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Using the Keldysh diagram technique, we obtain collision integrals which describe the energy 
relaxation of electrons in normal metals and superconductors with high impurity 
concentrations. The calculations were carried out using both a coordinate system moving with 
the lattice and the usual laboratory system. The analysis we performed highlights the 
important role played by the process of inelastic scattering of electrons by impurities in 
relaxing the electronic energy. We also discuss the relation between the energy relaxation times 
for electrons and phonons. 

1. INTRODUCTION 

Recently, there has been a resurgence of interest in the 
study of energy relaxation of electrons in impure metals. 'The 
electron energy relaxation time T ,  determines the most im- 
portant characteristics of metals, such as the dephasing time 
for the electronic wave function,' the cooling time for the 
electron gas, and also a number of parameters which charac- 
terize the superconducting state, e.g., the relaxation times 
for the amplitude and phase of the order 

The energy relaxation of electrons is due to electron- 
electron and electron-phonon interactions. However, while 
theoretical results pertaining to the electron-electron relaxa- 
tion mechanism' have been confirmed by a multitude of ex- 
periments, there are as yet no clear answers for questions 
relating to relaxation via the electron-phonon channel in im- 
pure metals. In the case of extremely impure metals, when 
ql(1 ( q  is a characteristic phonon wave vector, and I is the 
mean free path between impurity scatterings), the energy 
relaxation of electrons has been calculated by a number of 

However, the results of these calculations do not 
agree among themselves, and the cause of the disagreement 
remains unclear. The difficulty which arises in comparing 
Refs. 4 to 7 is connected with the use by these authors of 
various methods to derive the kinetic equations, as well as 
their use of various frames of reference to describe the elec- 
tron-phonon interaction. In Ref. 4, the calculation was per- 
formed in a coordinate system moving with the lattice, and a 
dependence T; ' - T41 was found. In Refs. 5-7, the labora- 
tory system was used, which led to r; ' - T'I for Refs. 5 and 
6,  while Ref. 7 contains results which agree qualitatively 
with those derived in Ref. 4. It is no wonder that experimen- 
ta l i s t~ ' .~  encounter difficulty in interpreting their measured 
data, and occasionally "pick and choose" among theoretical 
results which do not agree with one another. 

To us, it seems timely to analyze the whole problem of 
electron-phonon interactions in impure metals and semicon- 
ductors on the basis of a single approach. The collision inte- 
gral describing the energy relaxation of electrons in a normal 
metal can be derived using the Keldysh diagram technique. 
The calculation is performed by two methods: in Sec. 2 we 
use the laboratory frame, while in Section 3 we use the co- 
moving frame. The calculation in the lab system allows us to 

clarify the roles played by the various physical processes 
which scatter electrons, and to carry out a comparison with 
the results of Refs. 4-7; the second technique offers a num- 
ber of advantages in doing calculations. The collision inte- 
grals obtained in both systems are identical, while the energy 
relaxation time agrees with the result of Ref. 4 obtained by 
the method of Kadanoff and Baym using the two-particle 
Green's function. In Section 4 energy relaxation in super- 
conductors with high concentrations of impurities is investi- 
gated on the basis of the formalism developed in Section 3. 
The importance of this problem derives from the fact that 
the macroscopic characteristics of superconductors turn out 
to be very sensitive to the form of the quasiparticle distribu- 
tion function, which is determined by energy relaxation pro- 
cesses. In Section 5 we analyze the results obtained and es- 
tablish a relation between the electron and phonon 
relaxation times. Finally, we will discuss the errors commit- 
ted in Refs. 5-7. 

2. ENERGY RELAXATION OF ELECTRONS IN THE 
LABORATORY SYSTEM 

The interaction Hamiltonian, including the interaction 
of electrons among themselves, elastic electron-impurity 
scattering, the electron-phonon interaction and inelastic 
electron-impurity scattering, takes the form 

The prime next to the summation signs indicates terms with 
q = 0 are omitted; c& is a creation operator for an electron 
with momentum p and spin a, while b ,t, is a creation opera- 
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tor for a phonon with wave vector q and polarization index 
A. The electron-electron and electron-impurity potentials 
are respectively equal to 

where Zion is the valence of an atom of the host lattice, Zimp 
that of the impurity atom, and R is the equilibrium impuri- 
ty position. 

