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A hydrogen-like atom in a high-frequency electromagnetic field is investigated analytically. 
The effective operator V for the interaction between the atom and the hf field is found. It is 
shown that, for circularly and linearly polarized hf fields, the operator V is diagonal in the 
basis of spherical wave functions corresponding to a fixed principal quantum number n .  The 
diagonal form of the operator V is used to determine the complete set of quasienergy states of 
the hydrogen-like atom in the hf field for the two types of wave polarization (circular and 
linear). This means that the results obtained by Ritus2 for the hydrogen-like atom in an hf field 
are valid for arbitrary n and not only for n ( 2 .  All the quasienergy states of the hydrogen-like 
atom corresponding to n ( 3  have been found for elliptically polarized hf fields, and twelve such 
states (out of the total number equal to n 2 )  have been found for any n > 4 .  

$1. INTRODUCTION 

When the effect of a monochromatic electric field of 
frequency w on a hydrogen-like atom in a state with princi- 
pal quantum number n is investigated, two cases may be 
considered, namely, (a)  the low-frequency case w( lo,,. I, 
where Iw,,. 1 is the separation (on the frequency scale) 
between the level n  and nearest levels n' and (b)  the high- 
frequency case w>/w,,. I. It is well known'.' that the solu- 
tions of the Schroedinger equation for the atom in a periodic 
(in time) field can be conveniently taken to be the wave 
functions of the quasienergy states. In the low-frequency 
case (a) ,  the wave functions of the quasienergy states of a 
hydrogen-like atom are well-known for different polariza- 
tions of the monochromatic field. They have been examined 
for linear polarization in Ref. 3, for circular polarization in 
Refs. 4 and 5, and for elliptic polarization in Ref. 6. The 
high-frequency case (b) has been investigated to a much 
lesser extent. 

The foundations of the theoretical study of the interac- 
tion between an hf electromagnetic field (w, Iw,,. 1 ) and a 
hydrogen-like atom were laid in Ref. 2, where the wave func- 
tions of quasienergy states of atomic levels with n  ( 2  were 
found for linearly and circularly polarized hf fields. The per- 
turbation operator Uis diagonal in spherical wave functions, 
as noted in Ref. 2.  However, the high-frequency condition 
w>/w,,. I for n  = 1, 2 ,  is difficult to satisfy using modern 
lasers. The determination of the wave functions of quasien- 
ergy states of hydrogen-like atoms for n  > 2  in an hf field is 
therefore optical not only from the theoretical but also prac- 
tical points of view. The present paper is largely devoted to 
this. As far as we know, since the publication of Ref. 2 ,  the 
analytic determination of the wave functions for n > 2  has 
been considered in the literature only for linear polarization. 
The view has been that, for n  > 2  in the hf case 
w % la,,,, I, and for a given state n ,  the operator U mixes states 
with orbital quantum numbers I and I f 2, so that the deter- 
mination of quasienergy states with n  > 2  becomes much 

more complicated. It will be shown below that this mixing is 
unimportant at high frequencies w. 

One of the main results reported below is very simple: 
for both linearly and circularly polarized hf fields, the opera- 
tor U is diagonal, for any given n,  in the basis of wave func- 
tions p,, written in terms of spherical coordinates. Hence, 
for any n ,  the quasienergies measured from the unperturbed 
level n are 

where the wave functions of quasienergy states have the 
form @,,, = exp( - iv,,, t)p,, . The results obtained in 
Ref. 2  for the hydrogen-like atom in an hf field are thus seen 
to be valid for arbitrary n ,  and not only for n ( 2 .  

Another important result reported in this paper is the 
wave function of quasienergy states of a hydrogen atom in an 
elliptically polarized hf field. Moreover, we investigate the 
spontaneous-emission spectrum of a hydrogen-like atom, 
emitted as a result of n-n' transitions in the presence of the 
hf field. 

In Section 2, we determine the effective operator for the 
interaction between the hydrogen-like atom and the hf elec- 
tromagnetic field. We then use this operator in section 3 to 
find the quasienergy states of the hydrogen-like atom for 
different polarizations of the monochromatic hf field (circu- 
lar, linear, and elliptic). The range of validity of the solution 
is examined in Section 4, and a comparison is given between 
the analytic results obtained here and known numerical cal- 
culations of dynamic polarizabilities of the hydrogen atom.9 
The results are discussed in Section 5, and some of their 
generalizations are analyzed. 

