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Plasma turbulence excited by an ion beam, propagating across a magnetic field, is considered. 
It is shown that the induced scattering on plasma particles is the main nonlinear process 
characterizing oscillations with frequencies not too close to the lower hybrid frequency. The 
distribution of the oscillations in the k-space is found in the weak turbulence approximation. 
The induced scattering gives rise to the transfer of oscillations to the region w  - wLH <wLH,  
where the modulational instability and collapse of the plasma waves play an important role. 
Due to the smallness of the phase volume of the strong turbulence region, the energy flux into 
the plasma is determined by the weak turbulence region and can be found exactly. The energy 
dissipation is mainly due to the strong turbulence effects and the absorbed energy is transferred 
to the accelerated ions and electrons. It is shown that the distribution of the accelerated 
particles has a power-type dependence and, generally, most of the energy is transferred to the 
electrons. 

INTRODUCTION 

In many astrophysical problems it is necessary to con- 
sider the interaction of plasmas with ion beams propagating 
across a magnetic field. As an example, we can mention the 
problem of the structure of a transverse shock wave,' in 
which the beam is created by the ions reflected from the wave 
front, or the problems of anomalous plasma ionization2 and 
of the nonlinear stage of the loss-cone instability in open 
magnetic mirror systems. - 

The relative motion of ions excites intense plasma oscil- 
lations with frequencies in the vicinity of the lower hybrid 
frequency a,,. These oscillations, in turn, interact with 
both the beam and the plasma, giving rise to an efficient 
collisionless beam relaxation. 

The quasilinear theory of the relaxation has been devel- 
oped in Refs. 1 and 3. Nevertheless, the predicted oscillation 
level is usually so high that nonlinear effects are quite impor- 
tant. These effects have been considered in Ref. 4 in the 
framework of the weak turbulence theory. 

Scattering on particles is the main nonlinear process at 
frequencies which are not too close to the lower hybrid fre- 
quency. The turbulence spectra resulting in this process 
have been found in the present work. The scattering gives 
rise to the transfer of energy to the frequency region 
/ wLH - w 1 goLH (the strong turbulence region). Here the 
modulational instability of the lower hybrid wave develops, 
leading to a collapse and energy transfer to fast ions and 
electrons. These phenomena cannot be studied within the 
weak turbulence theory and require a dynamical descrip- 
tion. 

At low oscillation intensity W / n T g m / M ,  the instabil- 
ity and collapse of the lower hybrid waves reminds one qual- 
itatively of the strong turbulence of Langmuir oscilla- 
t ion~.~- '  At higher turbulence levels, the situation changes 
dramatically. Because of the development of the modula- 
tional instability, oscillations interacting strongly with the 
bulk of the particles are excited in this case. Therefore, the 

inertial range is absent and the turbulence is superstrong.' 
It will be shown in the present work that because of the 

narrowness of the strong turbulence region, the energy 
transfer from the beam to oscillations is usually determined 
by the weak turbulence effects. The absorption does not lead 
to the plasma heating as a whole, but rather to a formation of 
tails in the electron and ion velocity distribution functions 
with a power-law dependence, and the oscillation energy is 
transfered primarily to the accelerated electrons. 

1. THE LINEAR THEORY 

The oscillations, excited by the ion beam, belong to the 
frequency region wHi < w  < wH . We can also assume that the 
electron motion is one-dimensional and that the ions are un- 
magnetized. If, in addition, the condition o > k, v, ,kv, is 
satisfied, then the plasma can be described hydrodynamical- 
ly. The present work is limited to the study of oscillations 
associated with the dispersion relation 

where 0 is the angle between the wave vector and the direc- 
tion of the magnetic field. At frequencies in the vicinity of 
the lower hybrid frequency, w  - wLH < a L H ,  it is necessary 
to include the thermal effects in the dispersion relation: 

O k = O L ~  ( l+k2R2+y2)"1,  y= (Mlm)" cos 0, 

where r, and rH are the Debye and gyration radii, respec- 
tively. 