In the electron-phonon interaction vertex p (q ) ,  as op- 
posed to the usual e ~ ~ r e s s i o n s , ' ~  we do not include screening 

B (q) =-iP,-i0, (q) qeANl (2MNoq, n)'", 

B e - i , ,  (q) =-4r~e~Zi,~/q~, (3)  

N is the number of unit cells, w , ,  is the phonon frequency, 
eA is the phonon polarization vector and M the ion mass. 

Scattering by impurities with emission or absorption of 
a phonon is described by the vertex 

7 (k, q, h )  =-iV,-rmP (k) k e ~ l  (2MNoq, A )  '". (4)  
From the condition of electrical neutrality, it follows that 
the electron density n, satisfies the equation 

where Z is the average charge in a unit cell, and N,,, is the 
number of impurities per unit volume. 

In the Keldysh diagram technique," the electron and 
phonon Green's functions, along with the electron and 
phonon self-energies, are represented by matrices 

The electron Green's function averaged over impurity posi- 
tions equals 

GR(p, 8) =[GA (p, E) ]  *= (&-tp+i/2~)-', 

fp= (p2-pp2) /2m, (7 )  
where r is the electron momentum relaxation time due to 
impurity  scattering,^, is the Fermi momentum and m is the 
electron mass. We will neglect renormalization of the elec- 
tron spectrum due to the electron-phonon interaction. 

In order to solve the problem of energy relaxation in a 
spatially-homogeneous electron system, we focus our atten- 
tion on times much longer than the electronic momentum 
relaxation time T; then GC can be case in the form 

GC(p, ~ ) = S ( E )  [GA(p, el-GR(p, E)  I ,  ( 8 )  
where n,  = [ S ( E )  + 1 ]/2 can be interpreted as the electron 
energy distribution function. We will obtain a kinetic equa- 
tion for the function n ,  . 

The Green's function for phonons equals 

Dn(q, O) ==[DA(q, a )  I*= ( o - ~ ~ + i O ) - ~ -  (oSap+iO)-'. 
( 9 )  

Here we assume that any quasilocal modes which appear 
when impurities are introduced do not affect the initial seg- 
ment of the phonon spectrum, and also that the velocity of 

sound is already renormalized.'' For equilibrium phonons, 
we have 

where T is the temperature of the heat bath. 
The vertices which mediate energy transfer in the Kel- 

dysh techniques are represented by objects of the form Q f,, 
where the upper index is for bosons, the lower electrons. The 
vertices corresponding to the electron-phonon interactions 
and inelastic scattering of electrons by impurities take the 
form 8 11 ' .  = ZK fj,yjj = FK f,, where 

a, is the well-known Pauli Matrix. The matrix pe,, (a, );, 
corresponds to a vertex which describes elastic scattering off 
an impurity. 

The renormalization of any scalar vertex &' (i.e., inde- 
pendent of the direction of the vector p)  due to impurities is 
shown graphically in Fig. 1 for the ladder approximation. As 
a result, we are led to a renormalized vertex W' which satis- 
fies the following matrix equation 

where v is the density of states and T is the scattering of an 
electron off an impurity, which will be determined later by 
(20) including screening. In particular, as regards the Cou- 
lomb vertex w' = K f,, to lowest order in (p,1) - ' , I 3  we have 

where 

We write out the value of<,, (which we will need later) in the 
long-wavelength limit (914 1, w r g  1 ) : 

~0=l+ia~-1/3(qZ)2,  t l= - i [ l+ tO( io~ - l )  ]/qZ, (15 )  

FIG. 1.  Renormalization of vertex function due to impurities within the 
ladder approximation. 
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= m + -  
a r=A=A+/ i  

FIG. 4. The effective vertex T. 

