
Model of thermal excitation in the Ge crystal 
N. M. Guseinov 

Institute of Physics, Academy of Sciences of the Azerbaijan SSR 
(Submitted 12 August 1985) 
Zh. Eksp. Teor. Fiz. 90, 1034-1041 (March 1986) 

A model is constructed for the thermal excitation arising as a result of the cooling of the 
photoexcited charge carriers in a germanium crystal cooled to liquid-helium temperature. If 
the power of the laser pulses is sufficiently high, the thermal excitation region will be a hot 
spot with a temperature higher than the Debye temperature of the crystal. As a result of the 
cooling, the expansion of the hot spot due to heat conduction gives way to a stage governed by 
the propagation of nondecaying t phonons. The spatially expanding thermal excitation region 
is a source of ballistic phonons. The duration of the ballistic signal, which is extracted from the 
total detected phonon signal by a method based on the focusing effect for ballistic phonons, is 
calculated as a function of the energy of the light pulse. 

INTRODUCTION 

The propagation of phonons excited as a result of the 
cooling of the photoexcited plasma of a semiconductor is a 
topic of current research interest. A crystalline sample, 
cooled by liquid helium to low temperatures, is subjected to 
pulses of laser light. The phonons which propagate from the 
excitation region are detected by a bolometer. The duration 
and character of the detector signal depend on the power of 
the laser pulse. If the power of the laser pulses is sufficiently 
high, the duration of the detector signal will be substantially 
greater than that of the light pulses, and in this case the 
narrow peak characteristics of ballistic phonons is accompa- 
nied by a long tail ( - 10 psec) which corresponds to the 
arrival at the detector of phonons scattered en route in the 
interior of the sample.'*2 

A method exists for extracting the ballistic phonon sig- 
nal from the total detector signal. This is the so-called spatial 
filtering method, which is based on the focusing effect for 
ballistic p h ~ n o n s . ~  An experiment performed on a highly 
pure Ge crystal with the aid of the spatial filtering method 
showed that the duration of the ballistic phonon signal in- 
creased from 0.1 to 1.5 psec with increasing power for laser 
pulses 0.1 psec long.4 Such long-lived phonon pulses are ex- 
plained by the presence in the excitation region of a hot spot 
which operates for a certain time after the laser pulse has 
ended and acts as a source of ballistic phonons. 

The hot spot is a region in which most of the phonons 
are concentrated, with an energy density sufficient for the 
establishment of a Planckian equilibrium at a temperature 
higher than the temperature of the crystal. A criterion for 
the establishment of such an equilibrium is that the mean 
free path of the thermal phonons in respect to the phonon- 
phonon interaction be small compared to the size of the hot 
spot. In this case processes involving the coalescence of ther- 
mal phonons occur as efficiently as decay processes. 

If the energy of the laser pump exceeds a certain value 
EQ, the phonon temperature established in the hot spot at 
the end of the laser pulse will be higher than the Debye tem- 
perature of the crystal. Then the rate of anharmonic interac- 
tions of thermal phonons in a pure crystal will be higher than 
the rate of their scattering by defects during the entire evolu- 

tion of the hot spot. The spatial expansion of the spot will be 
determined by the thermal conductivity of the crystal. How- 
ever, as the spot expands, the density of heat energy falls off, 
and a stage commences in which the existence criterion for 
temperature is not fulfilled. The spontaneous decay of phon- 
ons becomes the only anharmonic process. The decay of 
phonons of the decaying modes will be dominant over isoto- 
pic scattering, and the phonons will accumulate on the non- 
decaying branches of the phonon spectrum. The expansion 
of such a phononic inhomogeneity was described in Refs. 5 
and 6. 

If the energy of the laser pump is below E, , the opposite 
situation obtains during the formation and evolution of the 
hot spot: at the actual phonon frequencies, scattering by de- 
fects is dominant over the anharmonic interaction. This case 
was considered in Ref. 7. The spatial expansion of the hot 
spot is governed by nonlocal heat conduction (the various 
regimes of nonlocal heat conduction were considered in Ref. 
8).  Then the Planck distribution breaks down, and the non- 
local heat conduction gives way to quasidiffusion. Quasidif- 
fusion is described in Refs. 9 and 10. 

In the present paper we construct a model for the devel- 
opment of the hot spot whereby the latter gives way to an 
expansion of nondecaying phonons. For comparison with 
the experimental results of Ref. 4, we calculate the excita- 
tion-energy dependence of the duration of the ballistic 
phonon pulse, which is extracted from the detector signal by 
the method of spatial filtering. 