We will consider the frequently encountered situation 
in which the relaxation length greatly exceeds the ion gyra- 
tion radius. The ion velocity distribution function f, in this 
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case is isotropic in the plane perpendicular to the magnetic 
field. By assuming that the instability is kinetic, we obtain 
the following expression for the growth rate9: 

m k L 2  n J 1 afb -- dug.  (1.4) 2kZ n u , a v ,  

where n and n'  are the plasma and beam densities, respec- 
tively. 

Let Av<vb be the characteristic width of fb ,vb being the 
velocity of the beam: 

Then the maximum growth rate is achieved at 

and Eq. ( 1.4) yields the following estimate for the maximum 
value of the growth rate: 

The growth rate is a smooth function of the angle 8, 
since y,,,, - l/wk (see Fig. 1 ). The dependence of the 
growth rate on the absolute value of the wave vector is shown 
in Fig. 2. We notice that Syb (k)dk<O. The maximum 
growth rate is achieved at wk -w,, and ko-w,,/vb and 
we will assume that the latter quantity is much less than r; ' 
and r i ' .  With increasing y the graph of the maximum 
growth rate bends towards the region of large values of 

At kR - 1/3, a strong Landau damping is switched on and 
the instability disappears. Furthermore, with the increase of 
y, the value of the growth rate itself is decreasing and the 
threshold yb = vei /2 of the instability may be inaccessible at 
large values ofy. These effects allow us to restrict the discus- 
sion to the propagation of quasitransverse oscillations only. 

2. WEAK TURBULENCE 

The increase of the oscillation level is limited by nonlin- 
ear effects, the relative role of which is now well understood 

FIG. 1. The dependence of the maximum value y,,, of the growth rate of 
the beam instability on the parameter y = ( M  /m) ' I 2  cos 9. 

FIG. 2. The dependence of y, on the absolute value of the wave vector for 
a fixed value of y. The distribution function is chosen to have the form 
foa exp[ - (u, - u, )2/Av2],  where u, = IOU, and Au = 0 . 1 ~ ~ .  

(see, for example, Ref. 10). When the turbulence level is not 
too high, and the oscillation frequencies are not too close to 
the lower hybrid frequency, the turbulence can be described 
as a gas of quasiparticles (plasmons). The main nonlinear 
process in this approximation (the weak turbulence theory), 
in an isothermal plasma, is the induced scattering on the 
particles. At y > 1, the major role is played by the scattering 
on ions, wk -+cake + Ik - k 'lu, , whereas, at y < 1 the scat- 
tering on electrons, wk -mk. + 1 k, - k : JvTer  becomes the 
most important. A role can be also played by decay pro- 
cesses, which will be considered below. 

We will consider the region y >  1 first. Scattering on 
ions leads to a decrease of the oscillation frequency and their 
transfer to the vicinity of the lower hybrid frequency. 

The equation, describing the evolution of the plasma 
density has the form'' 

where r, includes the Landau damping and the collisional 
damping, as well as the growth rate of the beam instability: 

rk=vei+y~ ( k )  -'b ( k )  . (2.2) 

The matrix element of the induced scattering is considerably 
simplified when wk w, < wj. This condition is practically 
always satisfied in astrophysical applications.I4 

Due to the smoothness of the growth rate as a function 
of y, we can make further simplifications by going to the 
differential approximation. As a result y,,  become^'.'^: 

The equation for the stationary solutions (2.2), 

allows a high degree of freedom and must be completed by 
the stability condition 
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Typically in astrophysical applications the collisional damp- 
ing is negligible. The Landau damping is also small on al- 
most the whole jet. By taking this account, Eq. (2.9) yields 

YO 

I . 
wherey, is the initial point of the jet. In weakly collisional 

FIG. 3. The linear wave damping rate rk and the damping rate Y,, as plasmas the value yo i s  defined by the Landau damping, 
function of the wave vector at a fixed value ofy. Curves 1 and 2 correspond 
to the two stable, stationary solutions of Eq. (2.1 ). which becomes significant at k, v,/wk - 1/3, i.e., 

Geometrically, this means that the surface Tk lies higher 
than y,, and is tangent to it at the points where the solution 
exists. Figure 3 shows the dependence of Tk on the wave 
vector at a fixed value ofy. Since y,, is a parabola, there exist 
two stable stationary solutions, corresponding to the curves 
1 and 2 in Fig. 3. In both cases, the distribution of the oscilla- 
tions is singular and has the form of a jet in k-space. 

