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A unified explanation is proposed for the integral as well as the fractional quantization of the 
Hall effect. It is based on the hypothesis of superfluidity of the two-dimensional electron fluid 
in a magnetic field and of quasiparticle pinning by the impurities. The number of quasiparticles 
and their charge are determined only by the requirements of gauge invariance and 
nondegeneracy of the ground state. In a certain range of field strengths and concentrations, the 
charge of the superfluid electron fluid is equal to the number of flux quanta through the 
system, multiplied by a certain rational number with an odd denominator. Arguments similar 
to those of the Landau superfluidity theory show that a two-dimensional electron fluid in a 
magnetic field is superfluid under some simple assumptions regarding its spectrum. Some 
general hypotheses can be substantiated and the wave functions of the ground and weakly 
excited states can be found explicitly within the framework of the short-range force model for 
not too high impurity concentrations. The wave functions of an impurity-free system are the 
same as those conjectured by Laughlin. In the presence of impurities the quasi-holes are 
localized at the impurities in a certain range of variation of the parameters of the system. 

1. INTRODUCTION 

The discovery by von Klitzing et al.' of the integral 
quantum Hall effect has produced a stream of theoretical 
~ o r k . ~ - ~  Laughlin2 showed that if the Fermi level lies in the 
gap between delocalized states, and the ground state of the 
electron system is nondegenerate, gauge invariance leads to 
the values of ax, being multiples of the quantity gO=e2/2d. 
This idea was developed by Niu and Tho~ le s s ,~  and also by 
Avron and Seiler.4 They showed that the quantum Hall ef- 
fect follows from topological considerations under the con- 
ditions mentioned above. In a number of works,'-' a model 
of electrons drifting along equipotential lines of a slowly 
changing random potential has been studied. It follows from 
intuitive geometrical considerations that there is only a sin- 
gle percolation threshold in such a system, which is identi- 
fied with the localized levels. Apenko and Lozovik7 calculat- 
ed the value of a,, within the framework of this model and 
found that it is a multiple of a, if the Fermi level lies above 
the percolation threshold. 

Levine et a/.' considered the problem from the point of 
view of localization theory. Impurities were modelled as a 
random potential with the properties of white noise. They 
found that the renormalization group equations in a strong 
magnetic field contain a specific term of a topological nature 
which leads to delocalization close to ax, = (n  + 1/2)a0. 
Khmel'nitskip proposed a simple picture of integral paths of 
the renormalization group equations in the plane a,, a,,. It 
follows from it that at absolute zero, the magnetic field de- 
pendence of ax, has the form of a stepwise curve and the 
transitions between the steps take place discontinuously. 
This approach gives an explanation of the enormous accura- 
cy in the quantization of a,, . 

In 1982, Tsui et al.1° discovered the fractional quantum 
Hall effect which has been studied in a number of experi- 
ment~."-'~ It was clear from the very beginning that this 
phenomenon could not be explained without taking account 

of electron interactions. It is obviously not associated with 
the formation of a Wigner crystal, since such a crystal would 
be pinned by impurities. Laughlin15 proposed a trial wave 
function describing a uniform incompressible electron fluid 
with an occupancy of the first Landau level v = l/m, where 
m is any odd number. He argued that excitations in such a 
system carry fractional charge, equal to + e /m,  and finite 
energy. Haldane16 and Halperin17 expressed the idea that 
these excitations could in turn reconstitute the incompress- 
ible Laughlin fluid for certain values of v. They associated 
these states with the appearance of steps on the Hall charac- 
teristic a,, (fl& at the values a,, = (p/q)uo, wherep and q 
are whole numbers, with q odd. 

Only interelectron interaction was considered by 
Laughlin, by Haldane and by Halperin. Besides, it was ap- 
parent that in the case of fractional quantization, the interac- 
tion with impurities was considerable. Without it, the steps 
on the a,, ( H )  curve would not arise. 

The aim of the present work is to take account sirnulta- 
neously both of the interaction between electrons and of the 
interaction between electrons and impurities. Laughlin's 
idea of excitations with fractional charge and Landau's con- 
cept of dissipationless motion of a quantum fluid enable us to 
justify in a unified fashion both the integral and the frac- 
tional quantization of the Hall conductivity. 

We shall find exact functions of the ground state and 
rigorously calculate a,, for a simplified model of the interac- 
tion between electrons. The simple physical picture which 
arises is easily generalized for more realistic situations. A 
short communication of the results of the present work has 
been published earlier.18 

2. DESCRIPTION OF THE METHOD 

We shall regard the interactions of electrons both with 
impurities and with one another as small compared with the 
separation of the Landau levels. This enables us to confine 
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ourselves to a discussion of only the first Landau level. If 
interaction is neglected and if v < 1, the states of this level are 
multiply degenerate. The interaction of electrons with one 
another and with impurities lifts the degeneracy totally or 
partially. The problem consists in finding the ground state 
for a given whole number of particles Nand number of im- 
purities Ni . It is assumed that the distribution of impurities 
is random and fixed. We will characterize the external mag- 
netic field by the number of flux quanta 2s through the area 
occupied by the system. This value of 2S determines the 
number of states in the first Landau level. We use the axial 
gauge in which the one-electron wave function is of the form 

where z = x + iy, x and y are the electron coordinates and 
the magnetic length is taken equal to unity. The integer k 
numbers the states of the first Landau level and ranges from 
zero to 2s. Physically this limitation on k means the elec- 
trons do not go outside the limits of a circle of radius equal to 
2S, where they are confined by a compensating charge. The 
limitation on the value of k thus follows from the boundary 
conditions. 

