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The nonlinear interaction between acoustic and spin modes in 3He-B [R. Combescot, J. Phys. 
C. 14, 1619 (1981); R. Combescot and T. Dombre, Phys. Lett. 76A, 293 (1980)l is studied 
with the aim of finding a way of detecting second sound, considered in the pumping regime. A 
special type of textured spin waves is used. These waves are long-wavelength, low-frequency 
modulations of the WP mode of magnetic ringing, and are associated with the propagating 
magnetic disturbance (PMD) reported by R. A. Webb, R. E. Sager, and J. C. Wheatley [J. 
Low Temp. Phys. 26,439 ( 1977) 1. These waves, which have a magnon spectrum w a q2, are 
oscillations of the unit vector w (the axis of the spin precession at frequency w,, ), with 
wgw,, [V. L. Golo, Sov. Phys. JETP 59, 1221 ( 1984) 1. It is shown that in a thin layer near 
the sound source the second sound generates a dephasing S$ of this precession. According to 
Golo (op. cit.) the dephasing is a rapidly damped mode that interacts nonlinearly with the 
oscillations of the vector w, which are weakly damped. Thus, pumping of second sound 
generates dephasing of the precession. According to Golo (op. cit.), the dephasing dies out in a 
thin layer near the sound source, while the oscillations of the vector w propagate beyond the 
layer. The latter oscillations are evidently the PMD excitations of Webb, Sager, and Wheatley 
(op. cit.), which are readily observed experimentally. This situation is also of interest in the 
study of surface phenomena in superfluid 'He-B, since the very small penetration depth of 
second sound could make it a probe for elementary excitations in thin surface layers. The 
numerical estimates performed indicate that for temperatures 1 - T / T ,  ~ 0 . 0 1 ,  pressure 
p = 21.7 bar, and second-sound frequency and power of the order of 100 Hz and lo-' erg/sec, 
respectively, the dephasing S$ of the spin precession can reach 0.1 rad and lead to appreciable 
swinging of the precession axis. For these values, the second-sound penetration depth is of the 
order of 0.001 cm. 

1. INTRODUCTION 

The aim of this paper is to determine whether percepti- 
ble interaction may be expected between the acoustic and 
spin modes in superfluid 'He-B. The calculations performed 
in this paper using the model of nonlinear spin hydrodyna- 
mics of Refs. 1 and 2 and with allowance for Leggett-Takagi 
dissipation show that for second sound in the pumping re- 
gime this interaction can be appreciable if we make use of the 
spin waves discovered by Webb, Sager, and Wheatley3 (for a 
theoretical interpretation of these, see Ref. 4) .  This is an 
unusual type of spin waves, with no known analog for other 
magnets. Unlike ordinary spin waves, the direct experimen- 
tal observation of which involves considerable difficulties, 
the waves found in Ref. 3 (which, after their discoverers, we 
shall call WSW waves) are clearly detected. 

We recall that in Ref. 3 the WSW waves were generated 
as follows. The 3He-B sample was placed in a rectangular 
cavity, and a constant external field H,,  somewhat smaller 
in magnitude than the dipole field, was applied in a small 
part of the sample; after the system had come to equilibrium, 
the field was switched off sharply, i.e., in a time much 
shorter than the relaxation time. At a certain distance from 
the coils that produced the field that was switched off were 
placed the coils of a detector, which registered the arriving 
magnetic excitation after a certain time interval. It was 

found in Ref. 3 that the velocity of propagation of the excita- 
tion is anomalously small-of the order of 10 cm/s, which is 
an order of magnitude smaller than the velocity of ordinary 
spin waves in superfluid 3He (Refs. 5, 6). To detect the 
WSW waves the authors of Ref. 3 employed an original tech- 
nique based on specific properties of 'He-B. The propagation 
of an excitation from the coils producing the field that was 
switched off was detected from its effect on the so-called WP 
(wall-pinned) mode of magnetic ringing, which was de- 
stroyed by the action of the arriving excitation. 

