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The generation and properties of spin waves are considered for waves excited by a parallel 
pumping field in a ferromagnet with a moving domain wall. The spin waves form near the wall 
and propagate in both directions from it; only one wave leaves in a given direction, and its 
parameters depend on the frequency o of the ac field and on the average wall velocity. The 
radiation has a threshold velocity which leads to resonance peaks in the wall mobility. 

INTRODUCTION 

Parallel pumping is one of the best-understood methods 
for generating spin waves at microwave frequencies in ferro- 
magnetic materials. In this case, an ac magnetic field polar- 
ized parallel to the magnetization interacts parametrically 
with the material (see the review in Ref. 1 ) . In order for the 
spin waves to interact parametrically, the field amplitude 
must exceed a certain threshold, and the ac field frequency w 
must be such that w/2 lies in the continuous spectrum of the 
linear oscillations. The principal resonance then occurs at 
twice the natural frequency of the system. 

The phenomenological Landau-Lifshitz equation takes 
the form 

- S t = [ S A S ]  + [ S J S ] + R ( S ,  t )  , (1) 

R ( S ,  t )  =[Sn] (h,+ h sin a t ) - k [ S S , ]  (2)  

in terms of dimensionless variables; it describes parametric 
instability of the time-dependent magnetization 
S(r,t) = (S,,S2,s3) ,S = 1, in a nearly uniformly magne- 
tized biaxial ferromagnet. Here the diagonal matrix J 
= diag (J,,J,,J,), J, <J2<J3, describes the anisotropy of the 

magnetic interactions. The external perturbation operator 
R ( S , t )  contains the dc and ac magnetic fields h, and h sin wt, 
which point along the anisotropy axis n = (0,0,1) and are 
spatially uniform; the second term contains the dimension- 
less Gilbert damping parameter A(1 (Ref. 2) and describes 
the dissipative processes. 

In this paper we propose a novel spin wave generation 
mechanism in which variations in the directions of the mag- 
netic moment in the domain walls play a key role. It is found 
that under appropriate conditions, spin-wave excitation by 
an ac magnetic field in biaxial ferromagnets with moving 
domain walls admits a complete theoretical analysis based 
on Eqs. ( I ) ,  (2 ) ,  which are the same as in the theory of 
paramagnetic resonance. We note that our specific results 
were obtained for the one-dimensional case, whereas in ordi- 
nary experiments on domain wall dynamics in epitaxial iron- 
garnet films, for example, one-dimensional domain struc- 
tures occur only for high quality factors Q > 1 (Ref. 2 ); in 
this case, one can neglect the demagnetizing influence of the 
surface, which (among other things) gives rise to Bloch lines 
in the domain walls. We therefore assume a strongly magnet- 
ic material in the limit Q> 1. In addition, we require that the 

external magnetic field be weak compared to the field 
~PQM,, where M, is the spontaneous magnetization per unit 
volume. If we pass to dimensionless variables by dividing the 
magnetic field strength by 4rQM0, the above conditions take 
the form h,h,( 1 and J3 - J, = 1; the latter condition can be 
relaxed to J3 - J2- 1 without significantly altering the re- 
sults. 

The main result of this article is that intense spin-wave 
radiation in a given direction can be generated by using a 
parallel magnetic field to pump magnetic materials in which 
the average domain wall motion is spatially uniform. More 
precisely, at frequencies w > w,  ( V) a moving domain wall 
radiates spin waves both along the opposite to its direction of 
motion; these spin waves have different properties which de- 
pend on the field frequency w and the dc field strength h,, 
i.e., on the mean wall velocity V = V(h,) . Spin-wave excita- 
tion of this type is possible in principle for arbitrarily small 
amplitudes h of the ac field component. The threshold fre- 
quency w,  ( V) above which spin waves are excited depends 
on the wall velocity; it is less than the homogeneous magnet- 
ic resonance frequency R, and may compete with the funda- 
mental parametric resonance frequency in experiments mea- 
suring the energy absorption rate in two-domain specimens. 
The effective magnetic field he, produced by the spin waves 
also peaks resonantly at the frequency w,  ( V); this field re- 
tards the domain walls and tends to take them out of reso- 
nance. The resonant frequency-dependence of he, should 
show up as a "hollow" in the monotonic dependence 
V = V(h,) whose position depends on the frequency w. In 
this respect the behavior differs from that studied previously 
in Refs. 3-6, where the retardation of the domain walls was 
due to quasiparticles in the crystal (acoustic or optical pho- 
tons, optical or surface magnons). Indeed, the horizontal 
sections observed there occurred at velocities V equal to the 
phase velocity of the quasiparticles and may disappear com- 
pletely in strongly magnetic materials. 

