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The compression of a plasma and a magnetic field by a cylindrical shell (or liner) is analyzed. 
The formation of a thin boundary layer with a dense plasma near the liner substantially 
accelerates the loss of magnetic flux from the plasma. The structure of this boundary layer is 
found. It is described by self-similar solutions of the transport equations in a plasma with a 
magnetic field. Analytic solutions are derived for the problem with an arbitrary (quasistatic) 
evolution of the plasma compression. Possibilities for generating ultrastrong pulsed magnetic 
fields in such systems are discussed. 

INTRODUCTION 

The possibilities of the method proposed by Bogomolov 
et al.' for producing ultrastrong magnetic fields (on the or- 
der of 100 MG) by compressing a plasma with a frozen-in 
magnetic field by a cylindrical shell (a liner) have been dis- 
cussed in several papers.'-3 In this approach, the magnetic 
field is intensified by currents induced in the plasma (so that 
the liner may be totally nonconducting), in contrast with the 
conventional method for generating megagauss fields, which 
involves the compression of magnetic flux by a liner.4 This 
distinction basically frees us from one of the most serious 
limitations imposed on the magnetic fields which can be 
reached: the explosion of a current-carrying skin in the lin- 
er.4 

The primary question now is how rapid the compres- 
sion should be if we wish to keep the magnetic field frozen in 
the plasma. Bogomolov et al.' assumed that this condition 
could be met by achieving a large magnetic Reynolds num- 
ber Rm : 

Here R is the radius of the liner, u, = I R  I is its velocity, 
Dm = c2/4.rro is the magnetic viscosity of the plasma, and a 
is the conductivity of the plasma. As was pointed out in Ref. 
2, however, the magnetic flux trapped by the plasma is lost 
from this system far more rapidly than would be implied by 
the simple estimates which lead to condition ( 1 ). The reason 
is that as the magnetic field is building up in the main volume 
of the plasma, the plasma is pushed toward the liner wall, 
where it forms a thin boundary layer of dense plasma. The 
flow which arises carries the magnetic field off to the liner 
wall in a convective manner and simultaneously causes a 
pronounced compression of the current layer at the wall. As 
a result, the condition which must be satisfied in order to 
achieve effective compression of the magnetic field is consid- 
erably stiffer than ( 1 ) , specifically, 

The accelerated loss of magnetic flux from a plasma 
compressed by a liner has also been studied by Velikovich et 
~ 1 . ~  The results of their numerical simulation of the compres- 
sion confirm the features which we have just described in the 
diffusion of the magnetic field. As for the analytic solutions 
of the hydrodynamic equations of the plasma which were 
derived in Ref. 3, we note that they do not give us a basis for 
formulating a condition-to replace condition ( 1 )-under 
which the magnetic field remains frozen in the plasma. The 
reason is that Velikovich et studied self-similar solu- 
tions, in which all the scale lengths are proportional to the 
liner radius. In other words, the plasma compression is uni- 
form over the volume. In contrast, the accelerated loss of 
magnetic flux in which we are interested here stems from a 
redistribution of the plasma over the cross section, which 
unfolds continuously against the background of the uniform 
compression of the plasma. 

In the present paper we show that the problem of the 
evolution of the magnetic field in a liner-compressed plasma 
is amenable to analytic solution for an arbitrary compression 
law R ( t ) .  Our solution is based on the circumstance that the 
thickness of the boundary layer at the liner, in which the 
plasma and magnetic field gradients are important, remains 
at all times small in comparison with the radius of the sys- 
tem. Consequently, the time evolution of the parameters of 
the homogeneous plasma can be found from simple equa- 
tions describing the balance of the number of particles, the 
energy, and the magnetic flux between the bulk of the plasma 
and the boundary layer. Correspondingly, in Section 1 of 
this paper we find the structure of the boundary layer. As we 
will see, this structure is described by self-similar solutions 
of the transport equations in a plasma with a magnetic field. 
In section 2 we derive equations describing the behavior of 
the magnetic field during the compression of the plasma. 
These results can be used to evaluate the effectiveness of this 
method for generating strong magnetic fields. 

