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The correct asymptotic behavior in the limit of a strong electric field E is derived for the mass 
shift Am obtained in Ref. 1 for an electron in a constant uniform electromagnetic field. The 
real part of the shift decreases monotonically with increasing electric field, and its dependence 
on e&)m2 turns out to be analogous to the dependence (with the sign reversed) of the radiative 
mass 6m of an electron in a vacuum on the square of the cutoff momentum, A2, i.e., 
Re Am ( ~ E ) N  - Sm(A2), provided e&- h2)m2. The eigenvalue of the mass operator and the 
mass shift of a boson in a constant uniform electromagnetic field are determined. The real part 
of the boson mass shift is also found to decrease monotonically with increasing E, and depends 
on the radiative mass of the boson as indicated above for ec>m2. This means that, when they 
are uniformly accelerated, charged fermions and bosons cease to interact with virtual quanta of 
their own field, the square of the momentum of which is less than e&. The fermion and boson 
mass shifts in a strong magnetic field increase with increasing field, and are unrelated to the 
radiative mass. The properties of the mass shift revealed by the analysis given in this paper are 
a further confirmation of the connection between strong-field quantum electrodynamics and 
quantum electrodynamics at short distances. 

1. INTRODUCTION 

The eigenvalue of the mass operator and the mass shift 
of an electron in a constant uniform electromagnetic field 
were derived in Ref. 1. In the special case of a pure electric 
field E and zero transverse electron momentum ( p, = 0), 
the mass shift Am is given by Eq. (78) in Ref. 1, i.e., 

~ ~ = ~ ~ j j = [ s i n h y ( l e o t h x  2n , x(l+u) sinhx cothy - sinh x 

where p =  l e ~  I m-2 and h = p2/le& I are dimensionless pa- 
rameters, p is the photon mass introduced to remove the 
infrared divergence, and h is the smallest parameter which, 
whenever possible, is assumed equal to zero. 

In a weak field 84 1 and the shift ( 1) has the following 
asymptotic behavior': 

where y = 1.781 ... and the dots represent high-order terms 
in the parameterp. Thus, the leading terms in the expression 
for the mass in a weak field are classical and independent of fi  
since in classical theory, the mass of the photon must be 
replaced with the minimum wave number k,,, = pc/fi. The 
classical part of the shift and its manifestations in quantum- 
mechanical processes have been examined in detail in Refs. 
1-4. 

The asymptotic properties of the shift (1  ) in a strong 
field P) 1, obtained in Ref. 1, and in a corrected form in Ref. 
4, are both erroneous. The difficulty of extracting from ( 1 ) 
its correct asymptotic behavior for P) 1 is due to the pres- 
ence of the two large parameters p and h - ' in ( 1 ). This 
difficulty is overcome in the present paper by transforming 
( 1) to a form in which the infrared part, which depends on 
takingAj0, is explicitly isolated in a simple term, so that the 
remaining complicated part depends only on the single pa- 
rameter 8. The correct asymptotic behavior of the shift for 
P> 1 is thus obtained in the form 

and exhibits some remarkable properties. First, Re Am is a 
negative, monotonically decreasing function of p .  Second, 
the dependence of Re Am on the strong electric field (or, 
more precisely, on e ~ )  is similar to the functional depen- 
dence (with the sign reversed) of the radiative mass 6m of an 
electron in a vacuum on the square of the cutoff momentum 
(see Refs. 5-8) : 

This means that, as the electron is accelerated in a strong 
electric field&)m2/e, it is deprived of the part of its radiative 
mass that is due to the interaction with the virtual quanta 
with Ik21 5 e ~ .  

We shall show that this analogy between the depen- 
dence of the mass shift on the strong electric field and the 
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dependence of the radiative mass on the square of the cutoff 
momentum is also encountered in scalar electrodynamics. 