1. THE HOT SPOT 

Laser irradiation of the surface of a semiconductor 
gives rise to an electron-hole plasma which, on recombining 
and cooling, creates a thermal excitation. If the phonon en- 
ergy density in the thermal excitation region is sufficiently 
high, the phonon-phonon interactions rapidly bring the 
phonons into a Planckian equilibrium at a temperature high- 
er than the temperature of the crystal, which is cooled by 
liquid helium. 

We shall take the initial time to be at the end of the laser 
pulse. It is assumed that the hot spot has formed prior to this 
time and is in the shape of a cylinder whose base is the cross 
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section of the laser beam on the surface of the crystal. The 
radius of the base is much greater than the height of the 
cylinder, ro,do. 

In calculating the energy of the spot we assume that the 
phonon temperature is the same throughout the volume of 
the cylinder. We also assume that the height do of the cylin- 
der is independent of the pump energy E (for E < E, the 
dependence of do on E can be substantial). Under these as- 
sumptions the initial energy of the spot is given by 

Eo=nr,ZdoC (To) To, (1)  

where To is the initial temperature of the hot spot and Cis the 
specific heat of the crystal. 

The energy of the light pulse is related to the initial 
energy of the spot as E = E0/0.6 (Ref. 4). We shall consider 
energies E > E, , where 

which for Ge corresponds to To > O for ro = 30 pm, do = 1 
pm (Ref. 4), Debye temperature O/k = 374 K ( k  is Boltz- 
mann's constant), and Co = 1 .63.1023 ~ r n - ~ .  

We approximate the specific heat by 

where T, is determined by joining the expressions for the 
specific heat for T4O and T >  O. From the expression 

2nZT,Sj5 ( h v )  3=C0, 

where v = 3.5.105 cm/sec is the average sound velocity in 
Ge, we get 

For further study it is necessary to determine the 
phonon-phonon collision frequency for subthermal phon- 
ons. By continuing the known expressions for the frequency 
of collisions between transverse ( t )  phonons at TxO and 
T >  O (Ref. 11) to the temperature at which the two expres- 
sions for l / r t  (o) join, we get 

1 fio -- , TaT, ' ,  
1 . t t f ( T )  8 

.tr(o) T<TCt,  
t t ( T )  T ' 

where 

TCt=O (5 /4n4)" ' .  

Analogously, for the longitudinal (I)  phonons in the Ge 
crystal, which has cubic symmetry, we get 

where 

T,I=0[12% (3) ]  -'I i ( v , / v )  a, 

v, = 3.25.105 cm/sec is the average velocity of transverse 
sound, and is the Riemann zeta function. Expressions for 

1/~;,, a a 4 T  and l/r,, a T~ can be found in Ref. 11. The 
temperatures obey 

We can thus distinguish two stages in the development 
of the hot spot: the decrease of the temperature of the spot 
from To to T, , and then the decrease of the temperature from 
T, to TK, where TK is the temperature at the time when the 
existence criterion for temperature fails in the hot spot. 

Let us denote by Z , ,  the frequencies at which 

Transverse and longitudinal phonons with frequencies be- 
low Z,,, have a mean free path larger than the cylinder height 
d. 

As a result of the spatial expansion, the height d of the 
cylinder becomes comparable to the radius rofits base. Then 
the frequencies Z , ,  will be determined by the equation. 

Phonons with frequencies o <G,, leave the hot spot, 
decreasing its energy. If G,,, (O, T, then the energy remain- 
ing in the hot spot is given approximately by 

OD 
- 
(I,, 

E,=J  d e p ( o ) h o n ( o )  - J d o p , ( o ) h o n ( o )  
0 0 

- 
( I J Z  

wherep,, is the density of states for the transverse and longi- 
tudinal phonons, p is the polarization-averaged density of 
phonon states, and n is the Planck distribution function. 
Equation (8)  yields 

where V is the volume of the hot spot, 

5 
f ( x )  = -xbDE(x) ,  n4 

and D, is the Debye function. If G,, < 2.8T, then the quan- 
tities A , ,  in (9)  are small compared to unity. The leakage of 
energy from the hot spot can thus be neglected until the time 
when the existence criterion for temperature fails: 

A G ~ ,  r=2.8 T,. (10) 

Allowance for the leakage of energy makes sense only near 
the temperature TK, when Eq. ( 10) holds. However, as a 
calculation shows,the energy leakage does not have an im- 
portant effect on the results. We assume for simplicity that 
the energy of the spot is conserved: E, = Eo. 