$2. EFFECTIVE OPERATOR FOR THE INTERACTION 
BETWEEN A HYDROGEN-LIKE ATOM AND AN hf 
ELECTROMAGNETIC FIELD 

The Schrodinger equation for the hydrogen-like atom 
in a quasimonochromatic electromagnetic field (or a super- 
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position of such fields) with vector potential - 
J r-'R,,r (r) R.~, (r)r2 dr=O, s=2,3,. . . , 1-Z1+i. (8) 

A(t) =(A,(t), A,(t), Az(t)) ( 1 )  0 

is (we shall be using the atomic system of units, in which 
f i = m = e = l )  

( 2 )  
where Z is the nuclear charge. 

We shall seek the solution of ( 2 )  in the form 

where it is assumed that the vector 

satisfies the equation d  B ( t ) / d t  = A ( t )  and has a zero mean 
in time. Substituting ( 3 )  in ( 2 ) ,  we obtain 

idcD/dt=HlcD, 
H,=exp[ia(t) ]Ho exp[-ia(t) ]=Ho+i[a, Ho] 

+ (i2/2) [a,  [a ,  No]]+ . . . =Rl+W,, ( 4 )  

where 8, is the component of the Hamiltonian H, averaged 
over the hf oscillations of the field A ( t ) .  In the hf case that 
we are examining, w )  Iw,,. I and the main contribution to the 
solution (4)  is due to H,. To within terms quadratic in the 
field, the operator 8, can be written in the form I' 

A bar over a mathematical expression in ( 5 )  signifies aver- 
aging over the high-frequency oscillations of the field A ( t ) .  
The term A2/2c2 is the average oscillatory energy of a free 
electron in the wave. 

$3. QUASIENERGY STATES OF A HYDROGEN-LIKE ATOM 
IN A MONOCHROMATIC hf ELECTROMAGNETIC FIELD 

The interaction between a hydrogen-like atom and a 
monochromatic hf electromagnetic field will be examined 
below using ( 4 )  and ( 5 )  for different polarizations of this 
field. 

I .  Elliptically polarizedjield. Suppose that 
A(t)=Ao(1+b2)-" (cos ot, f sin at ,  0), Ao=-cEolo, 

( 6 )  

where < is the degree of elliptic polarization. Substituting 
( 6 )  in ( 5 ) ,  and using spherical coordinates, we find that, as 
&--to, 

+ 3(1-F) sin2 0 cos 2cp] . 
1+b2 ( 7 )  

It is shown in Ref. 11 that 

where R,, ( r )  are the radial wave functions of the hydrogen- 
like atom. In view of this, the matrix elements of the operator 
V ( f  2 ,  given by ( 7 )  satisfy the equation 

Let us begin by considering circular polarization 
( f  = 1 ). The term containing cos 2p in ( 7 )  is then absent, 
so that, because of ( 9 ) ,  the spherical wave functions pnl, are 
the correct eigenfunctions of the zero-order Hamiltonian H, 
in ( 5 )  [with the perturbing operator V( 1 ) given by ( 7 )  1. 
The following energy eigenvalues correspond to these eigen- 
functions: 

These energy eigenvalues are the same as those obtained in 
Ref. 2, and are valid for arbitrary n and not only for n(2. 

Let us now examine the case of arbitrary degree of ellip- 
tic polarization g. When f  # 1 ,  the term containing cos 2p 
in ( 7 )  will mix the states p,,, , p,,,. ( 1 )  1 ,  m' = m  - 2 ) .  
This mixing will not, however, occur for the states 
p,,, p n l o  Hence, the energy values for these states, F,, 
and Fnlo , do not depend on 5 and are given by ( 10) .  To find 
the energies corresponding to the other states p,,, , we must 
solve the secular equation. For the states 
pnr p,,, - , ( I  = 1 ,  2 )  the secular equation is a quadratic 
whose solution gives the two energy values F,, (s = 1 , 2 ) :  

The corresponding eigenfunctions are 

For the states p ,,,, p,,,, p, ,  -, ( I  = 2, 3 ) ,  the secular 
equation is a cubic. The solution of this equation gives the 
following eigenenergies li,, (p = 1,2,3 ): 

where 
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The corresponding wave functions are 

~pn1=2-" ( ~ p n i z - q n t ,  -2) (15) 

cp,,=a ( p )  cp,ro+b ( P )  cpn,z+c ( P )  -2 ( ~ ~ 2 ,  3) 9 

where 

Equations ( 11 I-( 16) define completely the quasienergy 
states of the hydrogen-like atom in elliptically polarized hf 
fields (and, consequently, in the linearly polarized hf field 
6 = 0, as well) for levels n = 1,2,3. We now proceed to the 
determination of the quasienergy states of a hydrogen-like 
atom in a linearly polarized hf field for any n. 
2. LinearIypolarizedfield. Let 

Substituting this in (5), we find that 

By virtue of (8),  the wave functions p,,, in a linearly polar- 
ized field are the correct eigenfunctions (as in the case of 
circular polarization) of the zero-order Hamiltonian B1 in 
( 5 )  [with perturbing operator V given by ( 18) 1. The corre- 
sponding energy eigenvalues are 

These energies [like those in ( 10) 1 are equal to the energies 
obtained in Ref. 2, and are valid for any n and not merely 
n(2. 