Let us begin by considering the first case. Here there 
exist two jets: 

The first stretches along the line of the maximum growth 
rate k = k,(y) and the second is located in the region of large 
k, where the Landau damping becomes important. Substi- 
tuting this solution into (2.4) yields 

At y < 1, the main nonlinear process is scattering on the elec- 
trons. The equation describing the evolution of plasmons in 
this case has the same form as Eq. (2.1), and y,, has been 
found, for example, in Ref. 7: 

It can be seen that y,, is a parabola as a function of k. There- 
fore, by repeating all the arguments used earlier, we find that 
the spectrum, in this case, also is built up of a single jet, 
located on the line of the maximum growth rate. 

The damping (2.12) of the jet spectrum 
nk = n(y)S(k - k,), coincides with Eq. (2.9) and, there- 
fore expression (2.10) is valid up to the limit of applicability 
of the differential approximation w,,y2 - k, v, , i.e., 

d d 
" f L  (ko) +vei-yb ( k o )  =ako2 -(nb+nl) +a -(ko2nb+ki2nl), 

~ - - k $ .  
dy d~ The energy density of oscillations in the interval 

(2.6) between y* and yo is 
d d Y O  

y L  ( k l )  + ~ . ~ = a k , ~ - - ~ n ~ + n , )  f a  -(k,2nb+kl%l). (2.7) 
d~ d$  ~ = ( + ) ' j  ~ ~ n ~ ( y ' ) d y '  

By subtracting (2.6) from (2.7), we obtain u 

Thus, the total number n, + n ,  of waves increases with 
y, and the natural boundary condition nk = 0 cannot be sat- 
isfied for y > yo, where y, (yo) = vei + y, . Therefore, the 
distribution of the oscillations has the form of a single jet. It 
can be seen in Fig. 3 that for a narrow beam, when Av(vb, 
the jet is located at the maximum of the growth rate 
k, E (w, /vb ) ( 1 + Av/v). For Av - v, the precise location of 
the jet in the region of positive growth rates is determined by 
conditions (2.4) and (2.5) (see, for example, Ref. lo).  Since 
the obtained results are weakly dependent on k,, we will 
assume, in the following, that ko=wk /v, . The establishment 
of such a distribution of jets is confirmed by our numerical 
solutions of Eq. (2.1 ). This result is related in an essential 
way to the axial symmetry of the growth rate. 

The distribution of oscillations along the jet is described 
by the equation 

Yo-Y 
= ln( l+y2)  - y arctg (-) 

l+yoy ' 

and the energy flux entering the plasma in this interval is 
"n 

f ( Y )  = (arctg yo - arctg y') 
dy' 

( I + Y ' ~ ) ' "  ' 
0 
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FIG. 4. The angular distribution of the oscillation energy density W(y) at 
yo = 20 in the weak-turbulence approximation. 

The plot of Wis shown in Fig. 4, and f(y,) is given in Fig. 5. 
Oscillation energy is accumulating in the transfer pro- 

cess at the vicinity of the lower hybrid frequency. Weak tur- 
bulence theory is inapplicable in this frequency region, and a 
dynamical description should be used. The applicability lim- 
it on the weak turbulence theory determines the lower inte- 
gration limits in Eqs. (2.1 3 )  and (2.10). This question will 
be discussed in detail later. 

We consider now the relative role of quasilinear effects. 
We will estimate first the turbulence level in the quasilinear 
regime. Initially the oscillations are absent, and at the end of 
the relaxation the beam energy is distributed between the 
oscillations and particles. Since the beam transfers a consid- 
erable part of its energy during the relaxation process, 
W,, = n'v, AuM. By using the expression given above for W, 
we find 

By using the expression (1.5) for the growth rate, we con- 
clude that the quasilinear turbulence level exceeds W if 

Thus, practically always, and at least in the final relaxation 
stage, the turbulence level is determined by nonlinear effects. 