FIG. 2. (a) Equation for the screened Coulomb potential, (b) Equation 
which describes screening of the vertex function. 

Including screening of the Coulomb potential and elec- 
tron-phonon vertex in the random-phase approximation 
leads to the equations shown schematically in Fig. 2. We 
remark that the screened Coulomb potential has the same 
matrix structure as \he G-function. The expressions for all 
the matrix elements Vee were obtained in Ref. 13. Below, we 
write down expressions we will need later for V t  and V:, : 

If we use the vertices B and y (Fig. 3), it is not hard to write 
down the electron self-energy diagram; however, the num- 
ber of diagrams which results is extremely large. Therefore it 
is convenient to introduce effective vertices in which the dia- 
grams have already been partially summed. A similar proce- 
dure was employed in Ref. 5 for the temperature Green's 
function. 

Let us introduce the effective vertex r, whose defining 
equation is shown graphically in Fig. 4. After some calcula- 
tions we obtain 

e R ( q ,  o )= l -Ve . (q)PoR(q ,  a ) ,  

where Po is the loop shown in Fig. 2: 

For ql( 1, wr( 1, we have 

In the case of elastic and inelastic scattering of electrons by 
impurities, the relevant momentum transfers are large 
enough so that q l )  1; then E~ ( q , ~ )  can be taken in the static 
limit: 

eR (q, a )  = l+x2/q2 ,  xZ=4ne2v, v=mpR/x2. ( 19) 

r12==r212=rzz2=o. 
Using r, we introduce the vertex L shown in Fig. 5 

Lij t=-PIA(q,  0 )  VeeA(q ,  o )  K i j 2 ~ - P I A ( q ,  O )  Kr,21P,1A ( q ,  o ) ,  
(23) 

where P, is the loop containing the vector vertex r propor- 
tional to the first power of x .  The last equation in (23) is 
correct in the limit of strong screening V,, (q)P,,(q,w)B 1. 
Taking into account ( 15) and ( 17), we obtain 

For isotropic scattering, The vertices B I, and L i j  can be conveniently combined by 

(20) 
introducing the vertex gf, = B f, + L f, : 

V,-imp=-4nez (Z,mp-Zt,,) l x 2 ,  i l ~ = n ~ ~ j m p ~ ~ i r n p .  
' I t 5  ( q l ) z - i - i ~ ~  2 Qer 

Then inelastic scattering vertex for electrons by impurities gi:'ig[ ' l ~  ( ~ l l ) ~  ] K*:9 g = ep ( ~ M N ~ , , )  'I* 
coincides with (4) if we use Eq. (20) for V,,,, . 

(25) 
In the long-wavelength limit the screened We can express the vertices L :, and g:J as functions of the 

phonon vertex B f, depends significantly on the frequency w vertices L f, and gf, respectively in precisely the same way as 
due to the dispersion of the dielectric permeability ( 18) : we did for the vertices B f, in (2 1 ) . We note that the quantity 

g coincides with the vertex which is commonly used for de- 
scribing the electron-phonon vertex in pure metals.'' 

FIG. 3. Vertices which describe electron-phonon scattering along with FIG. 5 .  The vertex L which takes into account screening in the inelastic 
inelastic electron-impurity scattering. electron-impurity process, and the effective vertex g. 
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FIG. 6 .  Renormalization of the vertex r + g due to impurities. 

The vertices gfj and Tf, for low momentum transfers 
and frequencies are significantly renormalized due to the 
electron-impurity interaction. Since the vertex Tf ,  is a vec- 
tor, i.e., depends on pe,, we cannot directly write down an 
equation like ( 12) for it. However, such an equation can be 
written for the vertex A, as shown in Fig. 6,  where the bare 
scalar vertex A is obtained from the vertices r and g by in- 
serting a single impurity line. As a result, we obtain 

So as to avoid cumbersome statements here and later on, let 
us write out only the expressions for vertices with a phonon 
index of 2. We remark that when we use only these vertices, 
we obtain that part of the collision integral proportional to 
(2N, + + W )  - S ( E ) ] .  