The structure of this paper is as follows. The electron 
mass shift ( 1 ) is transformed in Section 2 into a simpler and 
more convenient form in which the entire infrared part, i.e., 
the part that depends on A 4 ,  is concentrated in a separate 
simple term. The essential aspects of the derivation of 
asymptotic expressions for weak and strong fields are dis- 
cussed next. The mass operator for a scalar charged particle 
in a constant uniform electromagnetic field is discussed in 
Section 2, and is diagonalized with the aid of its eigenfunc- 
tions. The resulting mass shift of a charged boson is simpli- 
fied in Section 4 in the special case of an electric field and 
boson states with zero transverse momentum. Asymptotic 
expansions are obtained for the shift in strong and weak 
fields. As in the case of the electron, the boson mass shift in 
an electric field is negative and decreases monotonically 
with increasing p = ecm -2. For 04 1, it is equal to the fer- 
mion mass shift, and fora) 1, it is found to be very different, 
but its dependence on the field is similar to the dependence of 
the boson radiative mass on the square of the cutoff momen- 
tum. Finally, Section 5 discusses the fermion and boson mass 
shift in a magnetic field, and the results are compared with 
the mass shift in an electric field. The section concludes with 
a discussion of the fundamental aspects of strong-field quan- 
tum electrodynamics that are due to the behavior of the par- 
ticle mass shift. 

2. TRANSFORMATION OF THE EXPRESSION FOR THE 
ELECTRON MASS SHIFT IN AN ELECTRIC FIELD AND THE 
RELATION TO THE RADIATIVE MASS 

It is noted in Ref. 1 that the coefficient functions in the 
first term of (1) can be written explicitly in terms of the 
integration variables: 

*(zcoth x coth y - 
sinh x sinh x 

- - 1 + 2sinh2 x + 2ux-' sinh x coth x 
1 + 2ux-' sinh x coth x + u2x-' sinh2 x 

. ( 5 )  

Careful examination of the integrand in ( 1 ) in terms of the 
variables x, u shows that only the term 2 sinh 'x in the first 
term in (1) exhibits the infrared singularity. Isolating this 
term, and transforming from the variables x, u to x, 
z = x  -yinwhich 

u = x sinh z/sinh x sinh(x - z)  , ( 6 )  

we obtain the following transformed expression: 
Am=m (a/2n) (I,+I,), 

I,=2 d z  I d x  exp [ - iA sinh2 x (coth z - coth X )  1, 
n > 

ca 

Iz = j d z  e - ' z p  j d x  [.G ( coth z + coth x 

0 I X 

Since, as A-0, large values ofx become effective in the inte- 
gral I,, it can be shown that, to within terms that vanish for 
A+O, 

where $(x) is the logarithmic derivative of the r function. 
The representation given by (7)  has the form of the 

Laplace transformation in P, and is more convenient than 
( 1 ) if we wish to determine the asymptotic behavior for& 1 
and 0) 1. To do this, we need only know the asymptotic 
behavior of the function @(z) in the integral 

rn 

u coth z + coth x @ (z) = Jax -( - 2) . 
l+u X 

For fl( 1, small z-P are important, for which 

The expansion given by (2)  is obtained after integration. 
When /?) 1, the behavior of @(z) for large z is impor- 

tant. It can be shown that 

@ (z) =-ln [ 2 ~ ( 1 - e - ~ ' )  I + @ ,  (z), 

where @, (z) decreases exponentially for z) 1. Using this re- 
lation for cP(z), and Eq. (8 )  for I,, we obtain one further 
representation for the electron mass shift: 

This is convenient in determining the asymptotic behavior 
for 8% 1 because the integral K (  P )  can then be expanded 
into a series in powers of ( - UP). The leading terms of the 
resulting asymptotic expression for Am are given in (3), 
where 

and B(x) is the Heaviside step function. 
Continuing the discussion of the mass shift (3) ,  we note 

that the linear fall in the shift for small P in the rangeB 2 1, 
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which is due to the classical term - )map, is replaced by the 
much slower logarithmic decrease due to quantum-mechan- 
ical effects. For exponentially strong fields, it therefore fol- 
lows that Re Am approaches - m, and the mass of the elec- 
tron vanishes. This is not a dramatic effect because the 
particle is unstable (i.e., it has a large imaginary mass Am), 
not to mention the fact that all the radiative corrections in- 
volving a must be taken into account in this range. 

