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The possibility of describing the metastable region near the liquid-vapor critical point by 
means of the scaling-theory equations of state is considered. It is shown that these equations 
imply the existence of a line bounding a region to which no equilibrium state of the substance 
corresponds. On this line, unlike the classical spinodal, the elasticity of the system vanishes 
only at the critical point. This line is calculated from the authors' data for 4He and compared 
with the spinodal obtained from other theories. 

The widely known and numerically well confirmed 
scaling theory of critical phenomena describes satisfactorily 
the behavior of fluid systems in the stable region near the 
critical point of vapor formation.' However, as far as we 
know, with the exception of Refs. 2 and 3 there has as yet 
been no serious attempt, for specific substances, to use scal- 
ing dependences to describe the metastable region, including 
the spinodal, even though the authors of the first  paper^^.^ 
devoted to the scaling equation of state elucidated the pres- 
ence on the isotherms of turning points bounding the region 
of equilibrium states of the substance. The classical theory 
defines a spinodal as a line bounding a region in which the 
existence of the uniform substance is impossible because the 
pressure satisfies (dP /aV). > 0, which implies loss of stabil- 
ity of the substance. However, the classical theory is based 
on the assumption that on the spinodal the thermodynamic 
potentials have no singularity, i.e., they can be expanded in a 
series in integer powers of small deviations of the thermody- 
namic parameters from their values on the spinodal. At the 
same time, Landau and Lifshitz6 had noted that there is ev- 
ery reason to suppose that the spinodal is a line of singular 
points of the thermodynamic potentials. In this case the clas- 

isotherms. It can be solved in general form, and all observ- 
able quantities can be expressed in terms of the function 
g,(m). It should be noted that the function p ( m )  possesses 
simple properties. Reference 5 indicates the conditions 
which it should satisfy: p (0)  = 0, in order that the moment 
vanish above the transition point as H-0; g, ' (0) = 1, i.e., at 
zero the function p ( m )  has a positive slope; finally, at some 
m = m, we must have g, (m,  ) = 0, in order that, in zero field 
for T < 0, there exist a spontaneous moment. We emphasize 
that these properties of the function p ( m )  are very general 
and stem from our knowledge of the character of the behav- 
ior of matter near a critical point. 

We shall consider the behavior of the field H on the 
isochores. It follows from (2)  that 

IJ=rp ( m )  ( M l m )  (P+"/o. ( 3  

It turns out that the behavior of H ( m )  is complicated. Dif- 
ferentiating (3)  with respect tom and finding the extremum 
ofH(m), we find that at a certain point m = m, , determined 
from the condition 

sical definition of the spinodal may be inaccurate. 
We shall consider the question of the spinodal from the 

H(m)  has a minimum. Thus, analysis of the behavior of the 
system for M = const leads to an interesting result: As m 

standpoint of the modern theory of critical phenomena. A 
consequence of scaling is the fact that the thermodynamic 

increases the field H first decreases to zero (the bounding 
curve), then becomes negative (corresponding to the metas- 

potentials are generalized homogeneous functions, i.e., e.g., 
table region), and, finally, for m > m,, begins to grow; i.e., 

for the Helmholtz free energy, we can write 
the point m = m, is a turning point for the isochore 

F ( h " ' ~ ,  P N M )  =hF ( T ,  M )  . ( 1 ) ( M  = const). An analogous result was obtained in Ref. 5 for 
isotherms with T < 0 (see Fig. 1 ), and the condition for the 

Here = ( - Tk )ITk. as the scaling factor the turning points of the isotherms coincides with (4) .  On the T- 
susceptibility of the system, we arrive at Migdal's formula- diagram the points corresponding to = m, form a con- 
tion of the scaling hypothesis: tinuous line that lies entirely inside the bounding curve. The 

HX(R+l)17, rp ( m )  , m=Mxw1. ( 2 )  equation of this line in the coordinates M, H can be written as 

Here His the field, M is the  moment,^ = (dM /dH) ., andp M c c m c  ( P+Y ) 61"+T' HcB/(B+?I (5 

and y are critical indices. For convenience in comparing PmCcp1 ( m c )  

with the results of Ref. 2 we shall use the terminology for a In the coordinates M, it will have the form 
ferromagnet, with the understanding that we can go over to 
fluids by means of the replacements M , = m , [ C + f  ( m . )  ]-p'7T'. ( 6 )  

H" (p-p(ph7 ~ ) ) / p k r  M" ( P - P * ) / P ~ ,  XU ( 'p l 'p )~ .  Here C+ is a constant, determined by the dependence 
The relation (2)  is an implicit differential equation for the X+ (7) = C + ~ -  ( r >  O )  1 and 
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will be found only for m-m, -co. This asymptotically ex- 
act form ofp(m)  leads to the result that forP = 4 and y = 1 
the isotherm, as easily found from (2), will have the form of 
a cubic parabola H = - AM 3/2 + C+rM, and for m-m, 

i.e., x becomes infinite (together with m, ) on the turning- 
point curve, which in this case coincides with the classical 
spinodal. 