In the present work the WP mode plays a fundamental 
role. This mode of magnetic ringing was discovered by 
Webb, Sager and Whea t l e~ ,~  a theoretical interpretation of it 
was given by Brinkman7 in the dissipationless approxima- 
tion, and its relaxation properties were explained by Leggett 
and Takagi.' The theory of the WP mode is very important 
for confirmation of the two-fluid model, proposed in Ref. 8, 
of the spin dynamics of superfluid 'He. To generate the WP 
mode, a constant external magnetic field H,, somewhat 
smaller in magnitude than the dipole field H,, was applied 
throughout the volume of the rectangular sample of 'He-B; 
the system was given time to reach equilibrium, after which 
the field was switched off sharply. As a result, a long-lived 
(with a lifetime of the order of 10 ms and longer), sharp, 
very clearly detectable signal arose. Its frequency coincided 
to within 6% with that given by the theoretical formula7 
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w ,  = m./~,  . It was shown by Brinkman and Cross9 that 
in the regime of the WP mode the spin vector S rotates with 
frequency w ,  about a certain constant axis w, the position of 
which in space is determined by the initial configuration of 
the spin and order parameter. For the purposes of the pres- 
ent work it is very important that, in the presence of external 
perturbations, e.g., spatial gradients, the direction of the axis 
w can change. 

In Ref. 3 the WP mode was used as a detector in the 
following way. Besides the field H B ,  produced by the excit- 
ing coils in only a limited region of the sample, a constant 
field HM was produced throughout the volume. The magni- 
tudes of the fields HB and HM in Ref. 3 were of the order of 
10 and 2 G. Like HB , the field HM was also switched off, but 
with a delay At. It is known that after the switching off of the 
uniform external field applied throughout the whole volume 
of the sample the system arrives at the regime of the WP 
mode after a time of the order of 1 ms. Therefore, if the delay 
time is sufficiently short, an excitation propagating after the 
switching off of the field HB will not have time to reach the 
region in which the coils detecting the WP-mode signal are 
placed, and so the latter signal will be detected. If, however, 
the delay At is such that the perturbation has time to reach 
the detection coils, the possibility of generation of the WP 
mode will be lost. On the other hand, for a sufficiently long 
delay At the perturbation has time to move away from the 
region of the detection coils before the field HM is switched 
off and generation of the WP mode begins. In this case too, 
the WP mode will be detected. This technique has turned out 
to be very sensitive and capable of recording magnetization 
perturbations that could not be detected by an ordinary 
quantum magnet~rneter.~ 

In Ref. 4 it was postulated that the WSW waves are 
associated with elementary excitations near the WP mode. 
The spectrum of elementary excitations near the long-lived 
magnetization-ringing mode (the so-called Brinkman- 
Smith model0) was first studied by Fomin." He considered 
waves in a fairly strong magnetic field (much stronger than 
the dipole field). These waves are characterized by the pres- 
ence of a fixed direction (specified by the external field) of 
the spin-precession axis, whereas the WSW waves discussed 
in our work are associated with oscillations of this axis. 

As shown in Ref. 4, WSW waves evidently correspond 
to slow modes of elementary excitations near the WP mode. 
There are two such modes: a propagating mode of oscilla- 
tions of the vector w, with a magnon-type spectrum w  a q2, 
and a rapidly damped mode of the dephasing 64 of the spin 
precession about the axis w.'' Both modes arise when one 
takes account of spatial gradients in the configuration of the 
spin and order parameter. 

In the present work WSW waves are investigated with 
allowance for the hydrodynamic corrections introduced by 
sound waves. It should be noted that in the framework of the 
general nonlinear theory of spin hydrodynamics' estimating 
physical effects is a complicated problem because of the 
large number of coefficients, the values of which are not ac- 
curately known. In this respect the study of WSW waves has 
definite advantages, since their low frequencies make it pos- 
sible to average the spin-dynamics equations over the high 

frequencies, as a result of which most, but not all, of the 
nonlinear terms drop out. Finally, the spectrum of the sys- 
tem consists of the above-mentioned modes of oscillation of 
wand of the dephasing S$. Here the acoustic modes play the 
role of a source for the dephasing S$. The estimates per- 
formed show that one can expect a perceptible interaction of 
WSW waves and second sound. This circumstance makes it 
possible to use WSW waves to study second sound in 3He-B. 
As is well known, direct observation of second sound is made 
difficult by the enormous damping, of the order of lo5 cm-I 
at frequency 1 kHz (Ref. 13). However, precisely this cir- 
cumstance can be used for the generation of WSW waves, 
and, hence, for the indirect observation of second sound. At 
frequencies of the order of 100 Hz the penetration depth of 
second sound is, apparently, on the order of 0.001 cm. 
Therefore, on the one hand, it is possible to use a hydrody- 
namic description, while, on the other hand, the spatial gra- 
dients turn out to be sufficiently large for excitation of WSW 
waves by means of second sound. 