3. BOSON MASS OPERATOR IN THE ELECTROMAGNETIC 
FIELD AND ITS DlAGONALlZATlON 

Let us now consider the elastic scattering amplitude for 
a spin-zero charged particles in an external electromagnetic 
field A, . In the second order in the radiation field, the Rohr- 
lich rules,9 generalized to the case of an external field, ensure 
that the amplitude consists of three terms, namely, 

Tiji = ie2 , f  d4x d4x1 D o ( ~ - ~ ' ) $ f o ( x )  Go(., x ' )  

which correspond to diagrams a, 6, and c in Fig. 1. In this 
expresison, Go(x, x') is the propagation function of a scalar 
particle in the external field and Do(x - x') is the photon 
propagation function. Neither includes the radiative correc- 
tions. The operators ll, = - id, - eA, and 
II,* = i% - eA, act, respectively, on the nearest functions 
to the right and left. We shall also use the matrix notation 
(see Ref. 1 ) 

Go ( x ,  XI) =(XI Go! x') , ITllGo (I, x') = ($1 II,GoI XI ) ,  
(15) 

Gn ( x ,  XI) TI:'= ( X  1 Gonu 12'). 

In our case of a constant uniform field, T, = 0 because the 
mean current 

( j p ( t )  >=e(xl  IIpG+Gnrlx) ,  

induced by this field in a vacuum is zero. 
For the amplitude T = T, + T,, we obtain an expres- 

sion in the form of the matrix element 

of the mass operator in the coordinate representation and, if 
we integrate this by parts, we can put it in the form of a 
nonoperator function: 

111 (2, x'j =ie2[4Do (x-x') (xi II,,GoIIp(xl) 

-i6 (x-x') Go ( x ,  x') +4i6 (x-2') Do (x-x') 1. 

(17) 
For the constant uniform electromagnetic field Fop, it is 
convenient to use the proper-time representation of the 
Green's funct i~n '~. '  ' 

in whichfl and L are matrix and scalar functions of the field 
tensor Fd and the proper time s: 

= (eF cth eFs) 
I sh el's 

L=-trln(-), 2 eFs 

and q, is the phase of the Green's function that has not been 
diagonalized in x ,  xi and is given by the following integral 
along the line joining the points x, x': 

It is shown in Ref. 12 that 

+'/,e2zFFzGo ( x ,  x') , (2  1 ) 

and the matrix elements ( x  1 II, Go 1x0 and (x I Gonu Ix') dif- 
fer from Go(x, x') by the additional factors i( 8 + eF),pzB 
and A( fl - eF)apzp under the integral in ( 18 ), respectively. 
Finally, 

m 
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These formulas define completely the function M(x, x'). 
For the diagonalization of the mass operator, it is natu- 

ral to use its eigenfunctions E,, (x) ,  obtained from the y- 
matrix eigenfunctions of the mass operator in spinor electro- 
dynamics' by replacing the spin numbers u with zero and the 
y-matrix w, with unity, so that, instead of (7 )  and (8)  of 
Ref. 1, we now have 

FIG. 1. 
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einv'. r (-A) exp [ i  (p2x2+ p3xS) I 
Ewp(x)= 

(2nl e lq l )"(n!)"'  
D.(p) Dk(oz ) ,  (23) 

but the arugments of the parabolic cylinder functions are the 
same as before: 