The perturbation theory developed in this paper is 
based on the inverse scattering method7-l3 and yields explic- 
it formulas for the propagation of elliptically polarized spin 
waves whose wavelength is long compared to the character- 
istic width - ' of the domain walls. The results show that 
the mean deviation AS, of the projection S, of the magnetic 
moment from the equilibrium value is given by 
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far from the domain wall (but within a spin-wave damping 
length). This result is valid for frequencies w 5 flo and fields 
ho <A (J2 - J,)/2, and the group velocities for the forward- 
and backward- directed radiation are given by v,+ 5 2 V and 
v; k 0, respectively. We get the estimate AS, - h if 
J, - J2 -J2 - J, -- 1 (6, flow 1). The deviation AS, is thus 
bounded from above only by the requirement that the per- 
turbation theory be valid (in our case, this requires that 
h(w) and may be considerably greater than the thermal 
fluctuations AS,(T), which are generally - 10-'-10V5 at 
room temperatures. Dissipative processes attenuate the spin 
waves; for w 5 fl, and velocities V- y Vo, the forward radi- 
ation has wave number - y{ and mean free path -6 -'y/;l, 
where 0 < y(l and V, is the maximum wall velocity. The 
conditionA ( y  is clearly necessary if the spin-wave radiation 
is to be observed leaving the sample. The damping factor A is 
typically between and lo-' in iron-garnet films, which 
suggests that long-wave radiation should be observable for a 
wide range A Vo( V< Vo of wall velocities. In crystals with 
large magnetic losses it should be possible to use magnetoop- 
tical methods to measure the radiation from the domain 
walls in an ac magnetic field; the radiation should show up as 
an increase in the effective width of the domain walls. 

We note that the inverse scattering method is not essen- 
tial for calculating how uniform dc and ac magnetic fields 
alter the parameters of an individual domain wall in a dissi- 
pative material in the adiabatic approximation-the equa- 
tions can also be solved by direct methods. In Sec. I we elimi- 
nate the secular terms14-l6 to derive the most general 
equations in the adiabatic approximation; they are of inde- 
pendent interest and describe the one-dimensional dynamics 
of the soliton solutions of the Landau-Lifshitz equation in 
biaxially anisotropic materials subjected to a small perturba- 
tion. 

1. EQUATIONS IN THE ADIABATIC APPROXIMATION 

We have already noted that Eq. ( 1 ) describes the one- 
dimensional dynamics of the magnetization vector 
S = S(x,t) in a biaxial ferromagnetic crystal containing a 
domain wall. We will be interested in the case when the de- 
viations of S from the magnetization distribution in the do- 
main wall are small enough so that the concept of domain 
wall remains meaningful. This requires that the parameter E 

(ho,h,A -E) characterizing the perturbation R be small. 
This problem is a special case of a more general one in which 
the one-dimensional solutions of the perturbed equation ( 1 ) 
are found by exactly solving the corresponding unperturbed, 
exactly integrable equation 

S,={S, H}. (3 )  

Here the Hamiltonian H is given by 

and the Poisson brackets are defined by 

where the tensor eU, is the completely antisymmetric unit 
tensor. 

According to perturbation theory,16 one starts with any 
solution S'O' of the unperturbed equation ( 3 )  which is de- 
fined by a set of N parameters pi ( i  = 1,2, ..., N ) ,  i.e., 
S'O' = S'O'(pi ,x , t ) .  One then seeks a solution of ( 1) of the 
form 

S=S(0)(pi(T), xl t)+S(l)(x, t ) ,  T=et ,  1 ( 5 )  

under the assumption that the small perturbation (in the 
principal, or adiabatic, approximation) causes thep, to vary 
only slowly with time. In the next-higher approximation, the 
perturbation is assumed to give a correction S"' which is of 
the same order as R ( S'O') . 

Linearizing Eq. ( 1 ) near S'O', we obtain 

The term R' in (6) contains corrections of higher order in E 

which can almost always be neglected, except when the devi- 
ation of S from S'O' is no longer small; we will return to this 
matter a little later. In general, however, one must require 
that Eq. (6), with the inhomogeneous term 

as',) dp, 
R (S'O') + -- 

bpr dt ' 
possess a bounded solution. The solution of the correspond- 
ing homogeneous equation must be skew-optional to the 
above inhomogeneous term in terms of the symplectic struc- 
ture defining the initial kinematic system. If we differentiate 
(3) with respect top, and use the constraint (S'0')2 = 1, we 
can verify that the functions a S'O'/ap, satisfy the homogen- 
eous equation and find that no secular terms are present in 
(6)  if 

m rn 

We have thus found a closed system of N linear algebraic 
equations for the derivatives dpi /dt which describe the time 
dependence of the parametersp, in the adiabatic approxima- 
tion. 

To apply the above result to domain wall motion caused 
by a perturbation of general form, we take the lowest-order 
approximation S'O'  to be the one-soliton solution of the un- 
perturbed equation (3) : 

(0)- St - cos cp sech z, 8a0'= sin cp sech z, 8:'' = x th z, 

z=Ex-xtt-Ex0 (0) = E  (x-x,) , (8) 
z=- (J2-],)sin cp cos cp, E=[IS-I,+ ( 1 2 - 1 1 ) ~ ~ ~ 2  91'". 

