
with the exact static susceptibility as w-0, which suggests 
that Eq. ( 1 1 ) describes;y(q + G,q + G1,w) quite accurately 
at low frequencies. The corrections are expected to be signifi- 
cant only for relatively high frequencies. Moreover, the ei- 
genfunctions IM ) and energies E, in ( 13) may be assumed 
to coincide to high accuracy with the corresponding eigen- 
functions and energies for the one-particle equation (5 )  
(Ref. 15). 

With the above qualifications, Eqs. ( 12) and (13) make 
it possible to calculate the electron susceptibility by using 
data from band-structure calculations. However, in practice 
this approach is difficult because the matrices in Eq. (12) 
are inverted. To understand the physics underlying this pro- 
cedure, we introduce two additional matrices : and : de- 
fined by 

4ne2 , -X (q+G, q+G1, o ) ,  ( 14) E (q+G, q+Gf, o) = 600. - - 
lq+GI 

They can be expressed in terms of the susceptibility matrix 
xo for noninteracting electrons by means of the equations 

GV,,(q+G", 0) "Xq+GU', q+G', o ) ,  
Gn (q+Gf ", o )  (16) 

We will be interested in the case when q-0, for which 
the numerical calculations in this paper are carried out. It is 
readily shown that in the limit as q-0 (more precisely, 
qv,/w--+O), the elements of the matrixx, are small of order 

xo(q+O, q+Gf, o) - x o  (q+G, q+O, 0) -0 ( q ) ,  

while the constant 

xo(q+G, q+G1, o)  

is nonzero. Since 

Gli,,(q+G, o)/Gn(q+Gf, o )  ZO 

for arbitrary G and G', we can rewrite ( 16) for q 4  as 

X ( q + ~ ,  q + ~ ' ,  a )  =x0 (q+G, q+Gf, o) 

+ ' xo (q+G, q+GU, o )  
G",G"'j,O 

where only terms of lowest order in q have been retained. 
The terms in Eq. ( 17) are of the same order in q as q-0, and 
in the long-wave limit we can write 

The simplest, most natural way to solve Eq. ( 19) is by iter- 
ation, starting with the approximation = x,. The correc- 
tions to the zeroth-order solution arise from the fact that G" 
and G"' are nonzero (these are called the local field correc- 
tions). The corrections to the solution = X, in ( 19) are 
due to the exchange-correlation interaction and to the 
shortwave component of the direct Coulomb interaction. 
The direct Coulomb and the exchange-correlation interac- 
tions are known to be comparable in magnitude and decrease 
as 1/G as G increases when G" zG" =:r; ', where r, is the 
mean distance between the electrons. Since these two inter- 
actions are of opposite sign, the associated corrections near- 
ly cancel, as was noted in the calculation of? for A1 carried 
out in Ref. 16. This suggests that even the lowest-order ap- 
proximation to the solution of ( 19) will yield reasonable 
results, and we will therefore use the approximation 

in this paper. It  should be noted that the frequently-used 
random phase approximation neglects effects associated 
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with the exchange-correlation interaction but fully treats the 
effects due to the short-wave component (G#O) of the di- 
rect Coulomb interaction, and is thus clearly inconsistent. 

Expression (20) does not lend itself to explicit calcula- 
tions in the limit q-0. Using the continuity equation4 to 
transform it in the standard way and explicitly separating 
out the contribution from intraband transitions (A = A ') 
(Ref. 17), we obtain 

and 
4ne2m 

a:=-' 8 (Era-Ep) ( V LEw,) 2/A2, (22) 
3Q k, 

where E, is the Fermi energy. The second and third terms in 
(21) give the contributions from intra- and interband transi- 
tions, respectively.'' 

Formulas of the type (21) are often used to analyze 
experimental data and have some properties that will 
to be important below. The Kramers-Kronig formula - 

2 do '  o' Im E ~ ( O ' )  
EI (W)= l  +-I " o'2-0"is  --- 

can be used to express the permittivity E, (0) in terms of 
Im(&, (w)), and a similar relation holds for I/&, (a) and 
Im{ - I/&, (w)  1. Thefsum rule 

is valid for I m ,  (w), where 0, is the volume of an elemen- 
tary cell containing N electrons, including the electrons in 
the core. A similar fsum rule also holds for 
Im{ - I/&, (w)). We note that the integration over fiw' in 
(24) must extend to very high energies, comparable to the 
binding energies fiw' - lo3-lo4 eV for the deepest levels of 
the core, and in this situation the f-sum rule is not very use- 
ful. In practice, thef-sum rule for finite energies" is used 
much more often: 