2. INTERACTION OF SECOND SOUND AND WSW WAVES 

The nonlinear spin-hydrodynamics model proposed in 
Refs. 1 and 2 is based on systematic computation of the or- 
ders of the conserved hydrodynamic quantities and on 
allowance for symmetry under time reversal, spatial reflec- 
tion, rotations in the spin and orbital variables, and Galilean 
invariance. For details we refer the reader to Ref. 1, and give 
here only the final results needed for the following analysis. 

In Ref. 1 it is assumed that the normal and superfluid 
velocities, the spin, and the momentum flux are first-order 
quantities, and that taking the gradient raises the order by 
unity. The density fluctuation Sp and entropy fluctuation 60 
are first-order quantities of smallness, and their gradients 
are of second order. The hydrodynamic expressions-in par- 
ticular, the energy density, are expanded to third-order 
quantities, including the gradients of the order parameter. 

The order parameter for 3He-B has the form 

where R i j  is the 3-dimensional rotation matrix, parame- 
trized by the axis n and rotation angle 8: 

Rij=&j cos 0 f  (I-cos 0) n t n j - ~ i j k n k  sin 0, 

and A and p are the modulus and phase of the order param- 
eter. The superfluid velocity vf and spin superfluid velocity 
ugi are given by the formulas 

. A u.' = - A 
d i ~ ,  vaid = -- E ~ B T R B ~ ~ ~ R T ~ ,  

2m 4m 
wherefiis Planck's constant and is the mass of the 3He atom. 

The expression found in Ref. 1 for the energy density E 

has the form 

&=&, (p, o) 4- 1/,p,v,2+11,p.v.2+yzs2/2~ 

Here vb and vf are the normal and superfluid velocities, p, 
andp, are the densities of the normal and superfluid compo- 
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nents, S, is the spin, andpS,/Z ;jaD,pc,cp, and c, are pheno- 
menological parameters. It should be noted that the expres- 
sion ( 1/2)pijhsuLiujbj is none other than the usual gradient 
energy that one introduces into the Leggett Hamiltonian 
when one wishes to take spatial variation of the order param- 
eter into account. 

The spin flux can be expressed in terms of E and has the 
form 

The equations of motion of the order parameter have the 
form 

2m 1 a 8 3 E 
ma=ha+ - v,,'vajg - - R,{ (rot v,) 1 ,  ha = - - 

h 2 dr - asa a(aiSa)  

(p  is the chemical potential). The spin-conservation equa- 
tion has the form 

where F z P  is the source due to the dipole moment. 
The equation of the theory of Ref. 1 are dissipationless. 

In the present paper, dissipation is taken into account in the 
minimal way-by means of the Leggett-Takagi mechanism8 
(see below). Since we are interested only in the qualitative 
features of the processes under consideration, we shall con- 
fine ourselves to the case when the quantities depend only on 
one spatial variable z.  

It is convenient to go over to dimensionless variables 

where y is the gyromagnetic  ratio,^ is the susceptibility, is 
the Leggett frequency, and L is the spatial scale, for which 
we take the wavelength of the WSW waves, equal to 0.1 cm. 
At a pressure of 20.7 bar and near T, the Leggett frequency 
is given by the f o r m ~ l a ' ~  

in view of which we can take a scale of fl = 5.105 rad/s, 
corresponding to dipole fields of 15-20 G. It should be noted 
that in the region of low temperatures the values of the dipole 
fields can be two to three times larger. 