Here the parameter x characterizes the polarity of the do- 
main wall (x = + 1 and - 1 describe solitons and antisoli- 
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tons, respectively); the angle q, gives the orientation of the 
vector S'O' in the plane normal to the anisotropy axis n; the 
width of the domain wall is -6 - I .  

It is easy to see that the relevant parameterspi for the 
domain wall are the angle q, and the coordinate x, of the 
center ofthe wall. A term containingb' ~"'/b't then appears in 
Eqs. (6) and (7),  and pi -derivatives are given by 

If we recall that R(S'O') is perpendicular to S'O', we obtain 
the dynamic equations 

ax0 XT 1 
-s-- 

dt 
+ - 5 dz [$- z sech z (8, sin q-R, cos rp) 

t 2 t - -  

for the domain wall in the adiabatic approximation after 
some straightforward calculations. The right-hand sides of 
(9) and ( 10) should actually contain the derivatives dx,/dt 
and dq, /dt to allow for dissipation; however, these correc- 
tions are negligible to lowest order. 

Substituting (2) into Eqs. (9) and ( l o )  and writing 
h,  = A(J, - Jl)/2, we get 

dq/dt=h,+h sin ot+h, sill 29, 

dxo/dt= V ( c p )  = - X ' C / S .  

Situations when the domain wall is either stationary or 
moves uniformly are of interest in the study of spin-wave 
excitation in ferromagnets with domain walls. This behavior 
can only be approximated experimentally, and even here the 
ac field amplitude must be small and the dissipation in the 
material large. 

We will first describe the domain wall dynamics in the 
adiabatic approximation when no ac magnetic field is pres- 
ent. Equation ( 11) can be solved trivially when h = 0, and 
we find that the behavior ofp( t )  depends on the ratio hdh, . 
In strong magnetic fields (h, > h, ), the domain wall moves 
in a complicated way with periodic changes in the sign of the 
velocity, and the mean displacement of the center of the wall 
does not vanish. It is very difficult to analyze radiation asso- 
ciated with this type of wall motion. The weak-field case 
(h, < h, ) is of greater experimental interest. In this case the 
time dependence of the wall velocity V(O'(t) is given by 

(13) 
where 

200 tg 9 0  + (h,  tg qo+h) th 20ot 
s ( t )  = tg 9'0' ( t )  = 

200 - ( h  tg cpo+h,) th 2oot 

00=t/2 (hc2-ho2) 'A-  
(14) 

The velocity approaches the limiting Walker value 

during times -w, '. 
The situation when the domain wall moves at the con- 

stant Walker velocity is of the greatest interest for studying 
the linear response of magnetic systems to external ac mag- 
netic fields of the form h sin wt directed along the axis of 
anisotropy n. As was noted above, in order to get steady- 
state behavior in which the magnetization vector in the do- 
main wall is perturbed only slightly ( I Aq, 14 1 ) from the 
average value 

corresponding to V,, the amplitude h must be small and the 
dissipation sufficiently great, i.e., 

Inequalities ( 16) permit us to seek a solution of ( 1 1 ) of the 
form q, = q, 'O' + q, "', where ( 14) gives the time dependence 
of q, '" and the correction 

,-#(*) ( t )  = -. h 
a2+4h,' cosZ 29(O) ( t )  

X [2h, cos 29(O) ( t )  sin at+ o cos at] 

describes forced oscillations of the magnetization vector in 
the domain wall about the averaging value q, "'(t); these os- 
cillations occur at frequency w and have a small amplitude 
Iq, "'1 (1. In the limit t- +co, q, '"(t) tends asymptotically 
to q,, and the wall velocity oscillates slightly about the 
Walker value V,. For h, = 0, q, 'O' tends to the limits 
q,, = + 7r/2. In this case the mean velocity V, is equal to 
zero, i.e., the dissipation combined with the ac magnetic 
field h sin wt causes the domain wall to oscillate near the 
stable (Bloch) equilibrium position. 

Now that q, ( t )  and x, ( t )  are known, we can analyze the 
equation for the first correction s'"' by recasting (6)  in the 
form 

- ~ 1 ( ' ) - [ ~ ( 1 ) ,  ~ 2 )  + J S ( O ) - ~ S ~ ( ~ ) ]  

(LC 

dln g (17) 
Z=zsech%- ( - c o s q s h z , - s i n q s h z , x )  

d9  

for a domain wall. We note that the dissipative term 
A [S"O'S,'"] once again appears in the equation. Our results 
will show that this term is responsible for cutting off the 
divergences and for damping the spin waves; the other terms 
in R'(S'O',S"l') give only small corrections to S"'. 

