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A new type of collective excitations in solids is investigated which is connected with the 
oscillations of the toroidal-moment density of the band electrons. The natural frequencies and 
logarithmic decrements of these oscillations are computed for different types of ground state 
(specifically, for ferroelectric, toroidal-orbital-magnetic, and spin-antiferromagnetic 
substances) according to the two-band model. Optical effects in which toroidal oscillations 
manifest themselves are investigated. 

$1. INTRODUCTION 

A toroidal magnetic substance is a peculiar type of band 
electron antiferromagnet, characterized by a nonzero mac- 
roscopic toroidal moment' To in the ground state. Charac- 
teristic of this class of materials are a strong (without a small 
relativistic parameter) interrelationship between the mag- 
netic and electric phenomena, a considerable reconstruction 
of the single-electron spectrum of the quasiparticles in the 
ordered phase [with E ( k )  #E( - k) even in the exchange 
approximation], and unusual magnetic and electric proper- 
ties.'-3 In toroidal magnetic materials special collective os- 
cillations (toroidal oscillations) can propagate whose prop- 
erties differ quite sharply from those of the well-known types 
of excitation in crystals. 

Kopaev and one of the present authors4 have already 
constructed a phenomenological theory of toroidal oscilla- 
tions, and have investigated by means of the effective La- 
grangian method certain general properties of this new type 
of oscillations in crystals in the region close to the toroidal 
phase transition point. But a number of important questions 
(the damping of the toroidal oscillations, their contribution 
to the optical properties of toroidal magnetic substances at 
points far from the transition point, the characteristics of the 
high-frequency branches of the toroidal oscillations) that 
are beyond the scope of the purely phenomenological ap- 
proach need to be investigated independently, using specific 
microscopic models. 

Indeed, the spectra of toroidal oscillations, generally 
speaking, exhibit a gap; therefore, the hydrodynamic ap- 
proach developed in Ref. 4 is correct only in the low-fre- 
quency region (this condition holds, for example, in the vi- 
cinity of the instability point, where the toroidal mode is 
anomalously soft). 

Thus,the present paper is a direct continuation of Ref. 
4. The geometrical form of toroidal oscillations can be de- 
picted by considering a variable poloidal current flowing 
around a toroidal coil (Figs. l a  and lb) .  The toroidal mo- 
ment of the coil varies with the current density j(r, t )  (Ref. 
5): 

and the T( t )  oscillations about the "zero" position To [for 
j = j,(r)] can be either longitudinal or transverse. In the 

general case both the magnitude and the direction of the 
vector T vary. For example, we obtain longitudinal oscilla- 
tions of the toroidal moment when we vary the current den- 
sity j (r,  t)  with the position in space and the geometrical 
dimensions of the coil fixed (Fig. la) .  A rigid coil oscillating 
about its equilibrium position and carrying a current of den- 
sity j (r, t )  fixed in magnitude produces a geometrical image 
oftransverse toroidal oscillations, which in this case take the 
form of precessions (Fig. lb) .  

The toroidal oscillations can, within the framework of 
the microscopic model,' be related to $e amplitude and 
phase oscillations of the order parameter A ( t )  describing the 
electron-hole pairing (for more details, see $2). It is essen- 
tial to emphasize that here we are dealing with the case of 
"soft" systems, when the form of the wave function of the 
electron-hole pair can change. This "softness" gives rise, in 
particular, to the mix-up of toroidal and ordinary polar os- 
cillations, and to the absence of a small relativistic parameter 
in the Hamiltonian for the interaction between the toroidal 
oscillation and light.4,6 

In the present paper we consider the simplest case, 
when here is only one branch of toroidal oscillations (i.e., 
when the vector T transforms according to a one-dimension- 
a1 irreducible representation). There can, in principle, be 
more complicated toroidal structures (two- and three-di- 
mensional representations), but the absence of well-devel- 
oped microscopic models makes the investigation of these 
systems difficult. 