The term "spinodal" was introduced by van der Waals 
I /  ' from the Latinspina (thorn, or spine), because the section of 

the free-energy surface cut by the tangent plane at this point 
FIG. 1. Isotherms for a magnet, drawn using the Migdal equation. 1 ) The 
binodal; 2 )  the line of turning points ("spinodal"). The region inside the possesses a turning point, Or It can be seen Fig. 
binodal ( H  = 0) is shaded. that the isotherms of the Migdal equation also have a similar 

cpf(m) -1 
f (m,) = exp y ------------ { ! (D+u)m(m) -Bm 

dm}. 

spine; i.e., from the etymological point of view the turning- 
point curve can also be called a spinodal. However, in order 
to distinguish this line from the classical spinodal we shall 
call it the turning-point curve. 

" . . .  
Thus, in contrast to the classical equations of state of 

We now how the line of turning points is char- the van der Waals type, for which isotherms also exist in the 
acterized. It follows from (2)  and (4)  that the susceptibility region of absolute instability and the boundary between the 
on the turning-point curve is written as metastable and labile regions is determined by the condition 

T/(P+T) -T/(B+TI (dH /dM)= = 0, in scaling equations of state with nonclassi- 
B+Y , (7)  cal indices the turning-point curve simply bounds the region 
n ,  

that is not describable by the equation of state, i.e., the region i.e., on this curve x diverges only at the critical point, at 
in which, from the standpoint of scaling [since Eq. (2) is a which this curve touches the bounding curve. In Ref. 5 it was 
formulation of scaling], equilibrium states of the substance shown that the point m = m, is characterized by the simul- 
are not possible. It is obvious that the existence of such a taneous vanishing of the numerator and denominator of the 

expression region follows from the scaling hypothesis itself, since the 
turning-point curve in Eq. (2)  is obtained without any as- 

x= (dMldm) / (dHldm) . sumptions concerning the choice of the specific form of the 
scaling function p (m ) . 

A consequence of this is the singular behavior of (d 'H / In his paper Migdal also points out the possibility of the 
dM ') , on the turning-point curve: existence of metastable states in which the spontaneous mo- 

dZI/  d ~ - '  d ~ - '  d M  ment is several times larger than that in the stable state. 
(ZIT(,), =(,/,IT. However, the existence of such states is dubious, since they 

correspond to zeros of the function p ( m )  at m > m,, the 
The quantity dx-'/dm on this curve is equal to a certain presence of which in Migdal's paper arose entirely from the 
negative constant: specific choice of p (m ) in the form of a power polynomial. 

B T I P  We now consider Schofield's parametric equation of w I c = x [ ( " ) " " ] I  dm ( )  b m e , (8) state4: 

and since dM /dm tends to zero from the negative side as 
m-+m, , it follows that (d  'H /dM '). 1, = w . 

The region lying inside the turning-point line is not de- 
scribed by the equation of state (2);  i.e., from the standpoint 
of Eq. (2),  which is a formulation of the scaling hypothesis, 
equilibrium states of the substance that correspond to this 
region are simply impossible. Thus, the turning-point curve 
corresponds to the classical spinodal, which also bounds the 
region of physically impossible equilibrium states of the sys- 
tem. It should be noted that for the classical index values 
0 = 4 and y = 1 this line goes over naturally into the classi- 
cal spinodal, since it follows from (4)  that in this case 
p(m)-+Am3 as m-m,, and, consequently, the simplest 
function p ( m )  satisfying the required limiting behavior at 
the points m = 0 and m = m, will be p ( m )  = m + Am3, 
and it is obvious that the asymptotic behavior p(m)-Am3 