Finally, we discuss the role of the decay processes of the 
type ok-wk, + a k l .  Their growth rate y,-w(W/ 
nT) ( k ~ ) ~  is sufficiently large, and they may compete with 
the induced scattering (see Ref. 1 1 ) . Nevertheless, for 
o < 2w,, , the decay processes are forbidden, because of the 
form of the spectrum. Since the energy density in a jet in- 
creases with decreasing y, all the oscillation energy is, in 
effect, concentrated in the vicinity ofw,, and, therefore, the 

FIG. 5. The functionf(y,,), describing at y*<l  the energy flux into the 
plasma [seeEq. (2.14)l. Aty,,2 10, it isseen that thequantity Qispracti- 
cally independent of y ,  and maxf(y,) = 1.6. 
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role of the decay processes is small and they can be neglect- 
ed. 

In summarizing the results of this section, we conclude 
that for y> 1, the spectrum is concentrated in the region 
k-w, /vb , and mainly in the region of small k and large 
phase velocities. Therefore, quasilinear effects do not affect 
the bulk of the ions and electrons and do not give rise to 
particle acceleration. 

The oscillations are transferred, preserving a consider- 
able fraction of their energy, to the region where strongly 
nonlinear effects are significant. The development of the mo- 
dulational instability creates contracting cavitons, filled 
with oscillations. In the final stage, the oscillations are 
damped, transferring their energy to ions and electrons and 
accelerating the particles. We proceed to the discussion of 
these effects in the following section. 

3. STRONG LOWER-HYBRID TURBULENCE 

Thus the oscillations excited by the ion beam are inevi- 
tably transferred to the frequency region in the vicinity of the 
lower-hybrid frequency. In order to describe the interaction 
of fluctuations in this region we have to use dynamical equa- 
tions which preserve all the information about the phases of 
the waves. As with Langmuir turbulence, the proximity of 
the frequencies to the lower-hybrid frequency allows us to 
introduce a simplified, averaged description (see Ref. 12). 

The equation for the high frequency potential $ aver- 
aged over the lower hybrid frequency has the form"z7 

(3.1) 

The left hand side of Eq. (3.1) describes the propaga- 
tion of oscillations characterized by the dispersion relation 
( 1.2), and the nonlinear term in the right hand side describes 
their scattering on density fluctuations an, occuring due to 
the drift of the particles in the magnetic field as a result of the 
low-frequency electric field. 

The high-frequency oscillations can be described hy- 
drodynamically, but the low-frequency motion requires a 
kinetic description. The low-frequency motions induced by 
the pondermotive forces can be described within the linear 
approximation, which yields an equation relating Sn and $': 

XJ  [klk2] i$k,$k2'6 (k-kl+kz) dB, dk,, (3.2) 

where in an isothermal plasma (T, = Ti ) 

In order to understand the characteristic time and spa- 
tial scales of the phenomena of interest, we consider the sta- 
bility problem of a monochromatic wave. We will restrict 
ourselves to the wave with k = 0,6n = 0 and energy density 
W,. The dispersion relation for perturbations 
a exp( - i n t  + ixr) at y 5 1, has the form7 
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Here O, is the angle between x and the electric field of the 
wave. The maximum growth rate is achieved at O, = ~ / 2 ,  
and we will consider only these values of O, in the following. 

We consider the static limit, w < (ku,,k, u, ), first. In 
this case G,, -- - 1 and Eq. (3.3) reduces to the form 

An aperiodic instability exists when 

The maximum growth rate is achieved at w, - w,, = r / 2  
and equals7 

The static condition, k, u, < ku, , is satisfied, at y( 1, 
up to kR - 1, where a strong Landau damping is switched on 
and W/nT can reach the value of 
W/nT- (m/M) ( (wj  + u$ )/w; ). Far from the diagonal 
y = kR, the static condition is rapidly violated and the insta- 
bility growth rate decreases. 