In this paper we investigate a system in the acoustic 
pumping regime, and therefore it is necessary to consider 
only the equations for the spin and order parameter, with the 
sound entering these equations in the form of an external 
field. The corresponding equations follow from the spin- 
conservation equation (3)  and the above equations of mo- 
tion for the order parameter. In the one-dimensional case 
and with allowance for Leggett-Takagi dissipation they have 
the form 

d10=oana+16/l,  ( r l l lQ)  sin 0 (cos 0+ ' / , ) ,  (3a) 

d t n a = ' / 2 ~ , A r ~ e n , + 1 / 2  ctg (012) n,-'1, ctg (012) wenen,, (3b) 
dtSa=-'/,keapT (RpiRril) '- k~apr(RBsRr3') ' 

yft - [ ( v .  - 2m p n ~ v .  )s. ] ' + '6 /15  sin 0  (cos O+'li) n.. ( 3c) 

Here rll is the longitudinal-NMR linewidth, specifying a 
single relaxation term, the external field is assumed to be 
absent, and the prime denotes differentiation with respect to 
the spatial coordinate z. The coefficient k multiplying the 
gradient terms can be calculated in the weak-coupling ap- 
proximation: 

where c,,  is the velocity of a longitudinal spin wave.5 In the 
one-dimensional case under consideration, 

All the dynamical variables are understood to be dimension- 
less. 

In the equation for the spin the first two terms are the 
same as in the Laggett-Takagi theory with allowance for the 
spatial gradients of the order parameter, and the third term 
is due to the motion of the superfluid and normal compo- 
nents. The last term corresponds to the dipole moment. In 
the usual way, the Leggett-Takagi dissipation appears only 
in one equation-namely, that for the angle 8. 

For the purpose of the present work it is very important 
that the regime of the WP mode, as is well known,9 is charac- 
terized by the vector introduced by Brinkman and Cross: 

J=sin2 (012) {ctg (012) [Sn ]  -S+ (Sn)  n )  . (4) 

The vector J is an integral of motion of the dissipationless 
Leggett equations. The regime of the WP mode with neglect 
of dissipation is characterized by the following constraints: 

1)  The vector n of the axis of the order parameter re- 
mains perpendicular to the vectors S and J ;  

2)  the angle 8 does not change, and the angle between S 
and J is equal to i(8 + a); 

3 )  the vectors S, J ,  and n are connected by the relation 

S=-J-ctg (0 i2)  [Sn] ; (5 

4) the modulus of the vector J and the angle 8 are con- 
nected by the relation 

J2+"/,,  sin4 (012) (cos 0 t 1 1 4 )  =o; (6) 

5) the vectors S and n rotate about J with a constant 
angular velocity equal to 

a = - ' / ,  sin-' (012) J .  ( 7 )  

It follows from the above formulas that in the regime of the 
WP mode the vector n of the axis of the order parameter can 
be represented in the form 

n=u cos $+v sin $, (8 )  
where the unit vectors u and v, together with w, form an 
orthonormal basis. The vector w mentioned in the Introduc- 
tion is the normalized vector J: w = J/J.  

From the above equations for the spin and order param- 
eter follows the equation for the vector J :  

dtJa=1/2 (Gap-Re,) go'+ ' / ~ E R E ~ ~ O : R ~ ~ S @  
+ y l 5  (I', , lQ) sin 0  (cos 0+ l / , )  {cos 0  [Snl -S  sin 01,. ( 9 )  

Here we have used the fact that the vector Jcan be represent- 
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ed in the form 

J=-1/2S+'/2~-i (n, 0)s .  

The term due to the dipole moment is absent here, since the 
vector J is an integral of the dissipationless Leggett equa- 
tions and commutes with the dipole energy for suitably cho- 
sen Poisson brackets. l 5  

Thus, the vector J can change in time as a consequence 
of the following factors: 1)  Leggett-Takagi dissipation; 2) 
the presence of spatial graidents; 3) interaction with v, and 
v, . Dissipation does not take the system out of the regime of 
the WP mode, but the last two factors generate excitations of 
the system near the WP mode. In the limit of low frequencies 
and long wavelengths these excitations are waves of spatial 
modulation of the WP mode such that, over sufficiently 
small length scales, the configuration of the spin and order 
parameter can be assumed to be spatially uniform, while in 
the large, on the scale of the whole sample, there is no spatial 
uniformity. 