Ifwe assume ( 16), we can set q, = q,, in all the terms in 
( 17) containing S'O'and its derivatives; the correction q, ' I ) (  t )  
needs to be considered only in the derivative dq, /dt in the last 
term. For large times (oOt, l,wt,l) we have 

0 *= - h a  (02+w:) -lly CO; ( a t  + arctg -) . ( 18 
dt 0 0  
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We now show how the above problem of calculating the 
correction S'"' to the soliton solution S'O' in an ac magnetic 
field can be reduced in the long-wave approximation to a 
system of linear equations. We will average ( 17) under the 
assumption that S"" changes over a characteristic length 
k -' much greater than the width of the domain wall, i.e., 
k(6. To do this we pass to an intrinsic coordinate system 
moving at V = V, (the comoving frame for the domain 
wall) and integrate ( 17) with respect to z from - 7 to 7, 
where 1 (q(g /k. This yields the linear equation 

-St "'= [ x n  sign z, sZ'+ ( ] - I s )  S ( I ) - ) L S ~  "1 , ( 19) 

which has a nontrivial "source" term; the boundary condi- 
tions are 

Equation ( 19) is satisfied by elliptically polarized spin 
waves 

Sj=So Re{pj  e x p [ i ( k s - Q ( k )  t )  I ) ,  

~1=[k2+13-12-ihQ ( k )  I", (21 

pz=ix sign z[k2+13-11-ihQ ( k )  ] I h ,  

which are familiar in the theory of magnetism; the dispersion 
law (A41) is 

Q ( k ) =  (Qo2 ( k )  -h,2)'h-ih[kZ+J3-(11+12)/2], 
Q,  ( k )  = (k2+Jl-11) ' (k2+13-12)'". 

The boundary conditions (20) lead to two interesting 
conclusions in the limit A-0. First, there are only two spin 
waves, and their frequencies are equal tow in the comoving 
frame. Their wave vectors k can be found from the equation 
w + kV= flo(k),  which has two solutions for each domain 
wall velocity V for frequencies w > w, ( V) (Fig. 1 ) . The sec- 
ond conclusion is that the spin-wave amplitude vanishes at 
V = 0, i.e., for q, = 0, which corresponds to an unstable NCel 
domain wall, and for q, = + ~ / 2 ,  which correspond to a 

FIG. 1. Critical pump frequency vs average wall velocity; spin waves are 
excited in the hatched region. The maximum wall velocity is 
v, = (J, - J,)~/~-(J, - J,)~/~. 

stable Bloch wall. This is hardly surprising, since the wall 
energy is equal to 25 and has a maximum at q, = 0 and a 
minimum at q, = + ~ / 2 .  For a specified small amplitude 
p"'-h, the second-order effects cause the wall energy to 
oscillate by an amount a h  well away from the extrema but 
by an amount cc h close to them. According to (20) the 
correction S"", which is linear in h, should thus vanish lin- 
early as V-0. 

Further analysis of spin waves using the reduced equa- 
tion ( 19) is unwarranted, because the spin waves are in fact 
generated nonlocally throughout the entire domain wall; 
more complicated mathematical machinery is therefore 
needed to find how the energy is distributed between the two 
harmonics. In this paper we will use perturbation theory 
based on the inverse scattering method. 

2. APPLICATION OF THE INVERSE SCATTERING METHOD 
TO THE LANDAU-LIFSHITZ EQUATION 

We first discuss a general procedure for solving Eq. (3 ) 
by the inverse scattering method in which one solves the 
Riemann matrix problem on a torus. The reader is referred 
elsewhere for details.'-'' 

The Landau-Lifshitz equation (3)  is exactly solvable 
and is usually expressed as the condition for the system of 
linear equations 

to be consistent. Here a, (a = 1,2,3) are the Pauli matrices, 
the elliptic functions w, (u)  are defined in the period paral- 
lelogram 

R = { u  : IRe u1<2K, I Im u1<2K'), 
wl ( u )  =p ns ( u ,  m )  , w 2 ( u )  =p  d s  (u, m) , 

where 

and ns(u,m), ds(u,m), and cs(u,m ) are the Jacobi elliptic 
functions. 

We are interested in boundary conditions of the domain 
wall type with polarity x = + 1, 

and therefore introduce the Jost functions for Eq. (22), i.e., 
fundamental solutions with the asymptotic behavior 

for Im u = 0 and 2K '. 
The scattering matrix T(u) relates the Jost functions: 

Y+(x,u) = Y-(x,u)T(u) and is given by 
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We define the functions 

f +  ( x ,  U )  =Y- (2 ,  U )  T+ (u)exp[ixw3(u)xu31,  
f -  ( x ,  U )  =exp[-ixw3(u)xu3] T- ( u )  Y-- i  ( x ,  u ) ,  (28) 

on the curves 

I',={u : IRe u1<2K, Im u=O), 

I',={u : I Re u1<2K, Im u=2r.Kf) . 

For x = 1 we can continue f, analytically into the re- 
gions R , (the upper and lower halves of the parallelogram 
R ) , while for x = - 1 the continuation is into R . In either r 
case, the extended functions are doubly periodic with the 
periods 4K and 4K '. After analytic continuation into the half 
of R in which f+ is analytic, the coefficient a (u )  satisfies 
la(u) 1-1 and u-0 and can have zeros at symmetrically 
located points 

The matrix f + becomes singular at the zeros of a (u ), so that 
its columns are proportional: 

f f '  ( x ,  uOk) = 6~:) ( x ,  uOk) exp[2 i~wS (uOk) X I .  

