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A mechanism is proposed by which soliton lines can form in a two dimensional crystal near the 
point where it undergoes transition to an incommensurate phase as the degree of 
incommensurability changes. This mechanism is connected with the appearance of dislocation 
pairs in the lattice of soliton lines under the action of an external stress, and their subsequent 
increase in length up to the point where pairs can annihilate one another. We estimate the 
characteristic time for such a process, and compare this mechanism with other possible 
mechanisms. It is predicted that applying a periodic external stress should make possible 
experimental study of the process of soliton line formation. 

Recently, there has been increased interest in two-di- 
mensional crystalline systems, as a result of enhanced ex- 
perimental capabilities; in particular, there is new interest in 
adsorbates on sufficiently perfect crystal surfaces. 

In many cases, when atomic monolayers of noble gases 
are adsorbed on graphite substrates, one observes crystalline 
phases which are incommensurate with the substrates1; sim- 
ilar effects are seen when alkali metals are adsorbed on re- 
fractory metal substrates.' 

In order to investigate theoretically the transition to 
such an incommensurate phase, very simple one-dimension- 
a13 and two-dimensional4 models have been proposed for the 
layers adsorbed on a substrate with a periodic "relief' poten- 
tial. To describe a real substrate, models have been proposed 
which take into account the finite elasticity of the sub- 
~ t r a t e , ~ - ~  along with the disorder of the substrate due to 
point  defect^.^.'^ In Ref. 11, the author studied the transition 
to the incommensurate phase on a substrate with line defects 
(steps or dislocations) which disorder the relief potential in 
one direction. Not long ago, a similar study was completed 
by Lyuksyutov'2 who used a similar method (reduction of 
the two-dimensional statistical problem to a one-dimension- 
a1 quantum problem with disorder). 

It must be pointed out that the majority of papers which 
study the transition to the incommensurate phase concern 
themselves with properties of the ground state of the incom- 
mensurate phase, or with statistical properties at finite tem- 
peratures. However, the question of kinetic properties of the 
transition to this phase is equally interesting, in particular 
the kinetics of soliton line generation. The present work is 
dedicated to addressing this question. 

Analysis of the experimental data and theoretical mod- 
els has led to the conclusion that during the transition to the 
incommensurate phase soliton lines appear in the lattice of 
atoms which are commensurate with the substrate. In the 
case where the incommensurability appears only in one di- 
rection, these lines run parallel. In this case, in constructing 
a model of the phase transition, it is sufficient to investigate 
the shift of atoms only in the direction in which the incom- 
mensurateness appears. 

The simplest Hamiltonian which describes such a mod- 
el has the form 

where u (x,y ) is the shift in atomic positions, x = nu, where a 
and c are close to the adatom and substrate periods in the 
direction of incommensurability x (we remark that our re- 
sults are easily generalized to the case of arbitrary commen- 
surability ratio a/c = m / n ) ;  A,, A, are elastic constants of 
the adsorbed layer; and v is the amplitude of the substrate 
"relief' potential. 

An analysis of the ground state of the Hamiltonian ( 1 ) 
shows that when the incommensurability parameter 
6 = (a - C)/C reaches a certain critical value 6,, a periodic 
array of soliton lines arises with period I a (6  - 6, ) - 
where I+ cc as 6-6,. 

In experiments with noble gas atoms on a graphite sub- 
strate, the period of the adatom lattice is determined by the 
pressure (or chemical potential) of the gas which is in ther- 
modynamic equilibrium with the layer. The average dis- 
tance between soliton lines is observed to change as a func- 
tion of the gas pressure.',l3 In connection with this result, the 
question arises of how new soliton lines are formed, i.e., their 
generation rate, as we move away from the critical incom- 
mensurability. 

The simplest mechanism for changing the concentra- 
tion of soliton lines as the external pressure varies invokes 
the appearance of new solitons at the sample boundaries or 
at defects, and the redistribution of solitons in the film far 
from these boundaries so as to establish a new equilibrium 
structure. Such a mechanism is in turn contingent on soliton 
diffusion over distances comparable to the film size, and ap- 
parently is not always the most effective way to establish 
rapidly the new equilibrium state of the system. 

We want to propose another mechanism whereby new 
soliton lines can appear, and compare it to the one above. To 
do this, let us study the two-dimensional lattice of soliton 
lines. Because the soliton superstructure has a continuous 
translation group relative to the substrate, we can treat it as a 
new two-dimensional lattice on a smooth ~ubs t r a t e . ' ~ . ' ~  We 
can describe such a lattice with the help of the Hamiltonian 
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where the constants Kx and K y  are connected with the elas- 
tic constants of the adatom lattice through the relations" 

K,cc T2/ra21, K,x rl/a2, r- ( h , ~ )  '"a; ( 3 )  

so that they satisfy the identity 

Below its melting temperature, such a lattice always 
contains coupled pairs of dislocations with opposing 
Biirgers vectors (these pairs dissociate into single disloca- 
tions at the melting point). When the pressure of the gas 
changes, a tensile (or compressive) elastic stress appears in 
the adatom lattice, and consequently in the soliton lattice. 
On the one hand, this stress changes the equilibrium concen- 
tration of dislocation pairs; on the other hand, it tends to 
increase the distance between those dislocations which make 
up the pairs. At the moment when the distance between pairs 
ofdislocations has increased enough so that they can annihi- 
late and dislocate other pairs, a new soliton line appears in 
the lattice. 