R c f f ~ R ~ L I D e t t > l r  (2 )  1. BASIC EQUATIONS AND STRUCTURE OF THE 

where D,, is the effective magnetic viscosity coefficient, BOUNDARY LAYER 

which is far larger than Dm.  The coefficient D,, was evaluat- We assume a cylindrically symmetric compression of a 
ed in Ref. 2. plasma with a magnetic field directed along the axis of the 
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cylinder (the z axis). We assume that the problem is one- 
dimensional, so that all quantities are functions of only the 
radius r and the time t. We assume that there is initially 
(before the compression) a homogeneous plasma with a 
density no, a temperature To, and a magnetic field Ho inside 
the liner, whose radius is R,. The very basis of the problem 
(the conversion of the kinetic energy of the liner into mag- 
netic-field energy) implies that the thermal energy of the 
plasma is much smaller than the magnetic energy, so that the 
condition Po = 8nnoTo/H (1 holds. During the subse- 
quent compression of the plasma, the magnetic field in the 
plasma becomes stronger than the field at the liner wall (if 
the liner is nonconducting, the magnetic field at it does not 
change at all; it remains equal to its initial value). On the 
other hand, the compression velocities which are of practical 
interest are considerably lower than the AlfvCn velocity in 
the plasma, so that a process of this sort is approximately 
adiabatic, and there is time for equalization of the total pres- 
sure in the system: 

Under the condition PO(l, this equation implies that al- 
though the plasma pressure in the main volume remains low 
in comparison with the magnetic-field pressure (Pi = 8n 
ni Ti /Hf(l) ,  a boundary layer in which the plasma pres- 
sure is nT-H :/8n and its density satisfies n)ni forms near 
the liner (here and below, Hi ,  Ti, and ni are the magnetic 
field, temperature, and density of the homogeneous plasma 
at the center). Figure 1 shows qualitative profiles of the mag- 
netic field and the plasma pressure during the compression. 

The thickness A of the boundary layer of dense plasma 
is small in comparison with the radius of the system (A(R; 
see Subsection 1 in the Appendix), so that we may regard 
finding the structure of this layer as a two-dimensional prob- 
lem. We transform to a coordinate system which is moving 
with the liner; we put the planex = 0 at the wall, and we put 
the plasma in the regionx > 0. The transport equations in the 
plasma given in the review by Braginskiis and the equilibri- 
um condition in (3)  can then be written 

FIG. 1.  Profiles of the pressure and the magnetic field during the compres- 
sion of the plasma by the liner. 

Here we are using the notation of Ref. 5; x ,  is the thermal 
conductivity of the plasma in the direction across the mag- 
netic field, and P- is the thermoelectric coefficient [the last 
term on the right side of (7)  incorporates the Poynting con- 
tribution to the energy flux]. The boundary conditions on 
system (4)-(7) are imposed at the liner surface (at x = 0). 
There the magnetic field is equal to the external field, 
H(0, t)  = Ho, and the plasma flow velocity vanishes, 
u(0, t )  = 0. We also assume that the heat capacity of the 
liner is substantial, so that the plasma temperature remains 
constant at the liner surface: T(0, t )  = TL. Outside the 
boundary layer (i.e., at x s A )  the plasma and the magnetic 
field are both uniform, so that in the solutions of equations 
(4)-(7) of interest there we will have H = Hi,  n = ni, and 
T = Ti in the limit x+ + co . 

The pronounced compression of the boundary layer 
which we mentioned above has the consequence that the 
magnetic field flux qH and the energy flux q, carried to the 
boundary layer by the plasma flow are far greater than the 
changes in the magnetic flux and the energy inside the layer 
(Subsection 2 in the Appendix) : 