The paper is organized as follows. In $2 we classify the 
oscillations in systems with electron-hole pairing according 

a b 
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to the order-parameter symmetry class and the pair wave 
function structure. In $3 we find the natural frequencies and 
the logarithmic decrements of the toroidal excitations in fer- 
roelectric and orbital toroidal magnetic materials at zero 
temperature. In $4 we find the contribution of the toroidal 
excitations to the dynamic dielectric susceptibility ~ ( w )  at 
zero temperature. In $5 we consider the characteristics of 
the toroidal order and of the collective excitations in band 
antiferromagnets with spin-density waves. In the Conclu- 
sion ( $ 6 )  we formulate some problems that need to be inves- 
tigated further. 

$32. CLASSIFICATION OF THE COLLECTIVE EXCITATIONS 
IN SYSTEMS WITH ELECTRON-HOLE PAIRING 

It is well known7 that, in models of the "exciton dielec- 
tric9'type, the system can have four types of ground state, 
which are characterized respectively by the four order pa- 
rameters A", ,, AS,, Ak, , and A:, and the corresponding ef- 
fective interaction constants gk,, dm, gk,, and gi, . Each of 
these states exhibits one of the possible structures of the 
wave function of the electron-hole pair in phase and spin 
space. Thus, for example,the state with a real singlet order 
parameter h',, corresponds to zero phase difference between 
the electron and hole wave functions, i.e., to Aq, = 0, while 
the state with an imaginary singlet order parameter A;, cor- 
responds to a phase difference Aq, = r/2 between these wave 
functions. The phase relations are similar for the triple pair 
structures yith Ak, and A;, . In its general form the order 
parameter A has the form of a spinor: 

&2=&1*= ( A R ~ ' + ~ A I ~ ' )  f+ (ARet+iAImt ) o, (1) 

whereiis the unit matrix, 6 is a vector composed of the Pauli 
matrices, and 1 and 2 are the band indices. 

It is, however, not only the phase and spin structures of 
the pair wave function that are by themselves important for 
the determination of the macroscopic properties of the sys- 
tem, but also the specific crystal symmetry reflected in the 
electron- and hole-disperison laws and in the matrix ele- 
ments of the interelectron interaction. Thus, for example, 
when the interband matrix elements P,, of the momentum is 
nonzero, the state with A", $0 possesses ferroelectric prop- 
erties,'while the state with A;, #O is a toroidal state.' At the 
same time when the interband matrix element L12 of the 
orbital angular momentum is nonzero, the state with AS, # 0 
corresponds to orbital ferromagneti~rn,~ while the one with 
A;, #O exhibit the so-called orientational state.'' The tri- 
plet pair structure also can exhibit different types of order- 
ing, depending on the symmetry properties of the system 
(see, for example, Ref. 10). 

The Hamiltonian of the two-band model, within the 
framework of which the investigation of the collective exci- 
tations in systems with electron-hole pairing will be carried 
out, has the form1' 

Here 

where m, and m2 are the effective electron and hole masses 
[the signs in (3)  have been chosen such that mi, m, > 01; m 
is the free-electron mass; E~ is the Fermi energy (for a semi- 
metal E~ > 0 and for a semiconductor eF = - Eg/2 < 0); 
PI,  = Pr, = iP; and A and @ are the vector and scalar po- 
tentials of the electromagnetic field. In the computations 
carried out below we assume, for simplicity, that 
m, = m, = m*, and also that yo = I (P/m)k, ](A, where A 
is the characteristic value of the order parameter in the 
ground state. Further, 

where 

V(r) is the crystal potential, and the q, ,,, are the Bloch wave 
functions. 

In the present paper we shall treat the interaction con- 

stants A:: and &A as model parameters whose magnitudes 
determine the type of ground state the system has. Similar 
investigations of the conditions under which a particular 
ground state is realized are carried out in Refs. 1 and 11-14. 
The situations most easily achieved are the ones with 
Ate #O and Age #O, whereas the conditions for the appear- 
ance of the states with A: $0 and A:; #O are rather rigid. 