Therefore, in order to describe the electron-phonon in- 
teraction in impure metals we must take into account the 
vertices g, y, r and A. The kinetic equation for the function 
n, which determines the electron energy relaxation was ob- 
tained in Refs. 13, 14: 

X[ (2ne-4) (XA (P, E) -XR (P, e )  -ZC (P, E)  I .  (27) 

The expression standing on the right side of (27) is the colli- 
sion integral, and will be denoted I,. 

Let us first investigate longitudinal phonons. The elec- 
tron self-energy diagrams B(p,&) to first order in the elec- 
tron-phonon interaction but including the electron-impurity 
interaction to ail orders in the approximation p,l>l is 
shown in Fig. 7. We will now turn to a direct calculation of 
these diagrams for q, ldl  where q, = T / u , ,  and u, is the 
longitudinal sound velocity. 

The first diagram gives the following expression for the 
collision integral 

1, ( 8 )  

=-J dq dw g 2 ~  (8, w) ~ r n  G~ (p, e) ~ r n  G~ ( p i p ,  e+ r) 
nv ( 2 ~ ) ~  

The reader can convince himself that the second, third and 
fourth diagram make no contribution to the energy relaxa- 
tion. The fifth, sixth, ninth and tenth diagrams are related to 
the corresponding collision integrals 

z5=4/5z1, I - I ,  z I,,=-11. 

The seventh diagram does not depend on the parameter q,l, 
and its contribution to the collision integral is in order of 
magnitude I , - I , ( ~ , ~ ) P ~ .  However, I ,  cancels with the 
contribution from the eight diagram I ,  calculated to lowest 
order in q T l  (for which the internal G-function must be ex- 
panded in qTl) ;  we thus obtain I, + I, = 9 / 5 1 , ,  In this way, 
the full contribution to the collision integral for all the dia- 
grams is found to be 4 / 5  I , .  We thus find for the energy 
relaxation time when E<T 

1 61(E) 1 lC4P plrlTk 
-=-- -- 

' t e  6n, ' 7~~ 5 ( P ~ u ~ ) ~  ' 
1 3 0 )  

For transverse phonons, we need include only the dia- 
grams 2,  and 2,. If we neglect the difference in the sound 
velocities, so that u,  = u, = u,  then we obtain T,, = 4/37, , .  
Finally, for one longitudinal and two transverse phonon 
branches we have r, = 2/57,,  , which agrees with the results 
obtained by S ~ h m i d t . ~  In the general case u,  # u , ,  so that r, 
has the form 

3. ENERGY RELAXATION OF ELECTRONS IN THE MOVING 
SYSTEM 

As was shown in Section 2, in order to describe the in- 
teraction of electrons with long-wavelength phonons in the 

FIG. 7 .  Self-energy diagrams for electrons in the lab system. By diagrams 
4-6 and 8-10 we mean to include two diagrams apiece: one is shown in the 
figure, while the other differs from it by an interchange of vertices. 
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laboratory system it is necessary to calculate directly the 
scattering of electrons by vibrating impurities. It is therefore 
convenient to transform to a coordinate system moving with 
the lattice in which the impurity is stationary. The effective 
electron-phonon interaction in this co-moving system ap- 
pears as an additional term linear in the lattice displacement 
when we transform the kinetic energy of an electron from the 
lab system to the co-moving system. The co-moving system 
is used by a number of  worker^'^-".^ (see also the recent 
review in Ref. 18 ) . According to Ref. 17, the electron distri- 
bution function does not change when we go from the lab to 
the co-moving system; consequently, the collision integrals 
in both systems should be one and the same. The following 
calculations confirm these statements. In Ref. 4, the finite- 
temperature two-particle Green's function equation was 
used to derive the collision integral. To use the Keldysh tech- 
nique, we require vertices with tensor structure. The elec- 
tron-phonon interaction vertex has the form 

For longitudinal phonons, 

By a process analogous to the one described in the pre- 
vious section, we can include the effects of the interelectron 
Coulomb interaction, and are led to a screened vertex (Fig. 
2b) : 

(Fa)  i j Z = - 3 g [ ~ ' + P , ~  (Q, 0 )  V A  ( q ,  a ) ]  Ki; 

=-3g[x2-PZA ( q ,  o )  /PoA (q,  a )  ] K,2. (33) 
The last equality in (33) is correct under strong-screening 
conditions, i.e., Vee (q)Po(q,o)% 1; P2 (q,w) is the loop con- 
taining the vertex x2 K i j .  