We can then replace Eqs. (6) and (7)  by the conditions that 
the total fluxes of the energy and of the magnetic field are 
constant: 

where vi = v (  + co ) is the velocity with which the homo- 
geneous plasma flows into the boundary layer. In Eqs. (4),  
(6'), and (7') it is convenient to transform to the dimension- 
less variables 

h=H/Hi, p=n/ni, u=v/ut, 0=T/T,,  

where 

and DH is the magnetic viscosity of the plasma, with tem- 
perature T = TH . The equations can then be written 
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An important aspect of this problem is that although the 
plasma in the main volume is strongly magnetized (the con- 
dition w, T) 1 holds, where w, is the cyclotron frequency, 
and T is the particle scattering time) the decrease in the mag- 
netic flux and the increase in the plasma density in the 
boundary layer lead to demagnetization of this plasma, so 
that at the liner wall the condition wHr<l  holds. At the 
same time, the kinetic coefficients p- and x ,  which appear in 
Eqs. (6') and (7') depend in completely different ways on 
the parameters of the plasma and the magnetic field in the 
regions of magnetized and unmagnetized plasma.' We will 
therefore use some simple model expressions which give a 
qualitatively correct description of the behavior of the plas- 
ma transport coefficients in both limiting cases. We will ac- 
cordingly study separately three regions of the plasma pa- 
rameters: region I in which the plasma ions are magnetized, 
and the condition ( w , ~ ) ,  > 1 holds; region I11 in which the 
plasma is unmagnetized with (w,~) ,  < 1; and an intermedi- 
ate region 11, where the electrons are magnetized, but the 
ions are not. Using 

where p is the ratio of the electron and ion masses, we can 
describe the boundaries of region I1 by < (w,T), < 1. 
The dimensionless coefficients x and a which appear in Eqs. 
(9)  and ( 10) can now be written in the following form5: 

p-'"p2/h2~'" (I), hO"/p>p-"'(j-', 

GpO/h(II), 6-'<h0"/p<p-'"6-', 
6Z0"~(III), h0"/p<S-', 

(11) 

a={ plh0" (I, II) ,  
~ ~ h o ~ p  ( I  I I )  . 

Here S w , ,  T, (ni , Hi, TH ) ) 1 is a large parameter. As we 
will see below, the existence of this large parameter gives rise 
to an anomalously rapid loss of magnetic flux in the plasma. 
Let us formulate the boundary conditions in terms of the 
new variables. Since the quantity Hi increases during the 
compression of the plasma and becomes much greater than 
the initial field H, (and thus much greater than the field at 
the liner), we may assume h ({ = 0) zO. The conditionp, (1 
means that the temperature of the homogeneous plasma sat- 
isfies T, < T, = H :/8rni, so that we have e({- co ) ". 0. On 
the other hand, the temperature TH increases during the 
compression of the plasma (T, a H, ) and ultimately be- 
comes much higher than the temperature T, of the liner 
shell. We thus also have 6(f = 0 )  =:0. As a result, the struc- 
ture of the boundary layer is described in terms of the dimen- 
sionless variables defined above by the universal equations 
( 8 1 4  10) with the boundary conditions 

This result means that at all times the profiles of the density 

n, the magnetic field H,  and the plasma temperature T differ 
only through changes in the scale of these quantities and in 
the length scale. In other words, the boundary layer evolves 
in a self-similar way. 

Since the plasma flow velocity u appears in Eqs. (8)- 
( lo),  these equations will generally have to be solved jointly 
with the continuity equation ( 5  ) . In the particular case with 
which we are concerned here, however, this situation sim- 
plifes considerably, since the velocity is related in an unam- 
biguous way to the plasma density (u = l/p; see Subsection 
3 in the Appendix) in that part of the boundary layer in 
which the convection components of the fluxes of the mag- 
netic field and the energy are important. 

We first consider Eqs. (8)-(10) in the unmagnetized 
plasma near the liner wall (region 111). Since the magnetic 
field is weak here (at the wall itself we have h = 0), we con- 
clude from (8) that the plasma pressure satisfies p8- 1. In 
this case the fluxes of the energy and the magnetic field are 
dominated by the thermal conductivity of the plasma and 
magnetic diffusion, so that we can write, according to (9)- 
(11) 

Also using the boundary conditions (12), we then see that 
the distance from the liner wall is described by (-a26 7/2,  

and the increase in the magnetic field is described by 
dh -S28 4d6'. This solution holds up to 6 5 8, where 
the electrons become magnetized (and now the magnetic 
field is h - 1). The thickness of this region is 
A{ = {, -6*6 ' I 2  -S3I5. At { > {, there is a transition to re- 
gion 11, where the electrons are magnetized (wHer, > 1 ), 
while the ions are not yet magnetized. Here it is convenient 
to write Eqs. (9)  and ( l o )  in the following form, where we 
areusing (8)  and (11): 