We recall that these functions correspond to the potential 
A, = (0, qx,, -&xo, 0 )  in the coordinate frame in which 
the vectors H and E lie along axis 3, and are denoted here by 
q and &.The functions (23) are the eigenfunctions of the 
operators 

with eigenvalues 

where k now assumes the half-integral values k = 1/2, 3/2, 
5/2, ... . Thus, for a scalar charged particle in a magnetic 
field, the square of the transverse momentum is always posi- 
tive because the charge has a zero-point energy in a magnetic 
field whereas, for a spinor particle, this energy can be bal- 
anced by the interaction energy between the intrinsic mag- 
netic moment and the field. The functions (23) satisfy the 
orthogonality condition 

and the completeness conditions 

and, generally, play the same part in the electrodynamics 
with an external field as the plane waves eiPx do in the elec- 
trodynamics of particles in a vacuum. 

To evaluate the mass operator in the Eop representa- 
tion, we must know the following two integrals: 

lo, J2 = d4x d4zr  Ewpo ( z )  {I, ZBZ}  Eg, , fp ,  (d) 

1 
X exp {iq + - izAz} , 

4 (30) 

where A,  B are symmetric matrix functions of the matrix F. 
In our case, they have the form 

The method of evaluating this type of integral is given in the 
appendix of Ref. 1. It is sufficient to find Jo because J2 is 
obtained from it by differentiating Jo with respect to the ma- 
trix A.  The result is 

4ie-mm? 
J,, Jz = (2n)' 6 (p-p') 6..1 [det (A-eF) ] I h  

where w is the symmetric matrix function of the field F: 

1 A 1 A f e F  w = - Arccoth - = - In - 
eF  eF  2eF A-eF ' 

the four-vectorp, has the components 

pi=O, pa=-sgn ( e q )  (21 eq ( k )  '", (33 
Po-sgn ( e e ) p J = o  (21 ee 1 )  '", p2=p2, 

and (2,rr146( p -pl)S,,, represents the right-hand side of 
(28). The matrix w has two doubly-degenerate eigenvalues 
that are functions of s and t ,  namely, 

1 1 w2 = - Arccoth(cth ees + -) . 
e& eet 

By using the above formulas, we can give the mass oper- 
ator the following diagonal form: 

m 

ia ds 
M ( -  F )  j - e-:",z&l 

P' 4x ,, s2 (sin e 2 z h  e ~ s  - 
m 

- 5 J j ! @ - e - i d .  I sin eqw, sinh e&w2 

0 
t2 sin eqs sinh e ~ s  

o2 2i0 
- f ( p 2 - + - -  m2) e-ip'} + M . O ( P ) ,  

s2 St st  

where w-  ' = s- ' + t - '. The expression for MR ( p, F) has 
been renormalized, i.e., the unnormalized expression M (  p, 
F) has had subtracted from it the value of M (  p, 0 )  in zero 
field and has had added to it the renormalized value MR ( p, 
0 )  r M  i ( F). The renormalization of MR ( p, F) has re- 
moved from it the ultraviolet divergences and, for F = 0, 
M O, ( p, F) becomes equal to M i  ( p) . The invariant func- 
tions of the variables s, t 

w ~ E ~ + w ~ ~ ~  W i - W z  
pwp= w l ~ L + w 2 ~ l l ,  = 11'+e' p2 4- qz+e T ( @ ) z l  

(36) 

jj (A+eF) - I  B (A-eF) -' p=pL2 (y - l)sin2eqwl 

-, coth e ~ s  + (7 + 1 ) sinh2e&w2, (37) 

2eqt 
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are transcendental functions of the field invariants, q,  E and 
linear functions of the dynamic invariants p2, (Fji)2 or 
,-2 -2: 

I,PII 

p"j7L9j711" ((F~)2=q2FL2-~2j7112. (39) 

The eigenvalue of the mass operator is thus a function of the 
four invariants q, E, (Fji12, p2. This is usefully compared 
with the y-matrix eigenvalue of the mass operator of a fer- 
mion [see Eq. (52 ) in Ref. 1 1. 