In order to give these arguments a quantitative form, we 
shall average Eq. (9)  over the basis solution specified by 
Eqs. ( 5 ) and ( 8). The averaging procedure itself is the same 
as that in Ref. 4, where only the gradients of the order pa- 
rameter but not v, and v, were taken into account; the essen- 
tially new point is that in the averaging process we take ac- 
count of the ordering of the quantities. Besides the rule given 
in Ref. 1, we must keep in mind that the vector J ,  and 8, and 
phase $ can be represented in the form 

where J, , 8,, and $, are spatially uniform quantities 
that vary in time only as a result of the Leggett-Takagi dissi- 
pation, and SJ, 88, and S$ are their spatially nonuniform 
fluctuations. In accordance with Ref. 1 the fluctuations are 
one order smaller than the spatially uniform quantities. This 
condition, of course, is an extremely strong requirement, 
but, evidently, near the regime of the WP mode it is reasona- 
ble to adopt it. The justification for this is the very existence 
of the sharp WP-mode signal, which indicates that the fluc- 
tuations are not too large. Since J has the same order as the 
spin, J2 is of order two. In this case, it follows from the rela- 
tion (6) that 8,, - 8, (where 8, = arccos ( - 1/4) is the 
equilibrium value of the angle 8) is a second-order quantity, 
and, consequently, 68 is a third-order quantity. 

It follows from this that the gradients 6'68 are at least 
fourth-order quantities and are therefore eliminated from all 
the equations, which, throughout, are considered with an 
accuracy up to and including third-order quantities. An- 
other very important point is that the gradients of the vector 
ware quantities of at least second order, since they are gradi- 
ents of the fluctuations Sw, and the latter are first-order 
quantities; because of this, in the averaging process a large 
number of terms turn out to be of fourth order and should be 
discarded. 

As a result of the averaging we obtain the following 
three equations (specifying the basis solution-for details, 
see Ref. 4) for the modulus of the vector J and the projec- 
tions of the vector J onto the unit vectors u and v: 

where 

The dissipative term that we have taken into account is 
formally fourth-order, as we should expect, since the dissi- 
pative part of the hydrodynamic equations is of higher order 
than the reactive part. However, the coefficient of this dissi- 
pative term turns out to be much larger that the coefficients 
of the reactive terms, even though the latter are of third or- 
der. We note also that all the coefficients in Eq. ( 11 )-( 13) 
are calculated for 8 = arccos( - 1/4). 

Equation ( 13) can be transformed to a more convenient 
form. For this we note first of all that it follows from Eqs. 
(3b) that 

[na,n] =-'Iz sin-' (012) 3-X(v,, v,) , (16) 

where the coordinates of the vector X(v, , v, ) are given by 
the relation 

rn 0 
X. - - Q-Iv,,~ [e,,vdn, otg - -vaj*+v,en,na . 

f r  2 I 
From the equations for the basis solution (5)  and (8) fol- 
lows the equality 

From Eqs. ( 16) and ( 17) it follows that 

dtl)=-1/2 sin-'(012) J-vatu-wX(v,, v,) . (18) 

From Eq. ( 18 ) we obtain an expression for the averaged 
value (J ) : 

We note that in the case of a spatially uniform configuration 
and with neglect of v: and v: we have the relation 

from which, in particular, it follows that a, J?I, is of first 
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order. Gathering together all these facts, we obtain the fol- 
lowing equation for S J  and S$, in which the last two terms 
are of the third order: 

6J=-2 sin2 (812) dr6p-2 sinZ(O0/2) (vd,u> 
-2 sinz (8,/2) (wX (v,, v,) >. 