2. ONE-DIMENSIONAL EXPANSION 

As we have said, the hot spot is initially (at time zero) a 
cylinder of height d o e o .  The rate of decrease of the energy 
density as a result of the spatial expansion of the spot is de- 
termined by the growth of the height d. We can assume for 
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simplicity that the radius of the cylinder remains constant: 
r = r,, i.e., the expansion of the hot spot is one-dimensional 
up until the height of the cylinder becomes comparable to 
the initial radius r,,. Ford- r, the shape of the hot spot can be 
represented as a hemisphere with initial radius r,. 

To join the final volume rr:d of the cylinder with the 
initial volume 2rri/3 of the hemisphere, we set 

do<d<2ro/3. (11) 

Introducing the dimensionless variables y, = T/T, and 
z = d /do and taking into account the relation Ep = E, and 
Eqs. (1) and (2),  we write the expression for the hot-spot 
energy Ep = VCT for T >  Tc in the form 

z y , = l .  (12) 

It follows from ( 11 ) that 

Using ( 1 1 ) and ( 12), we can write the inequality T >  Tc as 

where 

E,=nro2doCoT,/0.6=0.93 pJ. 

The initial value of the temperature To > O corresponds 
to 

Ee<E<Em, (15) 

where Em = 10pJ is the energy that must be added in order 
to melt the germanium. Because E /E, < 2r,/3d0 for energy 
interval ( 15 ), the temperature goes through the point Tc 
before the expansion of the hot spot enters the three-dimen- 
sional regime, and inequality ( 14) holds. 

For T < Tc we get, with allowance for ( 1 ) and (2),  

(E/E,)3zy,4=1, (16) 

where 

E/E,<z<2ro/3do. 

For t phonons Eqs. ( 4146 )  yield 

hci,IO=E1'/E, T>Tc, 

while for I phonons we get 

where the energies (in p J )  

are evaluated with the following values substituted into the 
expressions for T;, and T, , :  Griineisen parameter 
y = 0.63,density p = 5.32 g/cm3, average longitudinal 
sound velocity u, = 5.4-lo5 cm/sec. 

The maximum value of G,, /Tcorresponds to z = 2rJ 
3d,. For energies in range ( 15) we have GI,, T < 2.8. Thus 

the existence criterion for temperature is fulfilled over the 
entire course of the one-dimensional expansion. 

The expansion is governed by heat conduction. The 
continuity equation is of the form 

where the heat flux j = - xVT. Over a wide range of tem- 
peratures extending to 20 K, the thermal conductivity x in 
crystalline Ge conforms approximately to the relation 
x T  = B, where B = 1.5.109 erg/cm.sec (Ref. 12). 

After integrating ( 19) over the volume of the hot spot, 
we get 

The integration in (20) is over the surface of the cylinder. 
We shall neglect the contribution to the integral from the 
lateral surface of the cylinder and assume that the tempera- 
ture on the surface of the cylinder is half as large as in the 
interior and that VT = - T/d  on the surface. We then find 
from (20) that 

Converting in (21) to the dimensionless variables z and 
17 = t(u,/~)-~(r, , /v,  I-', we get 

13~ldq=Ei/E, (22) 
where 

E,=6.67n ( V , / V ) ~  (Bro3/vtdo) =2.09 pJ. 

Integrating (22) with respect to z over the limits (13), we 
find that the time of the one-dimensional expansion, mea- 
sured in microseconds, is given by t ,  = 0.134E. Energy in- 
terval (15) corresponds to the time interval 

0.53psec < t ,  < 1.34psec. (23) 

3. THREE-DIMENSIONAL EXPANSION 

After time t ,  the hot spot is represented as a hemisphere 
of radius r .  The initial temperature of the three-dimensional 
expansion regime is found from ( 16) for z = 2r,/3d0: 

From (24), with allowance for ( 15), we find 

59.7 IC<T,,lk<75.3 IC. (25) 

Introducing the dimensionless variables y, = T/T,<, 
and 6 = r/r,,, we get, in analogy with ( 12) and ( 16), 

E3yz'=1. (26) 

From (4),  (5),  (71, and (26) we have 

hv,/T = (EJE) "bg"'6, hi~,/T = (EI/E) ''sE''~~, (27) 

where El = 0.37 p J  and = 4.2 pJ. 
The equation describing the three-dimensional expan- 

sion is obtained in analogy with (2),  by assuming that d T /  
dr = - T/r  on the surface of the hemisphere: 
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r arlat-2x16'. (28) 

In the variables g and p ,  Eq. (28) becomes 

(E~IE) ea, (29) 

where 

En=E,.2dJ3ro=4.64. lo-' pJ. 