In order to describe this process quantitatively, we will 
first investigate the growth of a specific soliton line. Near the 
transition point, when the soliton line concentration is small 
and the interaction between different dislocation pairs can 
be neglected, the result can be generalized for any lattice 
solitons. 

Let us assume that as a result of changing the pressure 
(or chemical potential) of the gas, a tensile stress 
uxx = A ,du/dx along the x axis appears in the layer. Conse- 
quently in the soliton lattice a stress c?~,  = K,du/ 
dx = Kx ox, / A ,  develops. Then a force acts on the disloca- 
tion in the soliton lattice with minimum Biirger's vector: 

The tensile energy between dislocations in a single pair 
of lengthy equals 

since the dislocation is under tension with a force @ = T/2y. 
The thermodynamic potential of formation of the nuclei of a 
dislocation pair roughly equals the inter-atomic elastic inter- 
action in the added layer: 

Thus, the concentration of dislocation pairs of lengthy 
in an "induced" equilibrium, is 

T Y F (y) =2F,--a,ay f - ln-. 
2 a ( 8 )  

At some vertical spacing (i.e., pair size) y*, the mutual ten- 
sion between dislocations of a pair is counterbalanced by the 
external force; then F (y*) is a maximum. Dislocations sepa- 

rated by a space larger than y* tend to spread farther apart, 
while at the same time dislocations with y <y* tend to anni- 
hilate. We can compare this situation with the existence of a 
critical dimension for nuclei in the classical theory of nuclea- 
tionI6 (we also note that this problem is analogous to the 
problem of the motion of paired kinks for slip disloca- 
tions"). 

As a result of this comparison, we can at once determine 
the rate of nucleation of dislocation pairs per unit length 
along the soliton line: 

where y' is determined by the equation 

and Dd is the diffusion constant for individual dislocations. 
For "supercritical" pairs (ysy*), we can write down ap- 
proximate expressions for the rate of drift of the dislocations 
under the action of the force F = Fy - @ -- Fy : 

Then if 2 is the average distance along a soliton line 
between dislocation pairs up to where they annihilate with 
dislocations from another pair, and T is the average lifetime 
of a pair, we have 

where 

This quantity at once also determines the nucleation time for 
a new soliton line: 

[ h, (hi v) 'IzaZ ] 'la a' F c  
Tl - -- exp - . 

To,, D d  T 

This relation was obtained by assuming that the exter- 
nal stress uxx is practically unchanged within the growth 
time of a new soliton line; if it is used to determine the time it 
takes a soliton line to appear in an arbitrary lattice, we 
should keep in mind that relation ( 13 ) becomes more precise 
the larger the applied stress is and the closer S is to 8, .  In this 
case, the result of applying this stress can lead to a massive 
increase in the number of soliton lines, so that the appear- 
ance of the first line occurs in practice at constant stress. 
Relation (13) is only qualitatively useful for determining 
the time at which the new equilibrium state appears. 

For a full description of the process it is necessary to 
take into account the fact that the stress in the lattice falls as 
new dislocation pairs appear and their lengths increase. In- 
cluding this stage of the process is equivalent to including the 
coalescence stage in the theory of nucleation; our case ad- 
mits of an analogous treatment. 

To do so, let us examine the way the stress in the layer 
behaves in proportion to the appearance and growth of dislo- 
cation pairs. We assume that a homogeneous stress uxx = a 
is applied in the layer. The work done by the force acting on 
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each dislocation pair IFy 1 = a a  in increasing the length of 
the ith pair of dislocations to a lengthy, equals W = IFy I yi . 
This quantity can be written in the form W = a,, Uxxi where 
USi = Jd 'runi. Then U,, = ay, and after summing over all 
pairs of dislocations we obtain 

Consequently, the stress in the layer which is relieved by 
dislocation pairs equals a= Al8,ayi. Correspondingly, for 
the stress in the soliton lattice we have 6 = K, Ziayi. The 
resulting (or remanent) stress A(t) in the soliton lattice 
arising from the external stress a,, in the presence of dislo- 
cation pairs is connected with the critical dislocation pair 
y* ( t )  by the relation 

A (t) =T/2ay' ( t )  . (14) 

Thus, 

( t )  +A ( t )  =const=Oa. (15) 

Introducing the distribution function f(y,t) for disloca- 
tion pairs, we can express the quantity 6 ( t )  in the form 

while the equation of continuity in the "configuration 
space" of lengths y is likewise 

where vy = dy/dt can be expressed through the diffusion co- 
efficient for dislocations (see 1 1 ) : 

The system of equations ( 14)-(18) is analogous to the sys- 
tem obtained by Lifshitz and Slezov for describing the co- 
alescence of nuclei [see, e.g., Ref. ( 16) 1. Its solution has the 
form 

whereJ is the average dimension of a pair; this agrees com- 
pletely with the results of dimensional analysis in the theory 
of nucleation in d-dimensional systems ( -t ). l 8  

We remark that up to now we have used in our descrip- 
tion the phenomenological parameter Dd, which can be re- 
lated to a quantity Dg which is actually measured: the diffu- 
sion coefficient of the gas. 