The spontaneous-emission spectrum of a hydrogen-like 
atom in an hf monochromatic electromagnetic field, due to 
n+n' transitions, can be written in the form (if the states 
corresponding to the level n have the equilibrium popula- 
tions at the initial time): 

where e is a unit vector representing the polarization of the 
photons. The level energies in the hf field are determined by 
( lo), ( 11 ), ( 13), and ( 19), depending on the polarization of 
A(t),  and the wave functions pi, cpf correspond to the ener- 
gies Fi , Ff . 

Thus, by recording the spontaneous-emission spectrum 
for different positions of the transmitting planes of a polar- 
oid, we can determine from ( 10) the polarization of the vec- 
tor A(t),  the ellipticity 5, and (for known frequency a ) ,  the 
amplitude of the electric field E,. 

$4. RANGE OF VALIDITY. COMPARISON WITH NUMERICAL 
CALCULATIONS 

The formulas obtained above fo; the sublevel shifts due 
to the third term in the Hamiltonian HI in (4)  are valid to 
within the quadratic correction in the field, ha,,, , which, in 
second-order perturbation theory, is due to the oscillating 
term i[a,  H,] in HI. Let us estimate this correction, assum- 
ing, to be specific, a linearly polarized hf field. In the isolat- 
ed-level approximation, it is then readily shown (see, for 
example, Ref. 12) '' 

We shall assume a high-frequency field, i.e., 

which means that the frequency w must exceed the distance 
from the levels with n' > n and those with n' <n,  which are 
coupled to the level n by the dipole matrix element z,,..~' 
When (22) is satisfied, Eq. (2 1 ) becomes 

1 E," A & n l m =  --- ( ~ ~ ) ~ n , , r 3 1 Z n n * 1 2 .  
2 ,,l 

(23) 

At the same time, the above shift of the sublevel (nlm ) due to 
the third term in the Hamiltonian HI can be written in the 
form4' 

Comparison of (23) with (24) shows that, when (22) is 
satisfied, we also have 1 Aa,,, 14 1 AF,,, ( provided only that 
the quantity AFnIm is not anomalously low as a result of 
"random" mutual cancellation of large terms with opposite 
signs in (24). If, nevertheless, this cancellation does occur 
for some particular sublevel (n lm) ,  the shift of this sublevel 
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TABLE I. Dynamic polarizabilities of hydrogen levels for linearly polarized radiation from the 
ruby laser ( w  = 14 400 cm-I): I-present results; 11-numerical calculations from Ref. 9. 

nlm n!m ( Rei3,a.e.  ( n r 8 . a . e .  I ImR.a.e . l /  I Ref3.a.e. (Rei3 .a .e .  I1mp.a.e.  

will no longer be described by the analytic formula given 
above but, by virtue of (22), it will be numerically small (in 
comparison with the shift of the other sublevels). Compari- 
son with the numerical calculations reported in Ref. 9 (see 
below) will also show that, when the high-frequency condi- 
tion (22) is satisfied, the third term in the Hamiltonian H, 
plays the leading part in the shift of the sublevel (nlm). 

The results obtained here determine the real part of the 
dynamic polarizability 0 of the levels of a hydrogen-like 
atom in an hf electric field. At the same time, according to 
condition (22), there is a finite probability of single-photon 
ionization of the atom and, consequently, the imaginary part 
of8 is nonzero. If the states corresponding to the level n have 
equilibrium initial populations, the level separations must 
exceed the ionization widths if the individual sublevels 
(nlm ) are to be distinguishable in the hf electric field. As an 
example, let us compare the shift of the (nOO) level in the hf 
electric field relative to other sublevels (nlm ) with its ioniza- 
tion width (the order of magnitude of the shift is 
AF,, = Z4E G/3n3w4). Since the high-frequency condition 
(22) for the (nOO) sublevel is 

the photoionization cross section can be described by the 
Born approximation. Using formula (70.6) from Ref. 13, we 

find that the photoionization probability of the sublevel 
(nOO) is 

It is readily seen that AF,, k W,, when (25) is satisfied. 
Hence, it follows (recalling that W,,, 4 W,, ) that the sub- 
level (nOO) will be appreciably shifted relative to sublevels 
withp) 1. If, on the other hand, the positions of the individ- 
ual sublevels with equilibrium populations is difficult to de- 
termine experimentally, because of photoionization broad- 
ening, we still have the possibility that they will be detected 
by selective population. 