0) 

In metals where a wide energy gap AE, z 5Cb100 eV 
separates the valence states from the core states, we can 
choose fiw so that 

where AE, is the energy of the fundamental interband tran- 
sitions. We then find that 

Nett ( m )  z - v e t r  ( a ) = N , ,  

where Nu is the number of valence electrons in the elemen- 
tary cell. The above situation occurs in many simple metals, 
and in this case relations (25) and (26) may be called the f- 
sum rules for the valence electrons. 

However, there are many metals for which considerable 
overlapping occurs between the energy levels for interband 
transitions and for transitions from core states, and (25), 
(26) are then no longer true f-sum rules for the total number 
of valence electrons for any value of fiw. Instead, they define 
certain effective values N,, (w) and Ee, (w) . Here N,, (w) is 
the number of electrons that participate in optical transi- 
tions in the energy interval from 0 to fiw, or equivalently, the 
sum of the oscillator strengths for the optical transitions. On 
the other hand, Re, ( a )  determines the intensity of the char- 
acteristic energy loss spectrum, or the number of electrons 
involved in collective density excitations for O<E<fiw. By 
analogy with (25) and (26), we can define N,, and it,, for 
arbitrary energy intervals, not just [0, fiw] . 

II. ELECTRON STRUCTURE OF THE 4d-METALS. 
CALCULATIONS AND COMPARISON WITH EXPERIMENT 

The first step in calculating the characteristic energy 
loss spectrum is to find the electron band structure of the 
metal. In this paper we use the LMTO methodla to calculate 
the band structure and expand the wave function in spheri- 
cal harmonics with orbital momentum up to I,,, = 3. This 
ensures an error of -0.1 eV within an energy interval - 15 
eV containing the Fermi surface and an error of - 1 eV at 
10-25 eV above E,. We calculated 16 bands altogether, 
which corresponds to an energy interval of approximately 50 
eV. We will show that the loss spectrum is insensitive to the 
crystal lattice symmetry (assuming equal densities, of 
course). The results for metals with a close-packed cubic 
structure (Y, Zr, Tc, Ru) were therefore calculated for an 
fcc structure with a packing density similar to that for the 
closely-packed cubic structure; this greatly simplifies the 
numerical calculations (in addition, the loss spectrum for 
technetium was also calculated for a bcc structure as a check 
on the calculations). The self-consistent crystal potentials 
V,, ( r )  needed to calculate the band structure from the 
Schrodinger equation ( 5 ) were taken from Ref. 19. 

As an illustration we consider the electron structure for 
niobium, a typical 4d-metal whose state density N(E)  is 
shown in Fig. 1. The Fermi level lies slightly below the center 
of the 4d band and occupies the energy interval from 6 to 15 
eV. The curve N(E)  for large E has a very jagged profile that 
differs markedly from the dependence N(E) postulated in 
the commonly used s-d model. Analysis of the partial state 
density curves (Fig. 1 ) reveals that a strongly hybridized 5p- 
4f band is present between 21.5 and 50.0 eV. In the lower 
portion of this band (from 21.5 to 32.5 eV), thep-electrons 
(more precisely, the states with I = 1 ) give the main contri- 
bution to N(E),  whereas thef-electrons (states with I = 3) 
give the dominant contribution in the upper portion from 
32.5 to 50.0 eV. We will therefore refer to the lower and 
upper portions of the p-fband as the p- andfbands, respec- 
tively. The valence 5s electrons are concentrated primarily 
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FIG. 1 .  Total and partial electron state densities in Nb: a )  N,,,,, ( E )  (solid 
curve), N, ( E )  (dashed), N, ( E )  (dashed-dotted); b) N,,,,, ( E )  (solid 
curve), N , ( E )  (dashed), N f ( E )  (dashed-dotted). 

below the bottom of the 4d-band and in its lower portion, as 
well as in the lower part of thep-band. The electron structure 
of the 4d transition metals has the important feature that 
N(E) has a pronounced trough which separates the d- and 
the p-bands, while no such pronounced dip separates the p- 
and the f-bands. The cutoff of the spectrum at E z  5 1 eV is an 
artifact caused by the small number of basis elements ( 1 ~ 3 )  
used in the electron structure calculations. The shallow 
depth at which the 4p-levels of the core lie (only 35 eV below 
E, for niobium) is striking for the 4d-metals. Excitation of 