The expression given by (35) differs from the corre- 
sponding results in Refs. 13 and 14 in being much more com- 
pact due to the use of the eigenvalues w,, w2 and the vector 
$,' . 

Because the external field modifies the radiative effects 
in the Green's function 

the pole in the complex plane ofp2 shifts from - m2 to the 
point Pi given by p: + m2 + M ,  ( ji,, F) = 0, so that the 
shift of the square of the particle mass is 

To first order in a (which we have been considering), we can 
take p:-- -m2 on the right of (41). At this point, 
M ( ji) = 0 and the remaining terms in (35 ) become some- 
what simpler. 

4. BOSON MASS SHIFT IN AN ELECTRIC FIELD 

Let us consider the boson mass shift in a purely electric 
field in the state with zero transverse momentum. Substitut- 
ingp2 = - m2, q = 0, and ji: = 0 in (35), we obtain 

where the variables x = le~ls,  y = le~lw,, u = s/t and the 
parametersp = l e~ lm -2, il = ,u2/le&I have the same signifi- 
cance as in ( 1 ) . 

While the integral I, reduces to the r function 

the integrals I, and I,, which depend on two parameters, can 
be simplfied by explicitly isolating their dependence on the 
infrared parameter it-0. This can be done by introducing 
the lower (ultraviolet) limit x, for the variable x, and then 
writing each of these integrals in the form of a difference 
beween the main integral (depending on the field in the s, t 
representation) and the vacuum integral (by allowing the 
field to tend to zero in the main integral: 

In the main integral I,, , we can replace the integration vari- 
able u by the variablez = x - y, so that u will be the function 
ofx, z given in (6), and the integral itself will have the form 

X e.up[-ih eh2x(cth z - cth X) 1. (45) 

The integrand f,, (x, z )  needs the infrared cutoff only be- 
cause of the nonzero limit 

lim fnl (x, 2) = 2e-', 
=- m 

to which it tends exponentially, so that the integral with 
respect to x of the function 

converges at the upper limit. Hence, we can use the following 
expression for the integrand in (45): 

2e -' exp [ - iil sinh2 x(coth z - coth x )  ] + p,, (x, z )  . 
(48) 

We now transform in the vacuum integral I,, from the vari- 
able u to z = xu ( 1 + u) - I ,  and note that its integrand does 
not require an infrared cutoff: 

'Using (45), (48), and (49) in (44), and passing to the limit 
as x,+O, we obtain the following expression after integrat- 
ing the infrared term in accordance with (7 )  and (8): 

iyh 3 i 

I-ig 2 
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Since an (z) decreases exponentially as z+ co , the integals in 
(57) and (58) can be represented by series in powers of 
( - i/,G), with real coefficients K,,, Kn, , ... . We then have 

1 1 x(? sh 2y cth r + -) 
d 1+1z ' 

2ue-' 2e -" sinh z 
cpsl = - - - 

l+u  (1 + u)sinh x 
Hence, for p> 1, we obtain 

+ sinh y (-A + S o t h  x) , 
( l + u ) s i n h x  sinh2y x 

(52) 

and the subtraction terms f,, are given by (49). 
Thus, Eqs. (43) and (50) express the shift (42) in 

terms of known transcendental functions and the Laplace 
integrals 

The numerical values of the coefficients Kni that appear in 
this expression are unimportant for our purposes here. The 
essential point is that, even in high fields, the real part of the 
shift is a negative, monotonically decreasing function of p. 
As in the case of 841, the leading term in the asymptotic 
expression is linear in p, but has a coefficient that is smaller 
by a factor of two. This means that, as P increases in the 
regionB 2 1, the quantum-mechanical effects that come into 
play slow down the decrease in mass shift, but not to the 
same degree as for the fermion. The striking fact is that the 
asymptotic dependence of the mass shift on the field of P is 
the same as the dependence (with the sign reversed) of the 
radiative mass of the boson on the square of the cutoff mo- 
mentum, first found by Neuman and Furry": 

When 1, small z -p will be important in the inte- 
grals ( 53), for which 

This means that, as it is accelerated in the strong electric 
Integrating these expansionsand using theexpansionsof the field E>m2/e, the charge ceases to interact with the virtual 
corresponding functions in terms ofp, we obtain cluanta of its own field, the absolute value of the square of the 

momentum of which is less that JeeJ, so that its mass is re- 
duced by the amount Sm (A2), where A2 - /e&I. 