The coefficient b(u) and the characteristics of the dis- 
crete spectrum (the zeros u, of a (u)  and the normalization 
coefficients b,, k = 1,2, ..., N) constitute a complete and in- 
dependent set of scatting data for the potential S(x,t) . Equa- 
tion (23) governs the time evolution of the scattering data; 
we obtain 

uor(t) =uo,(O), 
b (u ,  t )  =b (u ,  O)exp[-4ixw, ( u )  w z ( u ) t ] ,  
b k ( t )  = b ~  ( 0 )  exp[ -4ixw, (uok) wz(uok)  t I. 

We see easily that the Cauchy problem for Eq. (3)  with 
the boundary conditions (24) has the solution 

oS=f+(z ,  O)uyf+-' (x, O ) ,  x = + l ,  
(29) 

US=-f - - ' (x ,  O)usf-(5, 0 ) ,  % = - I  

so that the problem reduces to calculating f, from the scat- 
tering data. 

We note that by construction, the classical Riemann 
matrix problem on the torus can be formulated for the func- 
tions f, . Indeed, the definition (28) yields the boundary 
conditions for the Riemann problem, i.e., conjugacy condi- 
tions for the functions f, on the contour contour 
r = T,ur ,  (Im u = 0):  

1 b (u ,  t )  exp[-2ixws ( u ) x ]  
b (ti, t )  exp[2ixw8 ( u ) x ]  1 

In our case, f, must satisfy the constraints 

As usual, we factor the solution of the Riemann prob- 
lemasf+ = f', f: ,f- = f R  fr- ,wheref; isthesolution 
of the regular Riemann problem (det f # 0 )  ; the functions 
f R, have prescribed zeros and can be continued analytically 
to meromorphic functions on the torus if we set f R  (u)  
f",u) =I. 

If the f 5 are known (their calculation lies beyond the 
scope of this paper), we can formulate a regular Riemann 
problem for the f; : 

Unlike the functions f R, , which preserve the symmetry of 
the complete solution f, of (30), the regular component 
f; has the properties 

which are exactly the same as the ones derived in Refs. 9 and 
10 for boundary conditions of another type. 

The last step in reconstructing the potential S(x,t) is to 
solve the Fredholm integral equation that arises in the prob- 
lem (33). This equation involves the boundary values off ', 
( f L ) on the contour r and can be expressed in the follow- 
ing form, which is invariant under the transformations (34) 
( u E ~ ,  x = 1): 

where 

N,(v)='I8(ns  ~ + d s  P) ( i+cn P I ,  

N Z ( p )  =Il8(ns P + ~ S  P) (cn P - 1 ) .  

According to (34), the matrix f, in (36) contains only 
two unknown parameters; their ratio is determined by the 
condition that f+ (x,O) be unitary. 

We next consider the magnetization distribution for the 
case when S initially differs slightly from the magnetization 
S'O'(x,t) for a pure soliton pulse; that is, 1 b(u,t) ( g 1 and Eq. 
(36) can be solved by successive approximation. The term 
S'O'(x,t) corresponds to b 'O' = 0 in the scattering problem, 
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and we have 

According to ( 2 9 ) ,  the first-order correction s"' is given by 

where 

Here we have used the fact that G l ( u )  = 8 - ' ( u )  - I  and 
f, ( u )  = f ( u )  - I are small to the same order. 

We next find the contribution from S"' to the energy H 
and momentum P of the system from the equations 

P=-2i?c In a  ( 0 ) ,  H=-4ip?car(0)/a ( 0 ) .  

which express H and P in terms of the coefficient a ( u )  . The 
representation 

2K 

holds for a ( u ) ,  which is analytic in the region R ,  
( X  = f 1 ) . The second term in ( 39) is nonzero only if the 
continuous spectrum is excited, i.e., if J a  ( u )  1 < 1 .  Denoting 
the corresponding contribution to H and P by Era, and P,,, , 
respectively, and retaining only the first nonvanishing term 
in the expansion of the logarithm in powers of Ib(u,t) I, we 
find that 

Finally, we analyze an almost-integrable one-dimen- 
sional modification of Eq. ( 1 ) which coincides with the ex- 
actly soluble equation ( 3 ) ,  except for the presence of the 
small term R. To do this we develop a perturbation theory 
which is based on the inverse scattering methodu-l3 and 
yields evolution equations for the scattering data. The latter 
are determined from the scattering problem ( 2 2 ) ,  ( 2 5 ) ,  but 
the small perturbation R makes them time-dependent: 

db (u ,  t )  -- --4ixw, ( u )  wZ ( u )  b  (u ,  t )  
d l  

a-i 

Here we have denoted the columns of the matrix-values 
functions by \y + , where 

A system of equations which describes the evolution of 
S'O' in the adiabatic approximation" and is completely equi- 
valent to the system ( 7 )  derived in the previous section can 
be obtained for the case of a pure-soliton initial pulse S'O', 
defined by the parameters pi = {ui  ,bi 1, by using the values 
for the soliton case to approximate the true scattering pa- 
rameters in the integrands in ( 4 4 )  and ( 4 5 ) .  Of course, the 
form of these solutions differs from the pure soliton case, and 
effects due to spin-wave radiation are also present; these are 
described by the first-order correction S"', which is related 
to the modified scattering data by the same formula ( 3 8 )  
that holds in the exactly soluble model. 