AE, eV 

FIG. 2. Band energy difference ( a )  and band widths ( b )  for the4d transi- 
tion metals. 

these levels contributes significantly to the optical spectra 
and to the characteristic energy loss function at high ener- 
gies. However, this was neglected in our calculations, which 
therefore inevitably diverge from the experimental values at 
high energies. Figure 2 shows the width and the relative posi- 
tion of thep-, d-, and f-bands for the other 4d-metals. 

Once the electron structure of the metal is known, Eqs. 
(21 ) and (22) can be used to calculate E, (a). We first cal- 
culated I ~ E ,  ( w )  and then used the Kramers-Kronig rela- 
tions (23) to find R e ,  (a). The integration in (23) ex- 
tended up to - 50 eV, and the principal-value integrals were 
calculated accurate to 0.1 %. The tetrahedron m e t h ~ d ~ ~ . ~ '  
was used to perform the integration over the momentum k. 
We used 204 points in 1/48 of the Brillouin zone for the bcc 
lattice and 175 points for the fcc lattices. The matrix ele- 
ments (M ' 1  B IM ) ofthe momentum operator were the most 
difficult to calculate, and the procedure used here was de- 
scribed in detail in Ref. 5. We merely note that the error in 
calculating (M 'l$lM ) was 5-10% in a - 15 eV interval 
straddling E, but increased to 10-30%, 10-25 eV above the 
Fermi surface and reached 50% or more at still higher ener- 
gies. This rather large error is due to the variational charac- 
ter of the technique used to solve the Schrodinger equation 
(5)  and to the incompleteness of the system of basis func- 
tions used to calculate the band structure. Because of this 
difficulty, which is common to all numerical methods, 
I ~ E ,  ( w )  is systematically too low, particularly at high en- 
ergies. A detailed comparison of the experimental data with 
our calculations of the optical properties of metals 
[ I ~ E ,  (w)  or the conductivity a (w)  = ( f iw /4~) Im~ ,  ( w )  ] 
was given previously in Refs. 5 and 6, and we will not discuss 
these results here. We simply observe that the agreement is 
not just qualitative but quantitative for most metals. 

Figure 3 shows the calculated functions 
ImC - I/&, (a)) together with the experimental data on 
the characteristic energy loss spectra for all of the 4d transi- 
tion metals. The agreement is good, not only in terms of the 
number and position of the peaks in Im{ - 1 / ~ ,  ( a ) )  but 
also in terms of the absolute value of the loss function (the 
results of the optical investigations in Refs. 22 and 23 have 
been normalized). We briefly mention the principal features 
of the loss spectra (indicated in Fig. 3 by arrows). The sharp 
peak at E,, z 10 eV is present for all of the 4d transition 
metals. This peak is greatly smoothed in the experimental 
curves and in some cases has the form of a broad, gentle 
maximum rather than a true peak. The principal peak in the 
loss spectrum near Ep2 =: 20-30 eV is well-defined except for 
metals at the end of the transition series. In the calculated 
curves, this peak starts to break up into a series of closely 
spaced peaks starting at the middle of the transition series, 
while the experimental curves exhibit an appreciable broad- 
ening. At the end of the series, the principal peak splits into 
two gentle maxima with energies E;, and E;2. The maxi- 
mum at energy E, is present only on the experimental 
curves; it is due to excitations of the 4p-electrons in the core 
which were neglected in our calculations and is preceded by 
a peak at Ep, (which on the experimental curves is often a 
broad, low maximum) which agrees quite well with the cal- 
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FIG. 3. Characteristic energy loss spectrum for the 4d transition metals; 
the solid curves show calculated values. Most of the experimental data 
(dashed curves) are taken from Ref. 1; values from Refs. 22,24, and 23 
are used for Mo, Tc, and Ru, respectively. 

culations, although the latter are not very accurate at these 
energies. 