5. FERMION AND BOSON MASS SHIFTS IN A MAGNETIC 
FIELD: DISCUSSION 

As expected, the dependence on the particle spin appears 
only in terms of order P or higher [cf. (2 1. 

When P) 1, we can use the representations 
1 rn 

2 
l2 ls) = h e - ' ' ' ~ [  ~ ~ ( 1 )  - :] + j  dz @ , ( I )  

U 
32- , 

The electron mass shift in a magnetic field in a state 
with zero transverse momentum was first found by De- 
meurI6: 

m 1 

and has the following asymptotic expression for 
= J e ~ I m - ~ ( l :  

whereas, for p> 1, the asymptotic form is 
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The last three expressions have frequently been reproduced 
in the literature (see Refs. 17-20). The shift (63) can also be 
derived from Eq. (57) of Ref. 1. It takes the form of the 
Laplace integral if we replace v with z = xu and change the 
order of integration. 

The first term in the expansion in (64), which is linear 
in p, is a quantum-mechanical term despite the absence of 
Planck's constant. It is due to the spin of the fermion which, 
in the state with p,  = 0, lies along the magnetic field and is 
equal to the interaction energy between the anomalous part 
of the magnetic moment and the magnetic field. This term 
arises at distances of order m-' and, in contrast to the term 
that is linear in the modulus of the electric field, it can be 
evaluated from perturbation theory in the external field, as 
was done by Schwinger in Ref. 11. 

It s clear from the above expansions that the mass shift 
decreases with increasing magnetic field, reaching a negative 
minimum in the region ofP- 1. Thereafter, it increases with 
increasing p, but is basically different from the monotonic 
decrease in the mass shift in a strong electric field. 

The mass shift of a charged boson in a magnetic field 
was found by T ~ a i . ~ '  For the ground state with the minimum 
value ofpf = lev1 [see (27)], he found that the expression 
that he obtained for Am could be written in the form 

D =  1 -v+vx-'e-" s inhx.  

The expression given by (66) can also be deduced from 
our formula (35) if we substitute p2 = - m2, E = 0, 
3: = levl. When fig 1, the shift is given by the asymptotoic 
formula2' 

and, for P>1, by the formula 

in which 
0s 1 

Thus, the fermion and boson mass shifts are positive in a 

strong magnetic field, and increase with increasing field. 
Their functional dependence on the field differs from the 
dependence of the radiative mass on the square of the cutoff 
momentum, and requires the sort of clear physical interpre- 
tation given for the mass shift in the electric field. The gen- 
eral impression is that quantum-mechanical effects lead to 
an increase in the shift which is described in weak fields by 
the universal term 4 fl In( 1/2 P) which does not depend 
on the spin of the particle or the form of the field, but these 
effects cannot overcome the fall in the electric field due to the 
classical term Re Amc1 = - ae~/2m,  and only reduce this 
fall in a strong field. 

The analogy between the field dependence and the de- 
pendence on the square of the momentum was previously 
found for effective charges determined by the exact strong- 
field Lagrangian and the exact photon propagator (see Refs. 
22 and 12). It is explained by the fact that the dynamic por- 
perties of these quantities are determined by the effective 
value of the square of the kinetic momentum n2 ,  where 
na =pa - eAa , of virtual charges interacting with the field 
or quanta. The mean value of n2 in strong fields is of the 
order of (eA ) - (eFx) - eF  >m2, since the effective forma- 
tion lengths x- (eF) - I f 2  are small in comparison with the 
Compton length. However, for high momenta of the quanta, 
we have HZ-p2>m2, SO that eFis analogous top2. This ana- 
logy establishes the fundamental connection beween strong 
field electrodynamics and quantum electrodynamics at 
short distances. 