In the framework of the static approximation, G = - 1 
and in the r-representation 

Structurally, equations (3.1) and (3.6) are close to 
those describing the collapse of Langmuir waves. Therefore, 
the inevitability of the collapse of localized distributions of 
lower hybrid waves can be confirmed, by using arguments 
similar to those discussed for Langmuir turbulence (see, for 
example, Refs. 12-1 5 ) . The final evidence of the concept of 
the Langmuir collapse has been obtained in numerical simu- 
lations. The simulation of lower hybrid wave collapse re- 
quires solving a three-dimensional problem, because of the 
vector nature of the nonlinearity and the structure of the 
dispersion relation. 

Nevertheless, as have been shown above, the following 
relation between the longitudinal and transverse scales I , ,  
and I, of the collapsing caviton must be satisfied during the 
development of the modulational instability: 

This means that the second and the third terms in Eq. (3.1 ) 
have to be of the same order. This observation allows us to 
use the following two-dimensional model equation in order 
to qualitatively analyze the three-dimensional problem 

Numerical calculations, performed in Ref. 6, have demon- 
strated convincingly the collapse of an initially localized dis- 

tribution in a finite time interval. 
Eqs. (3.1 ) and (3.6) admit a self-similar solution of the 

form5 

In the case of the two-dimensional equation (3.8), the self- 
similar solution describes the collapse, preserving the num- 
ber of plasmons, trapped in the caviton (strong collapse). In 
the three-dimensional form of the self-similar solution 
(3.9), the number of plasmons in the caviton decreased dur- 
ing the collapse process. A similar situation exists in sub- 
sonic Langmuir collapse and in the self-focusing of a quasi- 
monochromatic wave (weak collapse). Solutions 
characterized by a loss of plasmons from the caviton during 
the three-dimensional collapse seem to be physically unjusti- 
fied. Indeed, the role of nonlinear terms increases with the 
increase in the dimensionality, and it is unlikely that the 
strong collapse in the two-dimensional case will be replaced 
by weak collapse in the three-dimensional situation. At pres- 
ent a number of numerical simulations have shown convinc- 
ingly that in the subsonic (or hydrodynamic) limit, the self- 
similar regime of the collapse does exist. In this case the 
collapse is strong. In the subsonic limit, corresponding to a 
low turbulence level and a large caviton size, the question of 
the establishment of a self-similar regime remains open. Fur- 
thermore, Ref. 16 has shown recently that the self-focusing 
of light, considered as a scalar model of Langmuir collapse, 
is not characterized by a self-similar solution (3.9) and the 
collapse is strong, i.e., the number of quanta is conserved in 
the collapse process. Naturally, we can assume the lower 
hybrid collapse to be strong, which will be assumed in the 
following. 

Since a collapse is a self-accelerating process, and ini- 
tially, the distance between the cavitons is of the order of 
their size, we can write the following estimate for the dissi- 
pated energy density: 

If the turbulence level is high enough and the static approxi- 
mation is invalid, naturally another limiting case should be 
considered, i.e., fl> k, v, . Generally, the static approxima- 
tion is inapplicable even at a low turbulence level, if the ratio 
between the longitudinal and transverse scales differs from 
the one given by (3.7), as, for example, for strictly transverse 
perturbations. 

Now the Green's function G,, is equal to 

As with isotropic plasma turbulence, this approximation can 
be referred to as "supersonic", or hydrodynamic, despite the 
fact that in the region y < 1, the proper eigenmodes are ab- 
sent because of the strong damping on electrons. It should be 
mentioned, that at o > kv, , the expression (3.1 1 ) is valid in 
both w / x ,  u, < 1 and the inverse cases. 