The collective excitations in two-band systems with 
electron-hole pairing can be classified on the basis of ( 1) 
according to the microscopic pair structure. There are four 
possible types of structure: charge- and spin-density waves 
(CDW and SDW) and electric-current- and spin-current- 
density waves (ECDW and SCDW). On the other hand, to 
study the macroscopic properties of the system we need to 
classify the oscillations according to the type of space-time 
symmetry connected with these physical-quantity oscilla- 
tions. In Table I we present such a classification using the 
following notation: P denotes the dipole moment; T, the or- 
bital toroidal moment; M, the magnetic moment; and G,the 
orientational moment. The indices 11 and 1 indicate the ori- 
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TABLE I. 

Symmetry type 
Microstructure 
of pair 

SDW T ( I )  M ( I )  

A SCDW P ( l )  G ( l )  

entations of the vectors P, T, M, and G relative to PI, or L,,. 
Let us make a few comments by way of explanation of the 
table. 

In uniaxial systems with P12#0 the correspondence 
between the type of microscopic structure possessed by the 
electron-hole pair and the type of symmetry possessed by the 
macroscopic physical vector quantity connected with this 
structure is specified as follows: 

where n is the unit vector in the direction of the principal axis 
(nllP,,). The vectors P (  II,l) and T (  II,l) describe the oscil- 
lations of the polarization and the toroidal moment along 
the principal axis n or in the plane perpendicular ton. In this 
case the relations connecting P(1)  with A;, and T(1)  with 
A;, contain a small relativistic parameter proportional to 
the spin-orbit interaction (see Ref. 10 and $5 of the present 
paper), while for P(I1) and T(I1) the relations with 
A", and Af, do not contain such a small parameter (see 
Refs. 1 and 8). 

The genesis of a particular type of oscillations depends 
essentially on the structure of the ground state of the system. 
For example, in the case of the singlet ferroelectric ground 
state (Ake #O)' the P (  1 1  ) polar oscillations are largely of an 
amplitude nature (the natural frequency of this oscillation 
w", z2Ake in the low-temperature region 84Ake ). The re- 
maining [i.e., the T(II,l) and P ( l ) ]  oscillations are of a 
phase (in the case of the triplet oscillations we mean the 
phase in spin space) and, generally speaking, display a gap. 

For @(bod', the corresponding frequencies 
' ( 1 )  * ( I )  01 

O I ~ I ( R ~ , T ~ ) ~ ~ ~ I ~ ( R ~ , I ~ ) A R ~ ,  

where the 77 coefficients are of the order of the corresponding 
differences between the effective interaction constants g",, 
and (Refs. 15-1 7).  In principle, if the differences 
between the constants are small, then we can have 
(,)S(f) 

Im( Re, Im)  gwke . 
If the system has a single toroidal ground state 

(A:; #O), then the T(II) toroidal oscillations are largely of 
an amplitude nature, while the P (  1 1  ), P ( l ) ,  and T(1)  oscil- 
lations concerning the natural frequencies of the oscillations 

hold good here when we make the appropriate change of 
designation Re t t Im.  

The situation in the case of the AFe # O  (or A:; $0) 
triplet ground state is peculiar. Besides the gap, phase, and 
amplitude modes already discussed above, there occurs a 
gapless (Goldstone) mode corrsponding to SDW (or 
SCDW) oscillations with orientation A;,lAFe (or 
Aim lA:; ) (see, for example, Ref. 18). 

We thus can have, depending on the type of ground 
state, quite different toroidal oscillations in crystals (rela- 
tively high-frequency oscillations in orbital toridal magnetic 
materials at temperatures far from the transition point, low- 
frequency oscillations in electronic ferroelectrics, gapless os- 
cillations in itinerant antiferromagnets in which the magnet- 
ic anisotropy is ignored). 

Similarly, we can classify the collective excitations in 
systems with L,,#O. Since such systems are not considered 
in the present paper, further comments on the table are un- 
necessary,. 