The Jost functions 

\ ( 4 6 )  

exp { ix  w,  ( u )  x )  
c(",u)-  ( 2 c h z ) '  

where 
xw, ( u )  + iE/2 

-w, (u)cos q+iwz(u)r in  q 

correspond to the particular magnetization distribution (8) 
in the domain wall. If we substitute expressions ( 4 6 )  evalu- 
ated at the points u, in the discrete spectrum into the right- 
hand sides of ( 4 4 )  and (45), we obtain Eqs. ( 9 )  and ( lo) ,  
which describe the response of an isolated soliton to a gen- 
eral perturbation. The first-order correction S"' to the adia- 
batic approximation S'O' is given by ( 3 8 )  with 

G, (u)  - sech z C pa (u )  om, 
a- I 

g I (u )=Re  [ a . ( u ) B ( x ,  t ;  u ) ] ,  g Z ( u ) = I m [ a . ( u ) B ( x ,  t ;  u ) l ,  

(48) 

2B(x ,  t ;  u )  =b (u ,  t )  expl ( z+2ixw3(u)x)  - b (u ,  t )  

exp ( - ~ - - 2 i ~ w ~ ( u ) x ) ,  

g 3 ( u ) = R e [ b ( u ,  t ) exp ( -2 ixw3(u )x )  1. 
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Here the coefficient b(u,t) satisfies the equation 

-ab (u ,  t )  /at=4ixw1 ( u )  w, ( u )  b (u ,  t )  
+u(u, 9) exp [ 2 ixws (u )xo ( t )  I (49) 

up to terms of second order in the small perturbation 
RzR[S'O'(z),t]. Here U is given by 

3. SPIN WAVE EXCITATION IN A MAGNET WITH A MOVING 
DOMAIN WALL 

In this section we employ perturbation theory based on 
the inverse scattering method to study how spin waves are 
excited by an ac magnetic field h sin wt in a ferromagnet with 
a moving domain wall. We have already observed that for 
suitable restrictions (16) on the amplitude h,  the mean wall 
velocity tends to the Walker value V,, which is determined 
by the net balance between the dissipation and the dc compo- 
nent of the magnetic field. For a perturbation of the form 
(2), Eq. (49) governing the time dependence of the coeffi- 
cient b(u,t) takes the simple form 

d b (u,  t )  
-- iQo ( u )  b  ( 18 ,  t )  

d t  

. , 

% ( u )  =2xw3 ( u )  15, Qo ( u )  =-4xwi ( a )  w2(u) .  

We analyze the case when the domain wall moves at the 
constant velocity V = V, immediately before the ac field is 
turned on. The right-hand side of (50) then vanishes, and 
the modulus Ib(u,t) I is independent oft. This situation cor- 
responds to a steady-state distribution in the system of radi- 
ated spin waves; that is, the system saturates and stops ab- 
sorbing energy It is therefore reasonable to set b(u,t) = 0, 
where we recall that the angle p is completely determined (it 
is equal to the Walker angle p, ). 

We assume further that the ac magnetic field h sin wt 
causesp tovary slightly relative top,, i.e., IAp )<  1. We can 
then set p = const in (50) everywhere except in the deriva- 
tive d p  /dt. After the steady state has been reached (this 
occurs during a time t - w -  ' ), the solution of (50) is given 
by 

Ab(u,  t )  =b,(u,  t ) -b- , (u ,  t ) ,  (51) 

where 

Here we have omitted the term containing the initial value 
b(u,O), because this term is "forgotten" by the system as 
t+ oo ; we have also used expression ( 18 ) for d p  /dt and the 
approximation x,(t) zx,(O) + Vt for the time-dependence 
of the coordinate x, of the center of the domain wall. 