The chief difference between our calculations and the 
experimental curves is the much greater smoothness of the 
latter. The smoothness of the curves recorded in Ref. 1 for 
fast electrons reflected by a surface is hardly surprising, be- 
cause the characteristic energy loss function averaged over 
the momentum q was measured there. However, the results 
in Refs. 24,22, and 23 were obtained for transmission of fast 
electrons across a metal film and from light reflection mea- 
surements, respectively, i.e., they correspond to zero mo- 
mentum transfer (q = o), yet even here no fine structure 
was observed. It was shown in Ref. 25 that this difference 
cannot be due to the finite resolution of the experimental 
equipment. Two factors might account for this discrepancy. 
First, because of the errors in calculating the electron band 
structure and the matrix elements for the momentum opera- 
tor, the values of I=, (w) were systematically too low. This 
is particularly evident for the first peak in the loss spectrum, 
which for all the 4d-metals occurs at an energy lying in the 
trough of the ~ , ( w )  curves (or equivalently, o(w) ). If we 
compare the calculated values of a (w)  with the experimen- 
tal data,'v6 we find that our values of a(w) in the trough 

region are considerably lower than the experimental results. 
This could reflect the fact that in our calculations, the sec- 
ond peak in a (w)  systematically lies at energies -0.5-1 eV 
higher than for the experimental data. The second, more 
important factor that could smooth out the peaks in u ( o )  
and Im{ - I/&, (a)) is that the finite lifetimes of the elec- 
trons in the excited states may alter the permittivity, and this 
is completely ignored in the density functional method. The 
finite lifetime effects are easy to exhibit artificially by averag- 
ing the calculated curves a(@) over an energy interval 
whose width increases with tiw. We have not done this, be- 
cause the result is obvious in any case,and it is easier to use 
the unsmoothed curve to relate the characteristic energy loss 
spectrum to the electron structure. 

Ill. ANALYSIS OF LOSS SPECTRA FOR THE 4d TRANSITION 
METALS 

We first examine how the electron transitions deter- 
mine the structure of the function em (a) in the 4d metals. 
Figure 4 plots the conductivity u(w) = (fiw/47r) 

ImEinter ( a )  as a function of frequency for the 4d metals. 
The conductivity directly determines the contribution from 
each frequency interval to thef-sum rule (25). Table I and 
Fig. 5 present the numerical data for the principal electron 
transitions, which we now discuss in more detail. 

At low energies Tiu 5 1 eV, intraband transitions play 
the key role. In contrast to the simple metals, however, in the 
4d-metals this contribution is by no means dominant in the f- 
sum rule (25)-it amounts to just 0.6-1.3 electron per atom. 
The magnitude of the contribution varies irregularly from 

Y- d - d - d  1 
I II/-1 8 1 

V M  d - o  t 

FIG. 4. Calculated interband optical conductivities u(w) = oIrn&(w)/ 
4~ for the 4d-metals. The dashed curve for Tc shows results calculated for 
a bcc lattice. 
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one metal to the next in much the same way that N ( E ,  ) does 
for the metals in the 4d-series (Fig. 5) .  

Transitions between empty and filled subbands of the d- 
band are dominant at optical energies ( l eV < tiw 5 5 eV). 
Because the momentum operator relates states with 
A1 = & 1, the matrix elements for the interband d-d transi- 
tions can be nonzero only through mixing of states with I = 1 
and I = 3 with the pure d-orbitals-equivalently, in the ter- 
minology of the close coupling approximation, through 

- 
Calculation Experiment 

Metal 

overlapping of d-orbitals localized at adjacent atoms. How- 
ever, the large phase volume offsets the small value of the 
matrix elements for the interband d-d transitions, so that 
their contribution to the d-sum rule may be larger than for 
the intraband transitions. 

Both types of transition occur within the d-band and 
have energies tiw less than h,. It is convenient to combine 
them into a single group of d-d transitions when analyzing 
the loss spectra. The contribution from the d-d transitions 

I 

Y 
11.1 

Zr 
15.4 

Nb 
19.6 

MO 
23.3 

Tc 
25.9 

RU 
28.7 

Rh 
29.9 

Pd 
(30.5) 
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The d-d transition energy is taken equal to one-half the width of thed-band; the calculation for 
Tc was carried out for both fcc and bcc lattices (the latter results are given in parentheses). 
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d-p 

d - f  
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d- d 
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d-f 
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d-d 

d-p 
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0.13 
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(0.09) 
1,61 

(1.17) 
0.11 
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FIG. 5. Oscillator strengths for the principal electron transitions in the 4d 
metals. 

changes regularly along the 4d-series-the contribution is 
small at the beginning and end of the series, where there are 
fewer filled (respectively, empty) d-states, and is largest for 
metals in the middle of the series (Table I and Fig. 5). 