To calculate the loops via the Keldysh techniques, in- 
cluding the impurity ladders, we take advantage of the fol- 
lowing method, which noticeably simplifies the calculations 
and is especially effective in the superconducting case. Let us 
investigate, e.g., 

Since summation is implied by the pairs of repeated indices 
in the right side of (341, we can convince ourselves that it is 
proportional to the vertex W : ,  determined by equation 
( 12). This allows us to perform the p integration in (34): 

de 
P o A ( q , ~ ) = - 2 " i  I- ( N  v 2  ) - l W l 1 2 ( q ,  w , E ) .  (35) 

2n imp c-imp 
Expression (35) is exact only in the sense that the ladder 
approximation is exact. If we want to calculate P,(q,w) via 
formula (35), it is necessary for W:, to be known to first- 
order accuracy in (p , l )  - ': 
W4t2(q,  0 ,  e )  
= [ S ( E + O )  - S ( E )  ]bo*/2'" (1-50') + S ( E + ~ )  faA-S(E)  toR, 

(36) 

1 tnA = (tnR) *- - J*G*(~, E )  G* (p+q,  e + a ) z n ,  
nvz ( 2 r ~ ) ~  

We remark that cg(co, but because the first term in (36) 
when substituted into (35) integrates to a finite limit, while 
the second and third terms are infinite, their contribution is 
found to be first ~ r d e r . ' ~ . ' ~  After performing the integration 
in (35), we obtain expression ( 17). 

In order to calculate the loop P,(q,w) using the method 
described above, it is necessary to include the renormaliza- 
tion of the vector vertex x2K f, due to electron-impurity in- 
teractions. Proceeding in the same way as we did to renor- 
malize the vector vertex r (Fig. 6),  we obtain as a result the 
vertex r, : 

(I?,) 122= (I',) 2 i 2 =  (re) 22a=0, 

The loop P2(q,w) is connected with the vertex (T, ):, by a 
relation analogous to (35): 

Substituting the resulting value of P2(q,w) into (33), we 
obtain 

After renormalizaiton of the vertex T, by the impurity lad- 
der, which contains both vector and scalar parts, we obtain 
the vertex r f :  

We note that the last equality in (41 ) is correct for any rela- 
tion between w and Dq2. 

The electron self-energy diagrams, including the ver- 
tices r, and r f ,  are shown in Fig. 8. It is easily seen that 2, 
reduces to zero upon integration with respect to angle, while 
2, = 0 due to the index structure of the vertices. Calculating 
the collision integral including X I ,  we obtain a result which 
coincides precisely with formula (30) which we evaluated in 

FIG. 8. Diagrams for the electron self-energy in the comovingsystem: is 
the vertex r,, W is the vertex rf. where 
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the laboratory system. For transverse phonons we need take 
into account only the vertex r,, and again we obtain agree- 
ment with the results of Section 2. 

4. ENERGY RELAXATION IN IMPURE SUPERCONDUCTORS 

In superconductors, energy relaxation of electrons 
which are excited near the transition temperature Tc takes 
place with an energy transfer of 6 ~ -  T. In the low-tempera- 
ture region T<A, where A is the gap in the electronic excita- 
tion spectrum; as before, the scattering processes are accom- 
panied by energy transfers SE-T. For recombination 
processes, however, SE- A. In order to simplify things, we 
limit ourselves to the case in which both of these processes 
are modified by impurity scattering, which obtains when the 
inequality 

is satisfied; this is meaningful when ql4  1 ,  where q is a char- 
acteristic momentum transfer. In the opposite limit, the elec- 
tron-phonon collision integral was evaluated in Refs. 20-22. 