Let us investigate a growing soliton line which ends on a 
dislocation. The growth of this line, which proceeds due to 
drift of the dislocation, is fueled by the atoms in the gas phase 
which connect with it. The departure from equilibrium of 
the gas-film system is damped out, and equilibrium reestab- 
lished, as a result of the growth of new soliton lines, so that 
we can assume (approximately) that the thermodynamic 
potential of an atom linked to the soliton line is equal to the 
chemical potential in the gaseous medium far from the sur- 

face (this approximation gets better the closer we are to 
equilibrium). Having assigned the chemical potential of the 
gas far from the surface, we therby assign to the latter its 
equilibrium concentration c,. Near the dislocation we have a 
quasistationary concentration distribution c ( r )  for the gas. 
Then as a result of connecting a new atom to the soliton line 
we liberate some energy T In [c(a )/c,]; consequently, there 
is a force acting on the dislocation 

This force counterbalances the force 6,, a, acting on the dis- 
location as a result of the applied force. In this way, we get 

so that near the dislocation 

c (a) =co exp (6,a2/T). 

The steady-state condition can be converted into the condi- 
tion that the divergence of the diffusion current of atoms 
from the gas to the dislocation be zero: 

Solving equation (21 ) with boundary conditions 

c(r)-+c(a) for r+a, 
(22) 

c(r)+c0 for r-+rn, 

we obtain 

The resulting atomic current far from the dislocation for 
6,, a2g  T equals 

and consequently the drift velocity of the dislocation equals 

Comparing (25) with ( 11 ), we obtain for the dislocation 
diffusion coefficient 

In experiments13 on adsorbing Kr onto graphite, the 
transition to the incommensurate phase occurs at a tempera- 
ture T- 102K and at a gas pressure of - 1 Torr. The coeffi- 
cient of diffusion of Kr gas under such conditions amounts 
to Dg - 10 cm2/s, while the gas concentration is c,- 1016 
~ m - ~ .  Thus, the quantity Dd in (26) comes to -5X 
cm2/s, and is fully determined in our problem. 

Let us now turn to an investigation of the other mecha- 
nism by which equilibrium could be established in the sys- 
tem, which we mentioned before (that is, we will assume 
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that a new soliton line appears at the sample boundaries or at 
defects, and subsequently extends throughout the film). The 
question of diffusion of soliton lines through the film by 
means of the appearance and translation of kinks along a 
soliton line was investigated in Ref. 19. The temperature 
dependence of the diffusion coefficient D is determined by 
the factor exp( - E~ / T )  whereEk - (R,v) 'I2a2 is the energy 
of a kink, or exp( - E ~ / T )  with E~ -Rla2 in the case of a 
high defect concentration. The coefficient Do of the expo- 
nential is a strong function of I; its characteristic value at its 
largest differs by the large multiplicative factor Ra3/cZTIo 
from the value -w,,a2 for point defects; here, c is the defect 
colicentration and lo = a(Rl/v) 'I2. Similar behavior in D is 
observed in experimentsZ0 on adsorption of Ba on a Mo 
(1 10) substrate. A typical value of d turns out to be 
lo-' cm2 s-'. Regretably, such experiments have not been 
performed on graphite substrates. 

Thus, in order to establish equilibrium in the incom- 
mensurate system via the "diffusion" mechanism, which is 
connected with the migration of solitons over distances on 
the order of the film dimensions L, we need a time 

~ 2 -  (L2/D,)  exp ( e o / T ) ,  

where E ~ -  (Rlv)112a2 in the case of low defect concentra- 
tions and ~ , - i l , a ~  in the opposite case. 

It is now possible to compare expressions (13) and 
(27), which give estimates for the characteristic times for 
establishing equilibrium via the two mechanisms. The small 
parameter al/L in the quantity r1/.r2 can be compensated 
by the ratio of exponents in the case of low defect concentra- 
tion, so that the times for establishing equilibrium in the 
adsorbed layer for the two mechanisms can be comparable. 
Related to this, there has been a resurgence of interest in 
establishing experimentally what sort of mechanism returns 
the incommensurate system to equilibrium. 

In our view, experimental study of the behavior of in- 
commensurate films under time-varying stress is no less in- 
teresting than the above. That is, by varying the pulse widths 
and off-duty cycles in the vicinity of the times rl (or r,), as 
was done in Ref. 21 to study dislocation slipping in crystals, 

it is possible to study the response of a film to an applied 
stress. 
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