$3. THE NATURAL FREQUENCIES AND LOGARITHMIC 
DAMPING RATES OF THE COLLECTIVE EXCITATIONS IN 
ELECTRONIC-FERROELECTRIC AND ORBITAL-TOROIDAL- 
MAGNETIC MATERIALS 

Let us consider the transverse, optically active collec- 
tive oscillations that occur in a system with the Hamiltonian 
(2 )  at zero temperatures as a result of the fluctuations of the 
singlet order parameters P,, and Aim [when the spin-orbit 
interaction (4)  is ignored, the triplet branches split off, and 
do not contribute to the optical properties of the system; here 
we shall not be interested in them, and shall set R -01. Let 
the ground state of the system be toroidal, i.e., let AE $0, in 
the absence of external fields. An alternating electromagnet- 
ic field A(r, t )  induces a nonequilibrium correction 
SA;, (r, t )  to the order parameter: 

6Al,"r, t )  =6A,"r, t )  +i6AIm"r, t ) .  ( 6 )  

Let us consider the problem under conditions when we 
can neglect the spatial dispersion and the retardation (the 
latter stipulation allows us to ignore the polariton effects). 
In the approximation linear in the vector potential A(r, t )  
the Greeen's function of the system acquires the correction. 

L 

&-Go=6& (x, x') =G" (s, x") [ - 6 A  (x") + H A ] G ~  (x", x') , 

x= ( r ,  t ) ,  (7)  
A A 

where G o  and H A  are 2 x 2 matrices with indices corre- 
sponding to the band indices: 

The explicit form of the Green's functions G y, is known 
(see, for example, Ref. 7 ) ,  and we shall not give it here. After 
substituting (7)  into the self-consistency equations 
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A R / = ~ R ~ '  Re G 1 2 ( x ,  x ) ,  (10) 

we obtain a system of equations for the corrections SA. The 
formalism for correctly introducing the vector potential 
A(x) into the self-consistency equations, i.e., one that guar- 
antees gauge invariance, is set forth in Ref. 1; therefore, we 
omit the intermediate expressions. For the Fourier trans- 
forms SAR,  ,, (w) and A(w) we have, when no allowance is 
made for the spatial dispersion (see the Appendix), the 
equations 

where 
(12) 

Notice that mixing of SAR, and SAf, occurs once the 
coefficient z ( w )  is nonzero, and this happens only when 
allowance is made for the weak energy dependence of the 
density of states in the vicinity of the Fermi surface: 
N ( 5 ,  ) z N ( 0 )  ( 1 + <, / 2 ~ ~  1. Generally speaking, this re- 
sult is peculiar to the semimetallic model; in the case of the 
semiconductor model z (w ) does not contain any smallness 
parameter. l9 

The natural frequencies of the transverse oscillations 
can, when the retardation is ignored, be found from ( 12) 
with A set equal to zero. To lowest order in A/&, 4 1 we can 
ignore the mixing of the amplitude and phase branches. The 
natural frequency of the phase branch corresponding to the 
SA",, oscillations in the case of weak hybridization, i.e., in 
the case when yi (A2, has the form 

while for the amplitude branch corresponding to the SAf, 
oscillations we have 

o I m S = 2 A  ( l + i y , / ) l ; i ~ ) ,  (20) 

&?;e,rm=g;c,ImR(o). (21 

In deriving (19) and (20), we assumed that 

For the ferroelectric ground state, i.e., for AEe f 0, the 
system of equations for Sh",, ,, is derived in Ref. 20 [see the 
formulas (23) and (25)], and has aform similar to ( 12), but 
with different coefficients: 

c k r k  ( k l m ' )  - (Ek2-ykZ) ('Im) 
1 = - 2E.3 ((o'-4Ek') , (26) 

In contast to Ref. 20, here r,, is not neglected, since it is the 
source of the toroidal oscillations of interest to us (for the 
purposes of Ref. 20 the retention of the source I?,, was unes- 
sential). 

The expressions for the natural frequencies for the case 
of the ferroelectric ground state have the same form as those 
found in Ref. 20 when gf, is set identically equal to gR, : 

Notice the significant difference in the attenuation of 
the amplitude modes ( 19) and (20) (the small parameter a 
does not occur in the last case). The cause of this lies in the 
violation of the parity of the single-electron spectrum in the 
toroidal state, and is evident from Figs. 2a and 2b. In the case 
of a ferroelectric crystal 

E,  ( k )  = (Sk2+yr2+A2) 

and the amplitude-excitation energy which satisfies 
a", (q )  z 2 A  at low q values, lies inside the gap (touches in 

FIG. 2. 
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the case when k l P ) .  In the toroidal state 

and in a broad region of energies E ( k )  the frequency wi, (q) 
lies within the single-electron spectrum. 