The three-dimensional-expansion time t,, which is de- 
termined by the thermal conductivity, is obtained by inte- 
grating (29) over the limits 1 <g(gK, where g, is deter- 
mined by ( 10) and (27) : 

t, [ psec] =0.32E (1-Ex-'). 

The rate of anharmonic interactions of the longitudinal 
low-frequency phonons is lower than for the transverse 
phonons. Equation ( 10) comes to hold sooner for the longi- 
tudinal phonons. From Eq. ( 10) and the second equation in 
(27) we get 

= ( E E )  EK=0.8 pJ. (30) 

Interval ( 15) corresponds to the intervals 

Unquestionably, the frequency dependence given by (5 ) is 
incorrect in the region of thermal frequencies ( lo),  and Eqs. 
(27) and (30) are only good for estimates. 

4. EXPANSION OF NONDECAYING PHONONS 

At time t, + t,, when the dimension of the hot spot 
reaches rK = r, gK, the temperature criterion fails, and the 
spatial expansion of the phononic inhomogeneity ceases to 
be of the nature of heat conduction. For interval ( 15) we get, 
with allowance for (23) and (3 l ) ,  
l . lgpse~t ,+t~<3.52 psec, 62.1 p m  <rx<94.5 Pm. (32) 

Because of the low density of thermal energy the only 
phonon-phonon process is phonon decay. The bulk of the 
phonons have an energy fiwK = 2.8TK, where TK, the "fi- 
nal" temperature of the three-dimensional heat-conduction 
expansion, is determined from (24), (26), and (30) : 

Energy interval ( 15) corresponds to 

31.8 K<T,,/k<32,8 K or 1.23. 1013H~<o,,<I.27. 10" HZ. 
(33) 

In what follows we assume that the longitudinal phon- 
ons are the decaying ones, while the transverse phonons are 
nondecaying. The decay rate13 is given by 

a: = 4.53.10-23 cm3 is the volume of the unit cell of Ge, and 
S = 5.9.10-4. 

It follows from (32) and (33) that for phonons with a 
frequency 

decay occurs faster than elastic scattering with mode con- 
version. We see that phonons with frequency (33) satisfy 
inequality (36). The phonons will accumulate on the nonde- 
caying t branch of the phonon spectrum. As was shown in 
Refs. 5 and 6, the spatial expansion of the phononic inhomo- 
geneity under these conditions occurs linearly in time, with a 
velocity 

For comparison of the values oft,, T, , rK , t, + t,, and 
TK in (23), (25), (32), and (33) at pumpenergies (15), let 
us give the values calculated in Ref. 7 for E = 1 p J  under the 
experimental conditions of Ref. 4. The initial temperature of 
the hot spot is T d k  = 103 K, and t, = 1.4psec, T,<,/k = 38 
K, t, + t, = 2.8 psec, and TK/k = 28 K. 

5. DURATION OF THE BALLISTIC PULSE 

As we mentioned in the Introduction, the pulses of bal- 
listic phonons arriving at the detector were extracted by the 
spatial filtering method, which is based on the focusing effect 
for ballistic phonons. Specifically, the signal arriving at 
point B from the point of excitation is subtracted from the 
signal arriving at point A (see Fig. 1 ) . Points A and B lie at 
angles of a and to the ( 100) direction in the crystal. At 
propagation angles a <p < P  the intensity of the ballistic t 
phonons reaching the opposite face of the crystal from the 
excitation region falls off sharply. At angles larger than P, 
ballistic phonons do not propagate (the I phonons do not 
propagate ballistically in the ( 100) direction). 

Thus the spatial filtering method can be used to find the 
pulse of the ballistic t phonons by subtracting the signal ar- 
riving at point B from the signal arriving at point A as long as 
the dimensions of the phononic inhomogeneity are smaller 
than the distance R between points A and B. When the radius 
of the hemisphere reaches the value R, the low-frequency 
ballistic phonons produced in the decay will arrive at A and 
B in an identical manner. The value of R is given by 

(we are ignoring the decay 1-t + t, which occurs much less 
often). 

The rate of elastic isotopic scattering with mode conver- 
sionI4 is 

I/T~>I'(o) =qt+l6)D (~16)D) '~ (35) 
where FIG. 1 .  a)  Phonon excitation region ( 0 )  and the trajectory of ballistic 

phonons at angles a (OA) andp(0B) to the (100) direction in Ge. b) 
Ballistic signal J near the (100) direction in Ge versus the propagation 
angle of the ballistic phonons. 
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of the ballistic pulse falls off exponentially in time, with a 
time constant T. The calculated tJ ( E )  and T(E) curves are 
shown in Fig. 2. 

I am grateful to I. B. Levinson for posing the problem 
and for many discussions. 
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