It follows from the latter equality that, to within small terms 
of third order inclusive, we have the relations 

using which we can rewrite Eq. ( 13 ) in the form of an equa- 
tion for S$ alone: 

The change of JsH in time and the order of coefficients 
in Eqs. ( 1 1 ) , ( 12), and ( 19) can be estimated using the data 
of Ref. 3. It is known that Leggett-Takagi dissipation leads 
to a change of the frequency of the WP mode in time, in 
accordance with the law3 f - 2  = f; + at. According to 
Ref. 3, near Tc and at a pressure of 20.7 bar the coefficient a 
is a quantity of order s. An analogous law 

governs the variation of JsH , with given by the formula4 

where JsH and t are understood to be dimensionless. For 
application to the data of Ref. 3, JsH = 0.3 and 0 ~ 0 . 2  (in 
dimensional variables, 0~ s) ,  i.e., 

The characteristic time of the WSW wave is estimated from 
its frequency, which is given by the formula4 

where x is a dimensionless quantity of order unity, H i s  the 
external field that is to be switched off, ell is the velocity of 
the longitudinal spin wave,5 and A is the wavelength of the 
WSW wave. In the following, in accordance with Ref. 3, we 
shall assume that 1 - T/Tc = 0.02, the pressure p = 20.7 
bar, and H = 5 G.  From the data of Ref. 3, it follows that 
rll /fl = 0.3. In accordance with the microscopic theory of 
Ref. 5, taking the temperature and pressure into account we 
take the value of ell to be 200 cm/s. In the region of lower 
temperatures the value of cll grows (see Ref. 6).  We take the 
scale L to be equal to 0.1 cm, which corresponds to the char- 
acteristic wavelengths of the WSW waves under the condi- 
tions of Ref. 3. 

Under these conditions we have, according to formula 
(2 1 ) , a frequency value v z  250 Hz; i.e., the characteristic 
time for the WSW waves is of the order of a few milliseconds. 
It follows from formula (20) that the change of J .  in this 
time will be insignificant (twofold or threefold in all), and, 
taking into account that we are interested only in orders of 
magnitude, we can neglect it. 

The dimensionless coefficient of the gradient terms in 
Eq. ( 19) turns out to be of order lop5, and that of the dissi- 

pative term is found to be of order lo-'. 
Before estimating the last term in Eq. (19), we shall 

convince ourselves that it makes sense to consider only the 
pumping of second sound. Indeed, in order that the corre- 
sponding term in Eq. (19) not be negligible, the gradient 
contained in it should be rather large, i.e., the wavelength 
should be not greater than 0.1 cm; but this corresponds to 
frequencies of the order of lo5 Hz (the velocity of first 
sound16 in 3He is of the order of 440 m/s), whereas the aver- 
aged equations that we have obtained are valid up to fre- 
quencies of the order of lo3 Hz inclusive. The remaining 
possibility is that this is second sound, the velocity of propa- 
gation of which, according to theoretical estimates based on 
the two-fluid model of an isotropic superfluid liquid, is of the 
order of 1 cm/s (Ref. 13). Since we are interested only in 
order-of-magnitude estimates, we shall not elucidate the rel- 
ative roles of the terms with v, and us in Eq. ( 19), especially 
since the term with v, is evidently small near T, (Ref. 17). 

Taking into account the small penetration depth, we 
take the field of the sound wave in the form 

v ~ A ~ - ~ I  cos qz cos at 

and consider pumping at a frequency of 100 Hz, with ampli- 
tude A = 0.1 cm/s. According to Ref. 13 the penetration 
depth will be of the order of 0.001 cm. For these quantities 
the order of the last term in (19), which corresponds to the 
pumping, is found to be It should be noted that the 
term corresponding to pumping in Eq. ( 19) is nonzero only 
in the thin layer penetrated by the second sound. 

The estimates given show that the term corresponding 
to Leggett-Takagi dissipation should be kept, since it is two 
to three orders of magnitude greater than the reactive terms. 

The equations ( 11 ), ( 12), and ( 19) indicate that the 
process of generation of WSW waves by pumping of second 
sound occurs as follows. In a thin layer near the sound 
source the pumping leads to the appearance of a dephasing 
6$ which, in turn, induces oscillations of the vector w. The 
latter propagate beyond the layer penetrated by the second 
sound, while the dephasing mode dies out on account of the 
Leggett-Takagi dissipation. 