If we compare this result with the assertions made in 
Sec. 1, we find that the computational procedure correctly 
treates the damping of the "source" (moving domain wall) 
but neglects the dissipation of the spin waves. Before pro- 
ceeding with the analysis, we therefore observe that the de- 
sired correction S"' (x,t) is a superposition of excitations 
whose amplitude is linear in the ac field amplitude h and 
which therefore do not interfere with one another. In this 
case, the dissipation causes each radiated harmonic to relax 
independently. We will assume that the spin waves are radi- 
ated faster than the characteristic damping times for S'". In 
other words, we can neglect the delay and the change in the 
amplitude of S"' caused by dissipation over distances com- 
parable to the domain wall width. This approximation is 
justified at least in the long-wave limit due to the smallness of 
the parameter )A V/f 1 < 1-indeed, up to terms of orderil V /  
f the matching condition (20) for S"' (z,t) contains the re- 
laxation constant il only through the source parameters. 
Moreover, according to the linear theory, which is valid out- 
side the domain wall, the only effect of dissipation in the 
long-wave limit is to rescale the spectral characteristics of 
the radiation [the frequency R,(k) and the degree of polar- 
ization PI/&, see Eq. ( 2  1 ) ]. In the inverse-scattering spec- 
tral representation, the frequency R,(k) corresponds to the 
quantity R,(u) = - 4xw, (u)w,(u), and theamplitudesp, 
and p2 correspond to the function w,(u) and w, (u) .  Since 
we want to allow for the dissipative term il [S'u'S~l'] in Eq. 
( 17), we must make a suitable change of variables. In so 
doing, we must of course ensure that the dissipative term 
leaves the adiabatic approximation s'" unchanged; in addi- 
tion, the properties of the scattering characteristics ensuring 
that S'" is real must be preserved. It turns out that these 
requirements can be satisfied only by renormalizing the fre- 
quency function R,(u) in expression (5 1 ) for the coefficient 
b(u,t) : 

We assume in (52) that the frequency 
R, = (J, - J,)'/'(J, - J2)lt2 for homogeneous ferromag- 
netic resonance is large compared to the relaxation frequen- 
cy h, . 

Noting that the imaginary correction to R(u )  causes 
the corresponding exponential in b, (u,t) to decay for large 
times, we get the following formulas for S"'(z,t) : 

S," '=S~~!  +isat'=2[ fi2' ( 0 )  th z-xeiwflii  ( 0 )  sech z ] ,  

ss(')=--2x sech z  Re[ji2'(0) e-'41, 

(53 
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Dm w3(u) 
f t"(0)  = 4npi ch z  f ch[ni ( u )  / 2 ]  

D" 
ft" ( 0 )  - 4np 

X $  du 
w,(u)Re m(z ,  u )  +iw, ( u )  Im m ( z ,  u )  

I- c h [ n ~ ( u ) / 2 ]  [ f , Z ( ~ ) + I ' 2 ( ~ ) ] ' h  ' 
m ( z ,  u )  =a.(u) ch [ z+ig(u)  Z - i d - i s ,  

- i  arg ( f m ( u ) + i r ( u ) )  1. 

As I z I  increases, the function f il(0) decays exponen- 
tially over distances comparable to the width of the domain 
wall, while f i l (0)  determined the asymptotic behavior S y' 
( Izl-co ) of interest: 

Z @,=*( ot-I-6. - Re k,)  - a g  X(k.1, 
(54) 

a,=arg [ (k,2+J3-J,)"+ ( k , 2 + l s - J 2 ) ~ ] ,  
X (k , )  =iQo(k,)  (k,+iE) (V-dQo(k,) /dk,r2ihk,)  

x (sech (nk , /2 t )  [-cos cp (khZ+ Is-I,)" 
+i sin cp (k,'+J,-J,)"])-'. 

Here the upper and lower signs are for z, 1 and z( - 1, re- 
spectively, and the solutions k * of the equation 

k,V+o-Q, (k , )  rih.(k,2+J3- (Jt+J2) 12) =0, (55) 

satisfy I k , I .(& and Im k * < 0. 
Expression (54) shows that the correction S"' is anom- 

alously large when the pump frequency coincides with the 
resonance frequency w, ( V); the latter is given by the consis- 
tency condition for the two equations 

Figure 1 shows a plot ofw = w, ( V) (see also Ref. 17, p. 7 1 ). 
We seek a solution of the dispersion equation (55) in 

the form k * = kc + Sk * for near-resonant wave numbers 
kc = kc (w, ( V), V) by expanding R,(k, ) in the small pa- 
rameter 1Sk * I/k, (1. The result is 

and substitution into (54) gives 

asz- + w . This shows that s"' grows asA -'I2 if we formal- 
ly let A 4  (recall that the relaxation constant il is bounded 

from below by the requirement that hc > h,). The above esti- 
mate is therefore valid only to the extent that the perturba- 
tion theory is applicable. 

For w > w, ( V) away from resonance, S"' has the form 
of a traveling wave which propagates along the sample and is 
damped over a distance of -A -I. In the nondissipative limit 
(A = 0, Im k, = 0),  S"' is an ordinary elliptically polar- 
ized spin wave. For z- + co we have 

2 0 ,  sech (nk , /2 t )  - (k,' + 18 - 12)" c . 0 ~  (D. 

( $':) " * Qo (k , )  1 V-vg* 1 -( (k,' + l3 - Ii)"'sin 0- 

with phase 

6 ,=* [Qo  (k , )  t-k,x+B,]-arg (ik,-g) 
+arg[-cos cp(k,2+Jn-l,)'"+i sin ~p(k,~+J3-1z) 1, 

frequency R,(k, ) = w + k, V, and group velocity v: 
=dOo(k* ) /dk*.  