The dispersion relation now assumes the following 
form 
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It can be seen, in this case, that the maximum growth rate is 
achieved on the "diagonal" y = kR. By considering the dis- 
persion relation on this line only, we can rewrite Eq. (3.12) 
in the form 

In the hydrodynamic approximation r/wLH > 1, and there- 
fore the second term in Eq. (3.13) can be neglected. The 
growth rate is then given by 

and the maximum of the growth rate is achieved at kR - 1. 
Thus, we can see that the inertial interval is absent in this 
case and the oscillations are transferred immediately to the 
strong damping region. Such a situation is usually called a 
superstrong turbulence.' 

The dynamical equations describing the nonlinear in- 
stability stage can be obtained easily by using expression 
(3.11 ) for the Green's function. Then instead of Eq. (3.2) 
we have 

It should be mentioned that the growth rate of the oscilla- 
tions with kR - 1 is larger than wLH and this description is 
no longer applicable. The division into high- and low-fre- 
quency oscillations itself loses its meaning. The stability of a 
monochromatic, large-amplitude wave has been investigat- 
ed in Ref. 17 in the framework of the kinetic description, and 
it has been shown that the maximum growth rate is less than 
a,,. Therefore, it is natural to assume that at large kR the 
growth rate y,,, (k)  approaches w,, and the characteristic 
evolution time of the clump is 

The clump breaks up into fragments of size R and the plas- 
mons transfer their energy to the particles. The dynamics of 
this process has not yet been studied, but it can be assumed 
that a significant fraction of plasmons, trapped in the pro- 
cess of the development of the modulational instability, are 
absorbed in this case also. The energy flux into the plasma, 
similar to Eq. (3. lo),  is 

4. ENERGY RELATIONS AND PARTICLE HEATING 

If the turbulence level in the vicinity of w,, is suffi- 
ciently low, i.e., W/nT< m/M, the width of the strong tur- 

bulence region is determined by the relation 

The energy flux into the plasma consists of the absorption in 
the weak turbulence region (2.13 ), where y* is given by 
(4.1 ), and of the absorption in the strong turbulence region. 
Ify* calculated from Eq. (4.1 ) is less than unity, the integra- 
tion limit in Eq. (2.14) can be replaced by zero and the ener- 
gy, entering the plasma, is given by 

The quantity f(y,) depends weakly on yo, when the latter 
exceeds unity (see Fig. 5) and, therefore, as an estimate, we 
can use f (yo) - 1. 

The energy Q released in the plasma can be divided into 
two parts. Due to the conservation of the number of plas- 
mons in the process of the induced scattering, a significant 
fraction of the energy is transferred to the frequency region 
in the vicinity of a,,. Since the frequency of the plasmons 
changes significantly in this transformation process, a signif- 
icant fraction of the energy is transferred to the particle via 
the process of induced scattering, i.e., to the ions for y > 1 
and to the electrons for y < 1. 

By multiplying the time-independent equation (2.1 ) by 
w, and integrating it with respect toy, we obtain 

uo 

The first term in Eq. (4.3) describes the energy absorption 
due to the induced scattering, and the second 
a(m/M)"*w, k t n i  = P ( y )  represents the energy flux into 
angles smaller than y. Therefore the fractions of the energy 
6, and 6, absorbed by the ions and electrons, respectively, 
are given by 

&=1-P (1) IQ, (4.4 

Here, y* is the boundary of the weak turbulence region (see 
below). Numerical calculations have shown that for yo, 1 
we obtain 6, -0.15 while a,, for y*( 1, is usually much 
smaller. 

The energy absorbed due to the induced scattering is 
transferred to ions with energies close to thermal, and we can 
assume that the absorption results in plasma heating. Be- 
cause the volume of the strong turbulence region is small, we 
can neglect the energy change of the plasmons due to their 
interaction with the beam inside this region. An accurate 
criterion for the validity of this assumption will be obtained 
below. 

By comparing the energy flux into the plasma with the 
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absorption due to the collapse, we obtain the energy level of 
oscillations in the strong turbulence region: 

It can be seen that for low density beams, the static approxi- 
mation is valid, despite the narrowness of this region, espe- 
cially for a space plasma. 