The next type of transition to become involved are the 
transitions from the filled part of the d-band to the unfilledp- 
band. Because states with 1 = 1 and 1 = 3 dominate in thep- 
band, the matrix elements for the d-p transitions are several 
times larger than for the interband d-d transitions. The d-d 
and d-p transition regions are well-separated for all the 4d- 
metals (Fig. 4), because the minimum energy required to 
excite the d-p transitions exceeds the width of the p-band. 
The d-p transition region is far from homogeneous; a(w ) has 
several peaks, with the lowest-energy peak dominating for 
metals in the beginning and middle of the series, while the 
maxima at the center and in the upper portion of the d-p 
transition region dominate for the metals at the end of the 
series (Ru, Rh, Pd). These peaks are clearly due primarily to 
the structure of thep-band, which varies appreciably with a 
characteristic energy scale of 4-7 eV. The energy structure 
of the d-band has a characteristic scale of 1-2 eV and affects 
only the fine structure of the d-p transitions [as a typical 
example we may cite the peaks in a(@) at %h = 7.5 and 8.5 
eV for yttrium]. 

Everything we have said so far concerning the magni- 
tude of the matrix element and the structure of the d-p transi- 
tions remains valid for the d-finterband transitions. Because 
thep- andf-bands are completely free, the total contribution 
of the d-p and d-f transitions to thef-sum rule increases with 
the number of d-electrons in the metal (Fig. 5). This depen- 
dence is nearly linear except for metals at the start of the 
series, because the d-p and d-f transition energies increase 
rapidly as we go from Y to Zr and from Zr to Nb (Fig. 2).  
The individual N,, and Ndlf contributions for the d-p and d- 
f transitions do not depend linearly on the atomic number 
(Fig. 5).  This probably reflects the strong interaction 
between these two groups of transitions due to the high de- 
gree of hybridization of thep- and f-bands. 

Analysis of the calculated results reveals that the ma- 
trix elements for a transition from the bottom of the d-band 
to the bottom of thep-fband and from the top of the d-band 
to the top of the p-f band are appreciably larger than for 
transitions from the bottom (top) of the d-band to the top 
(bottom) of the p-f band. In terms of chemical bonding, 

strong transitions occur either between bonding orbitals, for 
which the electron density is a maximum at the boundary of 
the cell, or between antibonding orbitals for which the elec- 
tron density nearly vanishes at the edge of the cell. Because 
of this fact, which is associated with the degree of localiza- 
tion of the electron states, the d-p transitions with the lowest 
energy dominate for the metals at the start and middle of the 
series, where only the bottom of the d-band is filled. For the 
metals at the end of the series, the d-band is almost complete- 
ly filled and the d-p transitions (which now correspond to 
excitation of electrons from the top of the d-band to the bot- 
tom of thep-band) are strongly suppressed. In this case, d-p 
transitions of higher energy and d-f transitions are most like- 
ly to occur. 

The above discussion shows that the atomic number of 
the metal and the width and relative positions of the d-, p- 
and fbands are the principal factors determining the pri- 
mary characteristics of the electron transitions (their energy 
and contribution to the fsum rule). The crystal structure 
influences the fine structure of the band energies but has 
little influence on these characteristics. Indeed, our calcula- 
tions for technetium for both bcc and fcc lattices gave very 
similar results (Table I) .  

Now that the nature of the principal electron transi- 
tions has been determined, we proceed to show how they 
determine the characteristic energy loss spectrum. We are 
primarily interested in the low-energy energy loss peak at 
%h = Ep, which is present in all the 4d-metals, and in the 
intense peak at Ep, , which is present for all but rhodium and 
palladium. 