The Green's functions in the superconductor are matri- 
ces both in the Keldysh indices and in the Nambu indices 

where we introduce the notation 

E ~ = E  ( l - k i / 2 T E e ) ,  l R = A  ( I + ~ / ~ T E ~ ) ,  ( 4 4 )  
( E R ) 2 =  ( E ~ ) ' -  (AR) ' ,  Lge= ( E ? - - A 2 ) " s i g n  E,  ( E  [>A.  

Here and below we will adhere to the following customary 
notation: the indices for the Green's function and vertices 
correspond to the Keldysh space, while the expansion in 
Pauli matrices is in the Nambu space. 

If there is no imbalance in the populating of the 
branches of the spectrum, then the quasiparticle distribution 
function is odd in lP, and GC takes the form 

As is clear from the results of Sec. 2 and 3, a description of 
the electron-phonon interaction in impure metals in the co- 
moving system offers fewer difficulties than the same de- 
scription in the laboratory system; therefore, in the case of 
impure superconductors we also will use the comoving sys- 
tem, preserving the same notation for the vertices as in Sec. 
3. The bare Coulomb and electron-phonon interaction ver- 
tices in the Nambu indices correspond to the matrix a, : 

~ J = K ~ ; @ U , ,  ( P o )  ( r 0 )  il@az, ( 4 6 )  

where s denotes the direct product. 
A 

Renormalization of the bare vertex wf, due to impuri- 
ties in the ladder approximation leads to the matrix equation 
( 12), which in the case of superconductors is represented for 
each phonon index by a system of sixteen linear equations. 
The solution of the system so obtained to zero order in 
(p, I )  - ' takes the form 

where we introduce the notation 

rln=Gn (49 9) ,*+=%n (4, -Q+), Q=Ee+u-E,, 

( 4 8 )  

where<, is determined by the formula ( 14) and ( l5), while 
the coherent factor similarly is equal to 

The renormalization of the vector vertex x2 K f j  @&= 
due to the impurities is carried out by the same methzds as 
were used for a normal metal, and lead to the vertex Tc . As 
before, we write down the solution only for phonon index 2: 

(6 22=0: (I;=) 212= [ (If;) , 22 ] .  

Taking into account the electron-electron interaction 
leads to a screened vertex 

where for ( r , ) f j  formula ( 3 3 )  is correct if we understand 
Po (q,w ) and P, (q,w ) to be loops calculated for the supercon- 
ducting state. Relations ( 3 5 )  and ( 3 9 ) ,  which allow us to 
express the loops through vertices, take the following form 
in the superconducting state: 

As in the normal metal, the vertices w i, and ( rc ):, must be 
calculated to first order in (p,I)  - '; the vertex W : ,  to zero- 
order in ( p , l )  - '  is given by formula (471, while the first 
order correction takes the form 

For calculating the contribution ( W ' )  :, in ( 51 ) the impor- 
tant region is E - E ~ ;  therefore, if we neglect terms of order 
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the result of integrating coincides with the analogous 
contribution for the normal metal, and so 

By a transformation analogous to (52), we obtain 

Formula (54) is a complete solution to the problem of 
screening the Coulomb potential in an impure superconduc- 
tor. We remark that for q = 0 formula (54) coincides with 
the expression P i  (0,w) f o ~ a  pure superconductor.23 

Let us cast the vertex T, in the form 

The expression (3P t  - Pi)/Pi is small, just as in the nor- 
mal metal, since 37, - r ] ,  = -& (41)'. Actually, let us as- 
sume, for example, wgDq2; then 

3PaA-PoA- - -'lsio.tJ 

PO* 1+3/,iozJ/ (41) ' 

The integral J i s  well known; it is the ratio of the absorption 
coefficients of sound for the superconducting and normal 
states. For arbitrary frequencies w we have J- 1, and so 
3P2 - PogPo remains correct in otherJimiting cases also. 