The numerical polarizabilities f l  of the hydrogen atom 
were calculated in Ref. 9 for 1 (n (6 in linearly and circular- 
ly polarized electromagnetic fields for: ( 1 ) a neodymium 
laser with o = w, = 9440 cm-' and (2)  a ruby laser with 
w = w, = 14 400 cm-'. For w = w, and w = w, , the con- 
dition given by (22) is reasonably well satisfied for n = 5 in 
the case of 1 = 4 states; when n = 6 it is well satisfied for 
1 = 4 and l = 5 states. For these states, the real parts of the 
dynamic polarizabilities, Rep,  calculated from (10) and 
( 19), are close to the corresponding numerical values in Ref. 
9. This is clear, for example, from Tables I and I1 which list 
the calculated Re 0 ,  based on ( 10) and ( 19), together with 
numerical calculations of p from Ref. 9 (ruby laser). It is 

TABLE 11. Dynamic polarizabilities of hydrogen levels for circularly polarized radiation from 
the ruby laser (o = 14 400 cm-I: I-present results; 11-numerical calculations from Ref. 9. 
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also clear form Tables I and I1 that the characteristic separa- 
tion between sublevels with n = 6, 1 = 5 for w = 14 400 
cm-' is usually greater than the corresponding ionization 
width. 

Numerical calculations of Re P for sublevels with high 
n, 1 (Ref. 9) are thus in agreement with the average values of 
the operator V in (5)  (wave functions p,,, ), which are 
readily calculated analytically. 

We have found the complete set of quasienergy states 
corresponding to an arbitrary level n of a hydrogen-like 
atom in an hf electromagnetic field and two types of polar- 
ization, namely, circular and linear. In the elliptically polar- 
ized hf field, the analogous problem was solved above for 
levels with n(3. Moreover, we found twelve quasienergy 
states (out ofthe total number equal to n2) for any level with 
n>4 in elliptically polarized hf fields. 

The effective interaction operator V in (5)  can be used 
to analyze other more general cases of the interaction 
between an hf electromagnetic field and a hydrogenlike 
atom. For example, suppose that a linearly polarized field 
with vector potential A ( t )  can be written as a superposition 
of hf oscillations with different frequencies wj : 

where it is assumed that oscillations at the difference fre- 
quencies Iw, - wi. I that appear in B '(t) are also high-fre- 
quency oscillations in relation to the hydrogen-like atom. In 
that case, the results given by ( 19) remain valid provided we 
introduce the replacement 

Let us now consider the situation where a linearly po- 
larized hf field is amplitude-modulated with characteristic 
frequency R<lw,,. 140. For example, suppose that 

B ( t )  = (0, 0, Bo cos Qt cos ot) . (26) 

substituting (26) in (5), we then obtain 

This expressions shows that a hydrogen-like atom in a parti- 
cular state p,,, will function in the hf electromagnetic field 
as a kind of quadratic detector which removes the hf compo- 
nent and responds to the low-frequency intensity. Because 
R<(w,,< 1, the energy levels of the hydrogen-like atom will 
follow adiabatically the variation in the perturbation V(t) in 
(27), and this, in turn, will give rise to a phase modulation of 
the corresponding wave functions: 

iB:vjj -- 
2c2Q 

sin 2 ~ t ]  cp, 

and, consequently, to an additional splitting of each compo- 
nent of the spontaneous-emission spectrum during an n-n' 
transition. The form of this splitting can be used to deduce 
the nature of the amplitude modulation of the hf field. 

We note in conclusion that our results, obtained in the 
dipole approximation, are valid for the interaction between a 
hydrogen-like atom and not only the hf field of an electro- 
magnetic wave, but also the hf electric field of other oscilla- 
tions, e.g., Langmuir plasma oscillations. 

The author is greatly indebted to E. A. Oks for useful 
discussions. 

"The inclusion of an infinitesimal quantity E in the operator V corre- 
sponds to a nuclear potential of the form - Z r -  " +", ~4.  This repre- 
sentation enables us to remove the indeterminacy that would arise when 
some of the matrix elements of the operator V are evaluated for E = 0. 
This device is used in the present paper at the suggestion of E. A. Oks, 
and has already been used in the brief report in Ref. 10 to calculate the 
quasienergies of the hydrogen atom in a linearly polarized field. 

"In deriving (21), we have used the result [p,, Ho],,,,f = - iw~,.z,, .  
3'Equation (22) takes account of the fact that the matrix element z,; 

couples states for which 11 - 1 ' 1 = 1. 
4'We have used the well-known sum rule in (24) (see, for example, Ref. 

13). 
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