As shown in Ref. 7, this equation, like the Migdal equation, 
is based on the scaling theory of critical phenomena. More- 
over, it coincides exactly with the Migdal equation in the 
approximationP + y = 3/2 and differes from the latter only 
by terms of higher order than E' (Ref. 7).  Consequently, the 
Schofield equation should also describe the metastable state 
of a system, and its isotherms should have turning points. 
Indeed, an investigation of Eqs. (9)-( 1 1 ) has shown that for 
parameter values 16 1 > 1 the isotherms drawn using this 
equation fall into the region of metastable states, and for 
6 ' = y/(y - 2P) have turningpoints; i.e., thevalue6 = y/ 
( y  - 2P) corresponds to the turning-point curve and the 
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properties of this curve coincide fully with the properties of 
the similar curve from the Migdal equation. 

Thus, the scaling hypothesis implies the existence of a 
certain analog of the spinodal, on which, in contrast to the 
classical definition, the susceptibility becomes infinite only 
at the critical point. 

Having investigated the general properties of the turn- 
ing-point curve, we attempted to determine it from the ex- 
perimental P, p, T data near the critical point of 4He (Ref. 
8) .  For this we made use of the Schofield equation of state 
(9) - ( l l ) ,  which for the liquid-vapor critical point can be 
written as follows9: 

We had determined the constants of this equation for 4He 
previo~sly.'~ Substituting into ( 12)-( 14) the value 0 = y/ 
( y - 2P), we obtained the turning-point curve of 4He; see 
Fig. 2. 

To elucidate how the turning-point curve determined 
from the Schofield equation differs from the classical spino- 
dal we calculated the spinodal in several ways. The first way, 
described in Ref. 11, is based on the fact that in the classical 
case the spinodal is the envelope of the family of isochores in 
the variables P,T, the isochores themselves being straight 
lines. The latter circumstances makes it possible in this case 
to extrapolate the isochores into the metastable region up to 
the spinodal; this is important because of the sparseness of 
the experimental data in this region. The part of the spinodal 
( p <pk ) which we constructed in this way from the data of 
Ref. 8 with the use of the analytical method is shown, in 
comparison with the results obtained by earlier methods, in 
Fig. 2. It can be seen from the figure that near the critical 
point the spinodal obtained lies outside the binodal (the 
bounding curve), indicating the incorrectness of this meth- 
od. Clearly, this is connected with the fact that extrapolation 
ofthe straight lines into the metastable region is not justified. 
Thus, the method described in Ref. 11 for determining the 

FIG. 2. Bounding curve and spinodal of 4He: the small circles represent 
the binodal (experimental points); 1-1) the binodal from the Schofield 
equation; 2-2) the binodal from Eq. ( 15); 3-3) the turning-poing curve 
from the Schofield equation; 4-4) the spinodal from Eq. (16); 5-5) the 
spinodal plotted from Ref. 11. 

spinodal gives too large an error ( - 15% ) and is not suitable 
for an exact determination of the spinodal, at least near the 
critical point. 

Figure 2 shows one further estimate that we have made 
of the spinodal. It shows the coexistence and turning-point 
curves of 4He, calculated from the Schofield equation 
(curves 2-2 and 3-3). Figure 2 also depicts the coexistence 
curve and spinodal (cruves 1-1 and 4-4) calculated from 
the results of Ref. 12, in which empirical equations of the 
following form were proposed for the binodal and spinodal: 

where B = 0.5052, ', zk = Pk Vk/RTk. It can be seen from 
the figure that, in this range of the  parameter^,^ both the 
binodal and spinodal found from Eqs. ( 15) and (16) coin- 
cide, to within 5%, with the binodal and turning-point 
curve, respectively, determined from the Schofield equation. 
This is not surprising, since the value of the coefficient B in 
Eqs. ( 15)-( 16) is close to the value determined from the 
Schofield equation, while the term linear in T in these equa- 
tions is small and ranges from - 2% of the principal term at 
T = lo-' to -4% of the principal term at T = lop3. 

Thus, the above account shows that the difference 
between the classical spinodal and its scaling analog, at least 
not too far from the critical point, is small, and for estimates 
in this region one can us, e.g., Eq. ( 16). 

Final confirmation of the correctness of the scaling de- 
finition of the "spinodal" could be provided by the experi- 
mental observation of those branches of the isotherms that 
are obtained for the Migdal equation form > m, , and for the 
Schofield equation for 0 > y/( y - 2P). However, at the 
present time it is not clear how one should perform the ex- 
periment in order to get into this region of state of the sys- 
tem. 
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