After renormalizing thezertex r, with the impurity 
ladders, we obtain the vertex r f :  

- - qo+-3qz+ 
2" (i-qo+) 

,[ (I-A) 6.-Bia,], 
(58) 

The kinetic equation for the distribution function n, = ( 1/ 
2)  [S(E) + 1 1, which is odd in g p ,  and which describes the 
energy relaxation, has the form 

x{(2n8-4) [kA(p, E)-  s ( p ,  e) I - k ( p ,  e ) ) ,  (59) 

where the trace is taken in order to extract from the matrix 
collision integral the components proportional to the unit 
matrix.' 

The collision integral corresponding to the self-energy 
(Fig. 8) reduces to zero when integrated over angles. The 
analysis of the second diagram requires a special i%vestiga- 
tion, since in the superconducting case the vertex Tf has a 
complicated structure: (Tf ) f 2  #O, (Tf ):, #O. Writing out 
the collision integral in the Keldysh indices and including 
equation ( 12), we can express I, in terms of the vertices 
dressed by the impurity ladders and in this way we can per- 
form the integration over p in the collision integral. Let us 
write down the part of the collision integral proportional to 
(2N, + ~ ) [ S ( E + W )  -S(&)I: 

A A 

rz SP .. A [(ff)L (9, ,. O) cJ, GI2 (- a ,  -4 oZ - ( r , ) ~ ~ ~  (-- q,- 
x 0, y1i2 (q, a) A (JZ + (rt)li2 (q, (0) ^azGi2 (-- q,- o) a^, 

- (r,)ll"- 9,- o) G G 1 2 2  (q, (1)) &I, 
h 

where is the "bare" vertex corresponding to Tf, as in equa- 
tion (12), i.e., the vertex obtained from T, by correcting it 
with one impurity line. Taking into account (58), we obtain 
12(&) = 0, as in the normal metal. In this way, the collision 
integral for a single longitudinal phonon branch, also for the 
superconducting case, is determined by the diagram 8,: 

Calculations show that there are relations between the 
contributions from various phonon branches which enter 
into the energy relaxation which are similar to those in the 
normal metal (Section 2). In order to separate out the pro- 
cesses of scattering and recombination in the previous for- 
mula it is necessary to go from the electronic representation 
to the quasiparticle repre~ention.~ The quasiparticle scatter- 
ing time T, and the recombination time T, are computed just 
as in the case ql> 1. Near the transition temperature and in 
the quasiparticle energy region A(E - T of interest for ener- 
gy relaxation, the times T, and TR are of the same order as 
the energy relaxation times for electrons in a normal metal. 
In the low-temperature region TgA, the quasiparticle re- 
combination time rR for E = A is determined by the expres- 
sion 

while the scattering time for quasparticles with this energy is 

where T (x )  is the gamma function, c ( x )  is the Riemann 
zeta function, and T, is the energy relaxation time in the 
normal metal ( 3 1 ) . 

5. DISCUSSION OF RESULTS 

The calculation of the energy relaxation time T, for 
electrons in an impure metal under the conditions Trgu/v, 
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has led to the result (31 ), both for the laboratory and co- 
moving coordinate systems. The qualitative dependence of 
7, on temperature and mean free path of electrons can be 
obtained from a relation which can be interpreted as an ener- 
gy-balance equation 

where Ce and C,, are the heat capacities for electrons and 
phonons and rPh is the electron-phonon relaxation time. For 
arbitrary values of ql, the time rPh was calculated by Pip- 
pard.24 The microscopic derivation of the formula for rph , 
presented in the comoving4 and laboratory'2 frames, con- 
firms the results of Ref. 24. The time rPh was determined in 
Refs. 4, 12 as the imaginary part of the phonon self-energy, 
which is justified since for phonons the drift time coincides 
with the energy relaxation time. According to Ref. 24, for 
ql( 1 we have rPh - o: r; assuming that o, - T, we obtain an 
expression for 7, which coincides in order to magnitude with 
(30). If, however, following Refs. 5 and 6 we assume that 
T; ' a T2/p:ul, then from (63) it follows that rPh does not 
depend on the frequency: r; ' - m/Mr. 