It is important to note that the forward (v,f > V )  and 
backward (v, < V) radiation observed far from the domain 
wall have unequal frequencies which in general differ from 
the frequency w of the external magnetic field. A magnetic 
material with two domains and a moving domain wall thus 
acts as a frequency converter whose conversion factor can be 
regulated by means of an external dc magnetic field h, in 
accordance with Eqs. ( 15) and (55). 

For pump frequencies o <a, ,  it is clear that the emis- 
sion (59) can begin only for domain wall velocities that ex- 
ceed a critical value V, = V, (w), and in this case the radi- 
ation in the backward direction is absorbed by the wall. 
However, if o > R, then emission occurs for all velocities 
V #O, and the group velocities v,f and v; are oppositely 
directed. The resonance factor 1 V - v: I - ' in (59) is also 
noteworthy, as it highlights the similarity between linear 
Landau damping and spin-wave generation-resonance oc- 
curs when V = v,+ = v; . 

Finally, no spin waves are generated when w < w, ( V) . 
In this case, k+ (w, V) -- k -  (w, V) -- - ilk * I and the cor- 
rection S"' (z,t) is localized near the domain wall in a region 
of width -Ik* I - ' ) & - ' .  

We close this section by discussing how the above fea- 
tures of spin-wave excitation might be observed experimen- 
tally. First of all, we can use (40) and (5 1 ) to calculate the 
absorbed power W(w) = dE,,, /dt. In an unbounded mate- 
rial, damping causes W(w) to vanish as t - ~ ;  in this case, 
the energy distribution in the spin-wave system is stationary 
and there is no energy flow as Ix I-+ w . In practive, however, 
the dimensions I are finite and some energy flows across the 
edge of the sample; this situation can be described in terms of 
scattering data with the boundary conditions (24), provided 
that when we calculate W(w) we restrict ourselves in the 
coefficients b, (u , t )  to times t which are short compared to 
the relaxation times. Physically, this is equivalent to calcu- 
lating the amount of energy absorbed in a region of width I 
containing the moving domain wall, where I is much greater 
than the wavelength of the spin waves but less than their 
damping lengths. This requirement is particularly important 
for estimating W(w) near resonance because the absorbed 
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power behaves as t, ' I 2 ,  where t, -kc /A Vflo(kc ) is the re- 
laxation time. Recalling the above discussion for W(w ), for 
o > o , ( V )  we find 

in the nondissipative limit if 

and at resonance o = wc ( V) we have 

By using (58) and (59) to calculate the mean energy ' 

flux-(S, St ), across the boundary of the sample (averaged 
over the period 2 r /o  of the ac magnetic field), one can show 
that (60) and (62) contain only part of the energy which is 
carried off by waves whose amplitude is linear in the ac field 
amplitude h. The remaining energy comes from the correc- 
tion which is quadratic in h. However, for sufficiently long 
wavelengths I - ' 4 I k * I({ and w > oc ( V), both approaches 
yield the same resonant dependence on the ac field frequency 
o ;  when inequalities (61) and (63) are satisfied, the above 
estimates (60) and ( 6 2 )  should therefore give a qualitatively 
correct description of the absorption in long samples of finite 
dimensions when a moving domain wall is present. 

We close with another observation regarding the effects 
on the wall mobility of a uniform ac magnetic field h sin wt 
parallel to the anisotropy axis n. Recall that for h = 0, the 
wall velocity depends on the dc field strength ho as described 
by Eq. ( 15). The above procedure can be used to calculate 
the contribution from spin-wave radiation to dP/dt, the 
change in the momentum of the system per unit time. Apply- 
ing Eq. (41 ), we conclude that the radiation generates an 
effective dc magnetic field he, which must be allowed for in 
the adiabatic equations. This field 

is small (of order h 2 ,  when w > f10 for all velocities 
0 < V< Vo (cf. Fig. 1 ) and vanishes at V = 0. Equation (64) 
also describes he, when w, ( V) < w < Ro well away from res- 
onance ( V # V(w) ). However, as the wall velocity V ap- 
proaches the threshold V, (w),h,, increases rapidly to a 

maximum 

at V = Vc (0). We see that when V = V, ( a ) ,  the additional 
field he, behaves as -A - ' I 2  and diverges in a nondissipative 
magnetic material. In practice, this rise in hef can destabilize 
the uniform average motion of the domain wall unless an 
additional compensating dc magnetic field is used. It is also 
noteworthy that after the dc field ho  is turned off, the average 
wall velocity drops nearly to zero during a time of order 
hc - I .  If the deceleration of the wall begins when V> V, (w), 
there will be a peak in the energy absorption as V decreases 
through the resonance region. 

I am grateful to V. E. Zakharov and A. M. Kosevich for 
their interest in this work, and also to A. V. MikhaTlov, S. V. 
Manakov, and V. G. Drinfel'd for helpful discussions on 
various matters while this work was in progress. 
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