As can be seen from (4.6), we find for the ratio 

This means that the energy distribution in the strong turbu- 
lence region is independent of the structure of the beam, is 
determined only by the modulational instability, and can be 
assumed to be quite uniform. 

As has been mentioned earlier, the growth rate aver- 
aged - over the absolute value of k is negative, i.e., 
yb = - y, (Av/vb  ). Therefore, the interaction of the plas- 
mons with the beam in the strong turbulence region results 
in reemission of the energy with the rate 

The ratio 

meaning that the interaction of the beam with the plasmons 
in the strong-turbulence region introduces, as have been as- 
sumed earlier, a negligible contribution to the energy ba- 
lance of the system. 

As can be seen from Eq. (4.6), the static approximation 
is violated for yb -aLH (u,/v, ). At larger values of the 
growth rate the energy absorption is given by the estimate 
(3.17). By equating it to Q, we obtain the level of the turbu- 
lence W = Q /aLH. Since the maximum growth rate of the 
modulational instability ( y,,, ) ,,, - w,, , the distribution 
of oscillations in the strong turbulence region can be as- 
sumed to be uniform up to 

For larger growth rates we cannot expect to have a uniform 
distribution in the turbulence region, and on the "ridge" of 
the growth rate the density of oscillations should increase. 
We have mentioned earlier that, even if the condition (4.9) 
is violated, the growth of the oscillations on the "ridge" of 
the growth rate reduces the amount of energy reemitted into 
the beam, and only then gives rise to absorption. As a result, 
when the condition (4.9) is violated, apparently, there also 
exists a significant region of the plasma parameter space 
where the absorbed energy is determined by expression 
(4.2). 

Thus, in the problem just considered, we can estimate 
the rate of the energy release in the plasma because it is deter- 
mined by the weak turbulence region. This in turn allows us 
to find the turbulence level in the vicinity of w,, . 

5. PARTICLE ACCELERATION 

A considerable fraction of the plasmon energy is trans- 
ferred to the particles, due to the development of the modu- 
lational instability, thus giving rise to the formation of tails 
in the ion and electron distribution functions. 

Because cavitons are located randomly and the phase of 
the field in the cavitons is random, the acceleration of the 
particles takes the form of diffusion in velocity space and is 
described by the conventional quasilinear equations. If the 
turbulent region is sufficiently large, and the velocities of the 
particles are small, we can neglect the particle loss and con- 
sider a one-dimensional problem. Particle acceleration obvi- 
ously takes place in the velocity space region where Landau 
damping becomes significant, changing the energy density 
of the oscillations considerably. Therefore, an iterative-type 
solution of the problem of determining the particle distribu- 
tion functions self-consistently seems to be unrealistic. 

Nevertheless, in studying strong Langmuir turbulence 
we can, by using quite reasonable  estimate^,'^.'^ obtain sta- 
tionary particle distribution functions. Similar arguments 
will be employed below in our case. 

The "tail-stretching" process evidently continues until 
y,,, is balanced by the Landau damping associated with the 
new distribution function: 

At lower values of v, the distribution function in this process 
has to become stationary, since the plasmons do not reach 
this region of phase velocities and the diffusion coefficient 
vanishes. Thus the time-independence is established due to 
the motion of the boundary towards the region of larger val- 
ues of v. At large values of u, however, Landau damping can 
be neglected and we can, therefore, use the results of Section 
3 in calculating y,,, . 

We consider the static case first. In order to find the 
change in 

in the caviton contraction process, we assume that the num- 
ber of plasmons is conserved: 

where I, and I , ,  are related via condition y = kR,  or 

We consider the acceleration of ions first. Only the 
transverse component of the velocity is increasing in this 
case and, therefore, 

By using Eqs. (5.3) and (5.4), and since initially 

we obtain 
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Equating (5.5) and (5.6), we have 

It can be seen that the distribution function is decreas- 
ing so rapidly that the accelerated ions do not contribute to 
the particle or energy balance in the plasma. The power-law 
tail (5.7) "stretches" until v becomes of the order of v,, or 
until the ion loss from the turbulent region becomes signifi- 
cant. In the latter case, at large velocities an exponentially 
decreasing particle distribution is formed. 