The errors in Refs. 5 and 6 are first of all connected with 
the determination of the energy relaxation time from the 
imaginary part of the electronic self-energy, and in addition 
are related to the omission of a number of important dia- 
grams. In Ref. 7, the energy relaxation time was found to 
coincide with (30) in order to magnitude. However, this 
result was obtained by using a number of groundless and 
incorrect assumptions. All diagrams which contained the 
vertices renormalized by the impurity ladder were omitted, 
as not giving any contribution to the energy relaxation; the 
diagram Z,, was not investigated at all. After retaining the 
contributions I, and I, mentioned in Section 2, the authors of 
Ref. 7 were led to the conclusion that "the energy exchange 
between the electron and phonon subsystems is determined 
purely by the electron-phonon interaction," i.e., by taking 
into account only the diagram 2, in Fig. 7. It turns out that 
this is equivalent to throwing away the transverse phonon 
part. As our calculation shows, inelastic electron scattering 
off of impurities gives a substantial contribution to the ener- 
gy relaxation. 

In an impure superconductor, when condition (42) is 
fulfilled, both the scattering and recombination processes 
for excitations are modified due to impurities. In this case, 
the collision integral has the canonical form (60) with an 
effective matrix element dependent on the electron mean 
free path. This implies that the ratio of the attenuation coef- 
ficients for sound in the superconducting and normal states 
in the low-frequency limit ql( 1 is given by the BCS formula 
both for longitudinal and transverse phonons, in agreement 
with Refs. 16 and 25. The times rS and T, are larger com- 
pared with the same quantities in a pure superconductor by 
the factor (ql) -') 1, where q is a characteristic momentum 
transmitted by a phonon. 

The weakening of the electron-phonon and strengthen- 
ing of the electron-electron interaction' with increasing im- 
purity concentration is reflected in the form of the quasipar- 
ticle distribution function in impure or thin superconducting 
films. This dissipative process whereby one quasiparticle de- 

cays into three due to the electron-electron interaction es- 
sentially limits stimulated superconductivity in such films. 
A high impurity concentration can cause the inequality 
re, (T, to be satisfied at helium temperatures (re, is the elec- 
tron-electron scattering time'). In this case, the nonequilib- - 
rium distribution function for quasiparticles is a Fermi func- 
tion with some effective electron t e m p e r a t ~ r e . ~ ~  

Let us discuss briefly the question of what influence a 
change in the electron-phonon interaction in impure semi- 
conductors will have on the value of the critical temperature 
Tc . The value of Tc is determined by the interaction of elec- 
trons with virtual phonons. A broad range of phonon wave 
vectors, right up to the Debye wave vector, is important in 
this interaction. As we have pointed out, in impure super- 
conductors only the interaction of electrons with long-wave- 
length phonons (914 1 ) is changed. In view of the smallness 
of this energy region, we can assume that the corrections to 
Tc which appear are of order (p,l) - ' ( 1. In this connection, 
we note that a rise in T, due to the increase in the effective 
matrix element for the interaction of electrons with trans- 
verse phonons in an impure semiconductor appears from our 
point of view to be erroneous. The model used in Ref. 27 and 
in the present work, which is based on the deformation inter- 
action, gives a correct description only for long-wavelength 
transverse phonons. For short-wavelength phonons, one 
must take into account the transverse electromagnetic field, 
as was done in Ref. 12, for the microscopic calculation of the 
attentuation coefficient of sound. A systematic calculation 
shows that the matrix element of the electron-phonon inter- 
action, which is proportional to the attenuation coefficient 
of sound, decreases monotonically both for longitudinal and 
transverse phonons as the parameter ql decreases. Conse- 
quently, the effect predicted in Ref. 27 is impossible. For this 
same reason, there cannot be any nonmonotonic tempera- 
ture dependence on r; ', of the sort obtained in Ref. 28. 
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