We see from the last equation that in region I1 the condition 
dO/d{<O holds; i.e., the plasma temperature reaches its 
maximum, Om,, - 6, at (wH T), - 1. AS the temperature 
then decreases, A6- e l ,  the plasma pressure falls off from a 
valuepe- 1 to a ~ a l u e ~ B - p ~ ~ ~ ,  where the plasma ions also 
become magnetized (so that there is a transition in region I1 
from a plasma withp- 1 to a plasma withP( 1 ). In deriving 
( 14) we assumed that the condition p )  1 holds everywhere 
in region 11, so that the convective components of fluxes (9 )  
and ( 10) are still unimportant here. This assumption im- 
poses a restriction on the parameter 6: ,U"~B ;')I, i.e.,l' 
6)p-514. In the magnetized plasma (region I ) ,  the relative- 
ly high ion thermal conductivity has the consequence that 
the plasma pressure falls off rapidly, while the plasma tem- 
perature remains nearly constant, 8- 6,: 

din (p0)ld ln 0-y-'">21. 
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Now specifying a definite plasma compression law2' R ( t ) ,  
and making use of the fact that the magnetic field is frozen in 
the homogeneous plasma, 

FIG. 2. Structure of the boundary layer. 

Events proceed in this direction until the plasma density 
reaches p > 1. Further from the wall we have p z h =; 1, and 
the plasma temperature falls in accordance with 
0-,u-'{ -'. The characteristic thickness 66 of the bound- 
ary layer is of order S3I5. Figure 2 shows qualitative profiles 
of the 0, p, and h.  

Below we will need to know the amount of plasma in the 
boundary layer: 

m 

Using the solutions found above, we easily see that this inte- 
gral is dominated by that part ofthe boundary layer in which 
the electron magnetization parameter satisfies w,~, - 1, 
and the plasma pressure is p0  - 1 : 

Returning to the dimensional variables, and making use of 
the cylindrical geometry of the problem, we can write the 
total number NA of plasma particles in the boundary layer as 
follows: 

where the numerical factor a is of order unity. To determine 
this factor we need to solve Eqs. (6') and (7')  with the exact 
values of the transport coefficients in the p l a ~ m a . ~  

2. INCREASE OF THE MAGNETIC FIELD DURING THE 
PLASMA COMPRESSION 

Let us find the time evolution of the parameters of the 
homogeneous plasma as it is compressed by the liner. The 
magnetic flux trapped by the plasma, @ = TR 2Hi ,  decreases 
as a result of convective removal of magnetic flux with the 
flow, so we can write 

We find yet another equation from the condition describing 
the balance in the number of particles between the homogen- 
eous plasma and the boundary layer, which may be written 
in the form 

we find from Eqs. ( 16)-( 18) the time dependence of the 
magnetic field in the plasma, Hi ( t ) .  We introduce the di- 
mensionless quantities 

where u, is a characteristic velocity of the liner. In terms of 
these variables, Eqs. ( 16)-( 18) become 

dx 1 x2 dy 1 xZ -=--- -=-- 
d~ R$i r" ' d~ R60:, r?.y ' (19) 

The quantity R k i '  which we have introduced here has the 
meaning of an effective magnetic Reynolds number, specifi- 
cally, 

It can be seen from ( 19) that we have x + y = const; since 
initially we have x = 1 and y = 0, we find y = 1 - x .  Using 
this relation, we can easily integrate the first equation in 
(19): 

1 
A- 

x 
e f f  0 

It follows from expression (20) for R kg' that the loss of 
magnetic flux from the plasma occurs with an effective mag- 
netic diffusion coefficient 

Interestingly D,, is totally independent of the electron colli- 
sion rate in the plasma, although the loss of magnetic flux 
results from the finite conductivity of the plasma in the 
boundary layer. The situation here is analogous in many 
ways to that of shock waves in gases.6 There the thickness of 
the shock front adjusts to a value such that the necessary 
dissipation occurs. In the case at hand, the electrical conduc- 
tivity and the thermal conductivity of the plasma regulate 
the width of the boundary layer so that the magnetic flux 
carried to this layer by the plasma flow can diffuse to the 
wall. 