Evidently, the conclusion that the toroidal oscillations 
in toroidal magnetic materials are strongly damped is quite 
general. Therefore, their detection in infrared optical experi- 
ments may present some difficulty. At the same time toroi- 
dal oscillations of the type ( 2 8 )  occurring in ferroelectric 
materials and lying inside the dielectric gap are weakly 
damped. Such oscillations make a specific contribution to 
the spectral dependence of the dielectric susceptibility ~ ( w )  
and the optical-absorption coefficient6 KT (w 1. 

$4. CONTRIBUTION OF THE TOROIDAL EXCITATIONS TO 
THE DYNAMIC DIELECTRIC SUSCEPTIBILITY OF ORBITAL- 
TOROIDAL-MAGNETIC AND ELECTRONIC- 
FERROELECTRIC MATERIALS 

It follows from the equations ( 12) that an alternating 
electric field induces order parameters Sh",, and SAf,, and 
that near the frequencies w =;a",, ,, the field interacts reson- 
antly with the collective excitations. Let us consider the con- 
tribution of the toroidal excitations to the dynamic dielectric 
susceptibility ~ ( o ) ;  evidently, it is most important in the 
region w =;wi,. Neglecting the spin-orbit interaction, we de- 
fine the oribital-current operator 3 in the usual manner: 

The mean value of the current density is given by the 
relation 

where the total Green's function 2 includes both the direct 
contribution of the electromagnetic field A and the contribu- 
tion due to the change that occurs in the order parameter in 
the field. We must, in computing the current (32) ,  make 
sure that gauge invariance is maintained at all stages of the 
calculation, so as to preclude the appearance of unphysical 
contributions to ( j )  (this question is discussed in detail in 
Ref. 1).  

In the case of the ferroelectric ground state we have the 
formula (24)  from Ref. 20: 

jReA ( a )  =-2imrR, ( 0 )  6ARe8 ( a ) ,  (34)  

kyk (PA) 61 P'lk(Ak)6'} [Ek'(m'-@kz) I-'. 
(35)  ---- 

mm* mm' 

Here jf, and j;, are respectively the contributions of the 
toroidal and polar excitations and jA is the usual single-par- 
ticle contribution to the current for a fixed order-parameter 
structure. 

For a toridal ground state (A = A:; ) the structure of 
the total current j ( w )  is similar to (33 ), but now 

P PA 
j ~ ( ~ ) =  - z a z  c { F ( y k - ~ ) 2 + - - (  m*) ck2 

- P(Ak) Ck . 
mm' (yk-A) 

- k(PA)ck mm' (yk-A)} [Ek3(az-akz) I-'. 
(37)  

Let us draw particular attention to the expressions (34)  
and (36)  for the current j;, ,, ( w )  due to the collective 
modes. Since the total current j enters into the Lagrangian of 
the system in the combination j*A, the form (34)  and (36) 
uniquely determines the structure of the sources in the equa- 
tions ( 12) for the dynamical corrections SAke, ,, , since these 
equations are themselves obtained through by varying the 
Lagrangian 2 in Sh",, ,, . 

In the low-frequency region w(2A, we can obtain the 
following effective Lagrangian describing the low-frequency 
excitations in a toroidal magnetic material: 

P=X-U, (38)  

The term (jf, + j;, )-A is obtained from (41 ) in its ex- 
plicit form by adding the total time derivative. The Lagran- 
gian for a ferroelectric has a similar form in the frequency 
region w ( 2 6 .  