The simplest way to understand these peaks is to ana- 
lyze the real and imaginary parts E, ( w  ), E,  (w ) of the permit- 
tivity together. Figure 6 plots calculated values &,(@) and 
~ ~ ( 0 )  for Y, Mo, and Pd. We will first discuss the low-ener- 
gy peak for metals at the beginning and middle of the 4d- 
series. The curves show that in all cases, E, (w) changes sign 
at an energy %h -- Ep, lying between the d-d and the d-p tran- 
sitions. The reason for this behavior is readily understood 
from the Kramers-Kronig relation if we separate the contri- 
butions from the intraband and interband d-d transitions: 

Here w, = (4?re2NU/mn) 'I2 is the classical plasma frequen- 
cy for a homogeneous electron gas of density Nu /a, and N,, 
is the oscillator strength for the d-d transitions. According 
to Table I, Ep, is less than +imp (Nd-,/Nu ) ' I 2  for all of the 4d- 
metals; we would therefore obtain E, (w) < 0 throughout the 
energy interval between the d-d and d-p transitions if only 
the contribution from the d-d transitions were considered. 
The third term in (27) describes the contribution from the d- 
p transitions, which is positive for %hz Ep, and causes&, (w) 
to change sign. Since there are no strong interband transi- 
tions at these energies and &,(a) 4 1, the characteristic ener- 
gy loss function Im{ - l / ~ ( w  ) has a sharp peak at an ener- 
gy Epl which is constrained to lie between the d-d and the d-p 
transitions. This energy Ep, is relatively constant along the 
4d-series, as can be seen from Table I. A similar explanation 
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of w -wp in the denominator of the third term in (27) and 
obtain the simple estimate24 

FIG. 6. Permittivity of metals at the beginning (Y) ,  middle (Mo) ,  and 
end (Pd) of the 4d-series; the solid and dashed curves show e ,  and E,, 

respectively. 

for the low-energy plasma peak was previously suggested in 
Ref. 24 on the basis of a phenomenological model allowing 
for two types of interband transitions with well-separated 
energies in the transition metals. 

Near the intense d-p transitions, as w increases E, (w) 
drops sharply to negative values from positive values - 1. 
This anomalous dispersion is typical for strong interband 
transitions and is often observed in dielectrics. Since 
E ,  ( ~ ) + 1  as w+w, it is clear that E,  (a) must change sign 
for frequencies lying above the d-p transition region. The 
corresponding energy E,, lies between the d-p and the d-f 
transitions at frequencies where E, (w ) 4 1 in these metals 
(Fig. 6 ) .  For metals at the start and middle of the 4d-series, 
the plasma resonance at fiu -- E,, is thus a well-defined col- 
lective oscillation. More interesting, however, is the fact that 
E,, lies within 1 eV of fiu, for all of the 4d-metals at the start 
and middle of the series. This finding played a key role in 
previous work, where the plasma resonance was invariably 
regarded as a plasma oscillation involving all of the conduc- 
tion electrons. Such an interpretation requires that the ener- 
gy fiu, greatly exceed the energies for all of the principal 
interband transitions. In this case, we may neglect w, in favor 

Since under the above assumptions we also have N,, (w, ) 

=Nu, we get Ep2 =+imp. Actually, however, this analysis is 
valid only for the simple metals; it represents an oversimpli- 
fication for the transitions metals, in which +imp is compara- 
ble to the d-p transition energies. Indeed, for the metals from 
Y to Tc we find that N,, (w, ) is just 65-75% of Nu,  and the 
energy Ep2 estimated by (28) is less than +imp by 14-2094 
( 1.5-5.0 eV). In fact, however, Ep, is actually much closer 
to +imp because the d-p transitions lying slightly below E,, 
contribute more to E,  (0) than is predicted by (28), thereby 
shifting the plasma resonance toward higher frequencies. It 
should be noted that both the estimate Ep2 given by (28) and 
the energy of the d-p transitions that strongly influence the 
plasma resonance depend on Nu in roughly the same way as 
+imp. This explains why the rough equality Ep2 =+imp holds 
for all of the 4d-metals at the start and middle of the series, 
even though +imp itself varies by nearly a factor of 2.5. We 
thus see that in contrast to the simple metals, the near-equa- 
lity Ep2 =+imp is fortuitous for the transition metals. 