Equation ( 19) can be simplified substantially. In fact, 
the change S$ is induced primarily by the pumping, which, 
in comparison with the dissipation represented by the term 
with the first derivative with respect to the time, is small. 
Therefore, we can assume that the second derivative d :S$ 
will be of second order with respect to the pumping, i.e., will 
be extremely small and can be neglected. As a result, we 
obtain the following equation for the dephasing: 

In the limiting case wllz we have u3 = u3 = 0 and w3 = 1, Eq. 
(22) reduces to an equation of one-dimensional diffusion 
with a source: 

( r , , /Q) J s ~ ~ a t 6 $ = " / 8 k 6 ~ ) " - ' / ~ J ~ ~ [ V ~ -  (yh/2m) h ' p , ~ , ]  '. 
(23) 

From the estimate given above for the coefficients of 
Eq. (22) it follows that in a time of the order of a few milli- 
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seconds (the characteristic time for a WSW wave with wave- 
length of the order of 0.1 cm) the dephasing produced by 
pumping of second sound becomes of the order of unity. This 
result is indicated by Eq. (23). In its turn, the presence of the 
dephasing S$, concentrated in a thin surface layer and, con- 
sequently, having large gradients, entails, according to Eqs. 
( 11 ) and ( 12), pumping along the direction of the vector w. 

Thus, pumping of second sound will lead to the excita- 
tion of WSW waves. 

3. CONCLUSION 

The estimates given in this paper appear to show that, 
under favorable conditions, the interaction between second 
sound and WSW waves can be sufficiently appreciable to 
make it possible to detect second sound using the technique 
of Ref. 3. The important point here is the use of a special type 
of spin waves, corresponding to elementary excitations near 
a certain long-lived magnetic-ringing mode. This is due to 
the fact that for interaction with second sound one needs 
slow low-frequency ( - 10-100 Hz) spin-dynamics modes 
whose propagation can be clearly detected in experiment. 
Precisely these properties are possessed by the WSW waves3 
associated with the WP mode. To detect second sound one 
could also use other long-lived modes and the associated 
low-frequency elementary excitations, which can differ sub- 
stantially from the WSW waves in the configuration of the 
spin and order parameter and in the presence of applied ex- 
ternal fields. 

Apart from the well known Brinkman-Smith modeslo 
and the WP mode (see Ref. 18, in which a method is given 
for describing such modes by means of a "three-dimensional 
window" into the phase space of the Leggett-Takagi equa- 
tions), in the spin dynamics of 3He-B there are many other 
types of long-lived modes. It is useful to note that the major- 
ity of these modes cannot be obtained by simply switching 
off an external magnetic field (either completely or to a cer- 
tain residual value) or by the action of a rotating radio-fre- 
quency pulse (see Ref. 18). For example, it is k n o ~ n ' ~ ~ ' ~  
that in the presence of an external field H the Leggett-Takagi 
equations have a stable stationary solution, i.e., a long-lived 
mode, which goes over into the WP mode as H-tO. However, 
the numerical analysis performed in Ref. 18 shows that when 
an initial external field Hi  is switched off sharply, leaving a 
residual field H parallel to H i ,  an entirely different mode is 
generated, which, however, also goes over into a WP mode 
H-tO. This circumstance can be important when one is 
choosing a long-lived spin-dynamics mode with the aim of 
investigating second sound, since a mode that is suitable in 
all respects may be difficult to realize. 

If we take into account the small penetration depth of 
second sound, it is desirable to have a long-lived magnetic- 
ringing mode such that the associated waves of elementary 
excitations have as small a wavelength as possible at the giv- 
en frequency. The character of this frequency dependence 
can be estimated in the following, most general way. The 
long-lived mode is characterized by the magnitude of the 
magnetization associated with it, to which corresponds a 
certain field H. For example, for the WP mode this is the 
external field that is to be switched off, and for the Brink- 

man-Smith model0 it is the constant external field. The ele- 
mentary excitations with wavelength A are modulations of 
the long-lived mode, and are determined by the coefficients 
of the gradient energy (see Sec. 2) .  The size of these coeffi- 
cients corresponds to the velocity of ordinary spin waves in 
superfluid 3He (Ref. 5 )  and can be comparable to the veloc- 
ity cl, of a longitudinal spin wave."e note that the veloc- 
ities of the longitudinal and transverse spin waves are of the 
same order.5 Thus, we have three fundamental dimensional 
quantities: A, H, and cil . From these we can construct two 
dispersion laws: 1) a linear dispersion law v-c,,  /A which 
corresponds to longitudinal oscillations of the spin and is 
damped in accordance with the Leggett-Takagi mechanism 
(in the case of WSW waves, this also holds for the dephasing 
(a$) mode); 2) a quadratic dispersion law (for the WSW 
waves this is the mode of oscillations of the vector of the 
spin-precession axis; see Eq. (2 1 ) ) 