The dielectric susceptibility xij an be found from the 
expressions ( 3 3 )  and (36)  with allowance for the coupling 
of the current j to the polarization P, but without allowance 
for the spatial dispersion: 

We are interested only in the contribution of the collec- 
tive excitations and, in particular, that of the toroidal collec- 
tive excitations. It is clear from the structure of the sources 
in ( 12) that the contribution will be only to the component 
X A .  For a toroidal magnetic crystal we have 
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Eo* (k) =*[cr2+yrZ+ ( [ h k ] - b ~ ~ O ~ ) ~ ] " ' ~  (47) 

In the frequency region o --, 2A the contribution of the 
toroidal excitations is resonant when w -mim, and has the 
form 

In the low-frequency region o (2A the polar excitations 
make the dominant contribution: 

Let us, in the ferroelectric case, take account of the con- 
tribution of the toroidal excitations in the low-frequency re- 
gion w =mim (26, where it has a resonance form: 

The contribution of the polar excitations, which was 
computed earlier in Ref. 20, is greater than (46) by a factor 
of ( g ",, ) - ') 1. But its existence and the unusual frequency 
dependence, which corroborate at the microscopic level the 
phenomenological results obtained in Refs. 4 and 6, are what 
is of importance to us. Notice that, in the static limit, 
xge #O, whereas X f m  = 0. The formulas (43) also allow us 
to analyze those optical properties of toroidal magnetic and 
ferroelectric materials which are connected with the excita- 
tion of toroidal oscillations in the region of relatively high 
frequencies, where the effective-Lagrangian scheme pro- 
posed in Ref. 4 does not work. 

i.e., time-reversal symmetry is broken. 
As we can see, the spectrum (47) exhibits a certain si- 

milarity with the spectrum ( 18) for orbital toroidal magnet- 
ic materials, and this similarity is not just formal, but is in 
fact connected with the appearance of toroidal order in the 
system of band electrons. To verify this, let us consider the 
structure of the orbital current that arises when the band- 
electron spin density is uniformly distributed. To do this, let 
us add to (3  1 ) the contribution due to the spin-orbit interac- 
tion: 

Let us consider the region of temperatures O close to the 
phase transition point, where @(A$. After calculations 
similar to those carried out in Ref. 1, we obtain in first order 
in A and AFe the expression 

jL (r) =rot rot Ti(r), (49) 

Besides the orbital contribution (52), made by TL to the 
toroidal moment, there exists another (spin or inductive5) 
contribution due to the distribution of the nonuniform band- 
electron spin magnetic moment density: 

Evaluating (5 1 ) in the case of the transverse SDW structure, 
when divAge SO, we find to first order in P and A:, (O that 

M, (r) =rot T, (r) , 
Ts=Aa[n(A~eOf)L], 

Introducing the "induction" current j, ( r )  = rotM, ( r ) ,  we 
have for the total toroidal moment the expression 

$5. THE TOROlDAL MOMENTS IN ANTIFERROMAGNETS 
WITH SPIN DENSITY WAVES The toroidal moment in systems with SDW, in contrast to 

those with ECDW, which are considered in Ref. 1, lies in the 
Thus far we have been discussing the sing1et plane perpendicular to the principal axis n. Notice that there 

ground states and the collective excitations. In the absence is no spin contribution to the toroidal moment in the case of 
of spin-orbit interaction the triplet excitations do not get the longitudinal SDW, when r o t ~ ; e O :  
mixed up with the singlet excitations, and do not make any 
contribution to the dielectric susceptibility ~ ( w ) .  

Let us now consider itinerant-electron antiferromag- 
nets with spin density waves (SDW), where we have in the 
ground state a nonzero real triplet order parameter AEe ( r )  
describing an antiferromagnetic structure that does not 
cause a lattice-constant doubling2' [here we retain the coor- 
dinate dependence of ( r ) ,  bearing in mind the possibility 
of the appearance of modulated structures]. Let us find the 
single-electron spectrum in the case of a commensurate 
SDW structure with allowance for the spin-orbit interaction 
(4): 

i.e., the M, field is purely longitudinal, in this case there 
remains only the orbital contribution. 