We consider now the electron acceleration. Here, 

By expressing y,,, via k, = I ,I ', we obtain 

which yields the following expression for the electron distri- 
bution function 

It can be seen that the number of particles in the tail is finite; 
however, the total energy in the tail 

Vmax 

diverges logarithmically at the upper limit, i.e., all the ener- 
gy is contained in fast particles. The thermal transport is 
determined by these particles. As in the ion case, Eq. (5.10) 
is valid only for velocities v < ( D a )  ' I 3  (where a and D are the 
size of the turbulence region and the quasilinear diffusion 
coefficients, respectively). If the opposite inequality holds, 
the particle distribution decreases exponentially. 

We consider next the hydrodynamical limit, i.e., the 
strong turbulence limit. Here the inertial interval is absent. 
Consider the acceleration of ions first. By using expression 
(3.14) for the growth rate of the modulational instability, 
we obtain 

Similarly, the electron distribution function is 

It can be seen that again the number of particles in the tail is 
finite. The integral defining the total energy of the particles 
diverges, however, at the upper limit. If we assume that the 
maximum ion and electron velocites are related as 
v ,,,, (v~,,,/v,) ( M / m )  ' I 2 ,  which follows from (5.4), then 
the ratio between the energies of the ion and electron tails is 

526 Sov. Phys. JETP 63 (3), March 1986 

~ i / & e = ~ / z  ( v ~ i / v i  

i.e., in this case also, most of the energy goes to the electrons. 

6. DISCUSSION 

We have seen that ion flow across a magnetic field is 
accompanied by a large number of nonlinear phenomena. 
The ion flow excites intense lower-hybrid oscillations, prop- 
agating almost perpendicularly to the magnetic field. The 
phase velocities of these oscillations are large and, practical- 
ly speaking, they do not interact with the bulk of the elec- 
trons and ions. Therefore the induced wave scattering be- 
comes the main nonlinear process. The induced scattering 
transfers the oscillations to the frequency region in the vicin- 
ity of the lower hybrid frequency. About 15% of the energy, 
in this process, is spent on the heating of the ion component 
of the plasma. 

The modulational instability, which develops in the 
lower-hybrid frequency region, leads to a decrease of the 
phase velocities of the oscillations and of their interaction 
efficiency with ions and electrons. In this process most of the 
absorbed energy goes into accelerating the ions. The accel- 
eration of the particles results in a formation of power-law 
tails in the particle distribution functions, and the maximum 
energy of the accelerated electrons exceeds the ion energy in 
the beam. The turbulence level drops when the tails in the 
distribution functions reach the velocity of light and then the 
quasilinear effects become important. 

The results of the present work, applied to the anoma- 
lous ionization problem, mean that energy is transferred effi- 
ciently to the electrons and that the critical velocity is close 
to the Alfven limit3 

The excitation of electrostatic oscillations with k,c/ 
w, - (wLH/wp ) X (c/v, ) > 1 has been considered in the 
present work. This condition is apparently well satisfied in 
the anomalous ionization problem.2920 In a near-terrestrial 
shock wave, where the ion stream velocities are considerably 
larger than those of the oscillations excited in the vicinity of 
wLH, the electromagnetic corrections to the dispersion rela- 
tion are important. The corrections change the estimate of 
the energy flux Q into the plasma, but the overall picture of 
strong turblence discussed here remains unchanged. 

Experimental data on shock waves2-' are in good agree- 
ment with the predictions of the present work. We have con- 
firmed the excitation of the lower hybrid waves, electron 
acceleration to high energies, etc. It is still difficult, however, 
to test the details of the picture of the phenomena just devel- 
oped. One should mention also the existence of purely phys- 
ical problems, preventing full understanding. These prob- 
lems are related primarily to a class of cases associated with 
lower hybrid collapse in the strong turbulence regime, which 
requires the use of detailed numerical simulations. 

The authors are grateful to A. A. Galeev and V. D. 
Shapiro for discussing the results of the present work. 
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