The method developed in this paper makes it possible to 
study the interaction of second sound with the spin waves 
associated with an arbitrary long-lived magnetic-ringing 
mode. The choice of the WP mode and WSW waves is predi- 
cated on the fact that they can be detected beautifully in 
experiment and admit a simple theoretical treatment that 
makes it possible to exhibit all the important aspects of the 
phenomenon: 

1 ) Pumping of second sound creates, in a thin layer near 
the loudspeaker, a gradient of the dynamical variable corre- 
sponding to a longitudinal (with respect to the spin) slow 
mode (in the present work, this mode is the dephasing a$); 

2 )  Leggett-Takagi dissipation leads to the result that 
the longitudinal slow spin mode is damped, and its damping 
can be comparable to the damping of second sound in the 
considered range of frequencies ( - 10- 100 Hz ) ; 

3) the interaction of the longitudinal slow mode and a 
transverse mode (in the present work the latter mode con- 
sists in oscillations of the vector w of the precession axis) 
inside a thin layer, in which the longitudinal mode does not 
have time to become damped, excites a wave of the a trans- 
verse mode that is propagating and can be detected far from 
the source of the second sound. 

In accordance with the quadratic dispersion law indi- 
cated above, we expect that for wavelengths A -0.01 cm and 
fields H- 100 G there can be a resonance between the second 
sound and the transverse component of the slow mode of 
elementary excitations, and that the presence of this reso- 
nance should make it possible to ascertain the penetration 
depth of the second sound from the velocity of propagation 
of a wave of the slow mode. The damping longitudinal mode 
serves as an intermediary mode effecting an interaction 
between the second sound and the transverse propagating 
mode. 

In the present work we have not considered high-fre- 
quency (greater than 1 kHz) second sound. It would be very 
interesting to ascertain whether it is possible to obtain some- 
thing similar to parametric excitation of spin waves on ac- 
count of surface effects. In the pumping regime the latter can 
be extremely large in view of the very small penetration 
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depth. If in this case there is some kind of interaction with 
the spin-order-parameter variables, in the same way as oc- 
curs in the present work, the excitation of spin waves is possi- 
ble. Parametric excitation of spin waves by an external mag- 
netic field is studied in Ref. 19. 

The interaction of spin modes and acoustic modes for 
phases other than 3He-B has already been studied earlier. 
The presence of coupling of second sound with a spin wave in 
the A1 phase was studied theoretically in Refs. 20 and 21 and 
experimentally in Ref. 13. However, the character of the 
phenomenon there is completely different from that consid- 
ered in the present work. The important point is that in the 
A1 phase we have a situation in which the second sound 
interacts directly with spin waves, and not with slow modes 
such as those considered in the present paper. 

Fishman and SaulsZ2 have shown that zero sound in 3He 
in the normal phase in the presence of a magnetic field can 
excite oscillations of the longitudinal magnetization super- 
posed on the Larmor precession. This resembles the genera- 
tion (considered in the present paper) of the dephasing 6$ 
by means of second sound. 

It is worthy of note that in superfluid 3He-B there are 
further possibilities for the study of second sound using the 
second-sound-induced emission of WSW waves. It is evident 
that in a more general context second sound can serve as a 
probe for the investigation of surface effects in superfluid 
'He; e.g., for the recently widely debated problem of the role 
of surface currents in the formation of the angular momen- 
tum in 'He-B (Ref. 23). 
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the present paper. 

"Faculty of Mechanics and Mathematics, M. V. Lomonosov State Uni- 

versity, Moscow. 
"We note that an analogous situation obtains in nematic liquid crystals in 
a state with rapid rotation of the director.'' 

Note added in proof (6  February 1986): When our article was already in 
press, the paper by S. T. Lu and H. Kojima [Phys. Rev. Lett. 55, 1677 
( 1985)l appeared, in which second sound was detected in 3He-B. 
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