We shall not dwell at length on the "toroidal" proper- 
ties of systems with SDW, which in many respects are sirni- 
lar to the properties of systems with ECDW, and differ only 
in the magnitudes of the effects (by a factor on the order of 
the spin-orbit interaction). Of greatest interest, in our opin- 
ion, is the existence of a specific branch of transverse (with 
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respect to A:' ) SDW oscillations of the acoustic (Gold- 
stone) type. Let us compute the dispersion law for these 
oscillations at zero temperature, i.e., at O = 0. Using the 
scheme employed in 53, we find for the transverse oscilla- 
tions of the triplet order parameter [SAk, (q, w )  1, the sys- 
tem of equations 

where N,, , N,, , and K are coefficients that have in the fre- 
quency region w(2A the form 

Equating the determinant of the system (59) to zero, we find 
that the low-frequency transverse branch of the SDW excita- 
tions has an acoustic dispersion law: 

The contribution of the mode (60) to the dielectric suscepti- 
bility of the system is seen only to the extent that the spin- 
orbit interaction manifest itself. Notice that in systems with 
the hybrid type of antiferromagnetism, where there are lo- 
calized magnetic moments besides the SDW,22 the mode 
(60) gets mixed up with the magnons, this effect being stron- 
gest in the region of quasimomenta q* such that 
wke (q*), =R(O), where R (0)  is the antiferromagnetic res- 
onance frequency. 

In these systems a peculiar magnon-light interaction 
mechanism arises (namely, interaction via toroidal oscilla- 
tions of the band electrons). The question of the optical por- 
perties of such antiferromagnets is (among these are, in par- 
ticular, certain magneto-electric crystals) requires further 
investigation. 

$6. CONCLUSION 

The present paper is devoted to the investigation of the 
dynamics and optical properties of "soft" toroidal systems. 
The toroidal excitations can, depending on the structure of 
the ground state, be either high- or low-frequency excita- 
tions. And both the magnitude and the direction of the vec- 
tor T undergo oscillations. 

For the investigation of the dynamics of "hard" toroi- 
dal structures (e.g., structures in which the magnitude of the 
vector T, at each lattice side j is fixed) the equations ob- 
tained in Ref. 4 and in the present paper are not suitable. The 
precession of the vector T in "hard" toroidal magnetic crys- 
tals should be described by equations of the Landau-Lifshitz 

type, but this problem has thus far not been solved-not at 
the phenomenological level, and certainly not within the 
framework of a microscopic model. 

So far models for toroidal ordering have been discussed 
in which the characteristic spatial scale of the toroidal-mo- 
ment density is much greater than the atomic scale (of order 
the correlation length for the electron-hole pair). It would 
be of great interest to consider systems with localized toroi- 
dal moments and compare the properties of such magnetic 
materials with those of Ising and Heisenberg magnetic sub- 
stances. The mechanism underlying the establishment of 
long-range toroidal order in such systems has a number of 
distinctive features, the discussion of which is beyond the 
scope of the present paper. 

The authors express their profound gratitude to B. A. 
Volkov, V. L. Ginzburg, and Yu. V. Kopaev for attention to 
the work and for a discussion of the results. 

APPENDIX 

Let us discuss the derivation of the dynamical equations 
( 12) for the toroidal ground state. Substituting the Green's 
function (7)  into (10) and (11 ), and taking account of the 
fact that in the ground state 

we find, after integrating over the internal frequency, that 

( a )  ( SA,e8 ( 0 )  
6Arm8(o) 

) = h ( o ) ~ . ,  

jQ ( o )  = ( n ~ e ( 0 )  
- ioL(w)  1. i o E  ( o )  HI, ( o )  

h 

Let us discuss the structure of the source Q2n the right- 
hand side of (A2). The explicit expression for Q in terms of 
the Green's functions of the Hamiltonian (3) in the absence 
of a field is the following: 

The structure of (AS) is such that at w = 0 the entire 
integral turns into a total derivative with respect to the qua- 
simomentum k, i.e., such that 
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A detailed analysis of this problem is carried out in the 
second paper cited in Ref. 1. Evaluating the integral over the 
frequency E in (A5) with allowance for (A6) ,  we obtain 

where T,, (w) and T,, (w) are given by the formulas ( 16) 
and ( 17). Notice that the result (A6) is a consequence of the 
gauge invariance of the Hamiltonian (3 ) . Therefore, only 
the space and time derivatives of the vector potential A enter 
into all the expressions for the order parameters. 
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