At the end of the 4d-series (e.g., for Pd), the intense d-p 
transitions occupy a wide energy interval which overlaps the 
energies for the d-f transitions. The anomalous dispersion 
for these metals extends over the entire interval containing 
the d-p and the d-f transitions, and ~ , ( w )  falls off rather 
slowly without changing sign. All the arguments presented 
above regarding the plasma resonance at E,, are easily seen 
to remain valid in this case. However, the plasma oscillation 
at Ep, is not present for Rh and Pd at the end of the 4d-series, 
because E ,  ( w )  > 0 for all energies in the d-p and d-f transi- 
tion region, while e,(w) - 1 (Fig. 6).  To be sure, even here 
Im{ - I / E ( w ) )  has weak, very broad maxima at E ;, and 
E i2 ; this is because the energy distributions of the d-p and d- 
f transitions are not completely uniform. However, these 
maxima are exceptional and depend on the structure of the 
p-f band. An intermediate situation holds for Ru, as one 
might expect from its position in the periodic table. Al- 
though the characteristic energy loss function for Ru has a 
peak at E,,, it is split by the strong d-p and d-f transitions 
and is extremely broad ( k 10 eV). 

The peak at Ep, noted in Sec. 2 is intrinsically associat- 
ed with the d-f transitions. It occurs at energies well above 
+imp, for which E, (w ) 4 1 and E, (w ) - 1 for all the 4d-metals 
(Fig. 6 ) .  For these energies 

i.e., the peaks in the loss spectrum coincide with the maxima 
in E~ (a ) associated with the d-f transitions. Since&, (0 ) does 
not even change sign near these peaks, they would appear to 
correspond to one-particle excitations rather than to collec- 
tive plasma oscillations. The actual situation in the 4d-met- 
als in more complicated, because electrons are excited from 
the core 4p-level into unoccupied states in the 4d-band. As 
the atomic number Z increases, the 4d-band fills up and 4p- 
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4d transitions therefore become less likely; however, 4d-4f 
transitions become more likely (Fig. 5, Table I ) .  It remains 
to determine how these two types of transitions interact. 

CONCLUSIONS 

Our numerical calculations indicate that the dynamic 
response functions can be described qualitatively and even 
quantitatively in a wide frequency range by using the density 
functional technique to calculate the spectrum of the band 
electrons. Comparison with experiment shows that the lo- 
cal-field and exchange-correlation effects neglected in our 
calculations have little influence on the dynamic response. It 
is unclear whether these effects are individually small or 
whether they cancel one another. Further work is needed 
here, as well as to analyze the consequences of the finite 
lifetime of the excited electrons. 

An analysis of the calculated results enabled us to iden- 
tify the factors responsible for the features of the characteris- 
tic energy loss spectra of the transition metals. We have 
shown that the deep trough in the state density between the 
d- andp-bands and, to a lesser extent, the nonuniform energy 
distribution of the electron states above E,, play a key role. 
The deep trough in N(E) also explains why the loss spec- 
trum for the transition metals is insensitive to the momen- 
tum transfer q (Refs. 2,24). Our analysis has shown that the 
relative positions and widths of the p-, d-, and f-bands and 
the extent to which these bands are filled-i.e., the atomic 
number Z and the atomic volume-determine the separa- 
tion of the electron transitions into groups, as well as the 
energy and the oscillator strength for each group. The crys- 
tal structure is of secondary importance and affects only the 
fine structure of the conductivity o ( w )  and the loss spec- 
trum; this fine structure is almost completely washed out 
due to the finite lifetime of the excited electrons. 

Althoi~gh we have considered only the 4d-metals in this 
paper, our qualitative results are valid much more generally. 
Both our calculations and the experimental data indicate 
that the situation is similar for the 3d- and Sd-transition met- 
als, and for the noble metals (Cu, Ag, Au) for energies above 
10 eV. Compounds of the transition metals are also of great 
interest here; their electron structures are much more di- 
verse and complex, which is reflected in their more varied 
characteristic energy loss spectra. We hope that numerical 
calculations combined with theoretical analysis will lead to 
progress here in the near future. 

In closing, it is a pleasant duty to thank V. L. Ginzburg, 
L. V. Keldysh, and D. A. Kirzhnitskii for support and valu- 
able discussions. We also thank the participants in seminars 

given by V. L. Ginzburg and Yu. M. Kagan for a discussion 
of this work. 

"Strictly speaking, most of the formulas derived in this section are valid 
only for the longitudinal permittivity. However, when q = 0 the longitu- 
dinal and transverse permittivities coincide for cubic crystals, to which 
we confine ourselves in this paper. We will therefore make no distinction 
between them. 

"The intraband contribution to the permittivity was actually calculated in 
Refs. 5 and 6 by using the Drude-Zener formula, which unlike (21) 
treats electron-phonon scattering. However, this makes little difference 
as far as the characteristic energy loss spectra are concerned. 
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