To illustrate the results we show in Fig. 3 solutions of 
Eq. (21) for various values of the effective magnetic Reyn- 
olds number R 2;'. This figures shows the behavior of the 
magnetic field in the plasma when the plasma is compressed 
by a factor of ten along the radius by a liner moving at a 
constant velocity, with r ( ~ )  = 1 - T. We see that for effec- 
tive compression of the magnetic flux, i.e., for an increase of 
the initial field by two orders of magnitude, we need R kg' to 
be about 30. 

An important distinction between the condition de- 
rived here of the freezing in of the magnetic field in the plas- 
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FIG. 3. Profiles of the magnetic field in the plasma for various values of 
the effective magnetic Reynolds number R $': 1-10; 2-30; 3-m. 

ma, on the one hand, and condition ( 1 ), on the other, is the 
way in which R, depends on the plasma density [the mag- 
netic viscosity Dm of the plasma, which figures in ( 12) does 
not depend on the plasma density]. It now follows from 
expression (20) that we would like to increase the initial 
plasma density no in order to reduce the compression veloc- 
ity which we will need. Choosing roughly the same param- 
eters for the system as were discussed in Refs. 1 and 3, i.e., 
R0=; lo-' cm and H0z2.105 G, we see from (20) that in 
order to reach R ::' ~ 3 0 ,  even at no=: 1019 cmV3, we would 
need a liner velocity3' uL ~ 5 . 1 0 '  cm/s. Such velocities are 
considerably higher than the compression velocities Bogo- 
molov etal.' had in mind when they originally suggested this 
approach. It should also be noted that the requirements on 
the initial velocity of the liner may become even more severe 
when we take into account the slowing of the liner in the final 
stage of the compression. 

APPENDIX 

1. The solutions derived here lean heavily on the cir- 
cumstance that the thickness A of the boundary layer at the 
wall is small in comparison with the plasma radius R. Does 
this condition acutally hold? According to the estimates in 
Section 1, we have A -63 '5~H/vi .  Using expression ( 16) 
and the dimensionless magnetic flux x which we introduced 
in Section 2, we easily find 

We thus see that the thickness of the boundary layer in- 
creases monotonically with decreasing magnetic flux in the 
plasma, but by the time a significiant fraction of the initial 
magnetic flux has been lost [i.e., x- ( 1 - x )  - 11 the quan- 
tity A is still small: 

2. We can show that the change in the magnetic flux in the 
boundary layer satisfies Aq, (q, = viHi. From Eq. (6) we 
find 

On the other hand, the flux is 

[see ( 17) 1, so that we have Aq,/q, - A/R( 1. The same 
relation can be proved for the energy flux in an analogous 
way: Aq,/q, -A/R(l. 

3. In the quasistatic approximation, in which plasma 
equilibrium condition (3)  holds, the plasma flow velocity is 
determined from the continuity equation (5).  Integrating 
this equation along the coordinate x, and noting that at the 
liner wall (x = 0) there is no plasma flow, we find 

AS follows from the results of Section 1, however, the 
amount of plasma in the boundary layer is determined by the 
region with the coordinate x-x, -5, (D,/vi ) [see ( 15)]. 
Consequently, the integral on the right side of (A2) becomes 
independent of the upper limit of the integration at x >xl.  
This circumstance means that at x s x ,  there is a constant 
plasma flow nv = nivi or, in terms of dimensionless vari- 
ables, u = l/p (and at x S x ,  the condition u S l/p holds). 
Consequently, the convective components of the magnetic 
field flux in (9)  and the energy flux in ( 10) play a role only in 
that part of the boundary layer in which the plasma density 
satisfies p - 1. 

"The ultimate result remains the same in the case 6 ~ , i - ~ ' ~ .  The only 
change is in the structure of the boundary layer. 

"The time dependence of the plasma radius, R (t) ,  should be determined 
from the equation of motion of the liner. The solution of this equation is a 
separate problem. 

"The numerical factor a in (20) was found by comparing the curves in 
Fig. 3 with the results of a numerical integration of the transport equa- 
tions in the plasma, taken from Ref. 3. The result is a ~ 0 . 4 .  
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