Our analysis does not capture the difference between 
the electric and magnetic fields which appears in the asymp- 
totic behavior of the mass shift. This is probably connected 
with the fact that the physical system (charged particle) has 
a nonzero four-momentum, and with the attendant depen- 
dence on mean values of other invariants apart from I12. 
Nevertheless, the properties of the mass shift in a strong 
electric field that we have established show that the shift 
plays a fundamental part in quantum electrodynamics, just 
as the effective charge does. In its turn, the analogy between 
the measured shift Am and the radiative mass Sm gives the 
latter quantity a more realistic physical status, as, indeed, 
should be the case because of its gauge invariance. 

'V. I. Ritus, Zh. Eksp. Teor. Fiz. 75, 1560 (1978) [Sov. Phys. JETP 48, 
788 (1978)l; correction, Zh. Eksp. Teor. Fiz. 76, 383 (1979) [sic]. 

'V. I. Ritus, Zh. Eksp. Teor. Fiz. 80, 1288 (1981) [Sov. Phys. JETP 53, 
659 (1981). 

'V. I. Ritus, Zh. Eksp. Teor. Fiz. 82, 1375 (1982) [Sov. Phys. JETP 55, 
799 (1982)]. 

4V. I. Ritus, Dokl. Akad. Nauk SSSR 275,611 ( 1984) [Sov. Phys. Dokl. 
29,227 (1984)l .  

5V. Weisskopf, Zh. Phys. 89, 27 (1934); 90, 817. 
'R. P. Feynman, Phys. Rev. 74, 1430 (1948); 76,769 (1949). 
'J. Schwinger, Phys. Rev. 75, 651 ( 1949). 
'A. I. Akhiezer and V. B. Berestetskii, Kvantovaya elektrodinamika, 
Nauka, Moscow, 1981 [Translation of edition: Elements of Quantum 

482 Sov. Phys. JETP 63 (3), March 1986 G. K. Artimov and V. I. Ritus 482 



Electrodynamics, Oldbourne, London ( 1962) 1. 
9F. Rohrlich, Phys. Rev. 80,666 (1950). 
'OV. Fock, Phys. J. Sowjetunion 12,404 (1937). 
I1J. Schwinger, Phys. Rev. 82, 664 (1951 ). 
IZV. I. Ritus, Zh. Eksp. Teor. Fiz. 73, 807 (1977) [Sov. Phys. JETP 46, 

423 (1977)l. 
I3V. N. Baier. V. M. Katkov, and V. M. Strakhovenko, Zh. Eksp. Teor. 

Fiz. 67,453 ( 1974) [Sov. Phys. JETP 40,225 ( 1974) 1. 
I4J. Schwinger, Phys. Rev. D 7, 1696 (1973). 
I5M. Neuman and W. H. Furry, Phys. Rev. 76, 1677 (1949). 
I6M. Demeur, Mem. Acad. R. Belgique, Classe Sci. 28, Fasc. 5, N1643 

483 Sov. Phys. JETP 63 (3). March 1986 

(1953). 
"R. G. Newton, Phys. Rev. 96,523 (1954). 
IRB. Jancovici, Phys Rev. 187,2275 (1969). 
19R. G. Newton, Phys. Rev. D 3,626 (1971 ). 
20Wu-yang Tsai and Asim Yildiz, Phys. Rev. D 8, 3446 ( 1973). 
' ' W ~ - ~ a n ~  Tsai, Phys. Rev. D 8, 3460 (1973). 
22V. I. Ritus, Zh. Eksp. Teor. Fiz. 69, 1517 (1975) [Sov. Phys. JETP 42, 

774 (1975)l. 

Translated by S. Chomet 

G. K. Artirnov and V. I. Ritus 483 