The many-electron wave function $( z,, ...,z, ) should 
be an antisymmetrical linear combination of the products of 
one-electron wave functions. It follows from Eq. ( 1 ) that the 
most general form of $(z,, ..., Z, ) is 

N 

where P(z,, ..., z, ) is an antisymmetric polynomial of degree 
not more than 2s in each of the variables. 

We replace the Coulomb interaction between electrons 
by a short-range repulsive pair potential V(r). Its radius of 
action a is assumed small compared with the magnetic 
length I ,  We represent this potential in the form of a series in 
the small parameter (a/], ) 2 :  

V(r) =Vo6 (r) +ViA6 (r) +VzA26 (r) + . . . , (3) 

where Vn -S V(r)?" d 2r. Because of the Pauli principle, the 
leading term in the expansion of Eq. (3)  does not contribute 
to the energy of the electrons. 

We will also consider the interaction between electrons 
and impurities as short-range. The potential produced by the 
k th impurity is 

The value of Wk will be considered random and as taking 
positive as well as negative values. We will divide impurities 
into weak and strong, depending on the relation between 
/ Wk / and V,. 

3. THE GROUND STATE OF AN IMPURITY-FREE SYSTEM 

We start with a simplified problem in which there are no 
impurities. This problem was solved by the present authors19 
and by Trugman and Ki~elson.~'  We limit ourselves to the 
terms in Eq. (3 ) proportional to V,. Any wave function of 
the form 

then gives a zero and, consequently, minimum possible ener- 
gy. Here Q(z,, ..., z,) is a symmetrical polynomikl. Lets be 
the leading power in the polynomial in any of the variables. 
The maximum power of any z in Eq. (5 )  is equal to 
s + 3 (N - 1 ) . The inequality 

follows from the boundary conditions we have taken. 
Since s>O, it follows from Eq. (6) that wave functions 

of the form of Eq. (5 )  are only possible if v( 1/3 is satisfied. 
In particular, for v = 1/3 or, more exactly, on satisfaction of 
the relation 

s goes to zero while the polynomial Q(z,, ..., z, ) goes to a 
constant value. For this particular value of the occupancy, 
the ground state is nondegenerate and it corresponds to the 
wave function +hL proposed by Laughlin:15 

N N 

where m = 3. In actual fact, any other wave function corre- 
sponding to the same values of N and S should have ooly 
simple zeros when corrdinates of two particles coincide. In 
the opposite case, these zeros should have been at least triple 
because of the Pauli principle. The wave function would then 
coincide with $=. The operation on a wave function with 
simple zeros with a Hamiltonian of the form 

does not transform it to zero. The energy of the ground state 
per particle for any pair interaction V(r) is of the form 

whereK(r) is the two-particle correlation function. This lat- 
ter is obtained from I$(zl, ..., z, ) l 2  by integrating over all 
variables except two. If the zeros of $(zl, ..., z, ) are simple, 
then K( r )  has a double zero for r = 0. The Laplacian elimi- 
nates this double zero so that the energy of such a state is 
strictly positive. 

Laughlin showed that the wave fucntion of Eq. (8)  de- 
scribes a spatially homogenous incompressible electron flu- 
id. He made use of a formal analogy between the quantity 

1' and a Gibbs distribution of a two-dimensional one- 
component plasma. HaldaneI6 proposed another approach. 
He considered electrons on a sphere of large radius. A uni- 
form magnetic field was produced by a monopole situated at 
the center of the sphere. According to the Dirac condition, 
the magnetic flux 2s through the sphere should be a whole 
number. The analog of the one-electron function of Eq. ( 1 ) 
over the sphere is of the form 
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lation can be obtained: 

u=cos (812) exp (icp/2), v=sin (812) exp (-i(p/2), 

where 8 and q, are angular spherical coordinates. The quan- 
tities u and u are the components of a spinor with spin 1/2. 
The quantities $, can be regarded as spin functions of mag- 
nitude S, which has a projection S - k along the z axis. A 
spin of magnitude S can be associated with each electron, 
directed to that point on the sphere where the electron is 
situated. The analogy between the electron wave functions in 
a magnetic field and the spin wave functions was first found 
by Peres2' The analog of the Laughlin wave function for the 
sphere is of the form 

The uniform electron density on the sphere is evident in this 
case, since any factor in the product of Eq. ( 12) describes a 
pair of particles with zero total spin. 

For v < 1/3, the energy of the ground state remains 
equal to zero, while the degree of degeneracy increases to- 
gether with the quantity 

We now consider the case of v >  1/3. In this case it is not 
possible to construct the wave function in the form of Eq. 
(5)  for the reason indicated above. All the zeros of the wave 
function, if the electron coordinates coincide will therefore 
be simple, while the energy corresponding to such a state is 
positive. We will show that on addition of one particle to the 
system with occupancy v = 1/3 [see Eq. ( 7 )  1, the energy of 
the ground state changes by a finite amount. It is convenient 
for this to make use of the spherical representation of Hal- 
dane. In this representation, any pair interaction that de- 
pends only on the distance between the particles can be rep- 
resented in the form 

A 

where PI is the projection operator for the state of a pair of 
spins with total spin I. The total spin I = 2Scorresponds to a 
pair of electrons lying at one and the same point on the 
sphere. In Eq. (3)  the term V,S(r) corresponds to it. This 
value of the total spin is forbidden by the Pauli principle. The 
value of the spin I = 2 s  - 1 is allowed and the term V, AS ( r  ) 
in Eq. (3)  corresponds to it. The equality of the energy of the 
Laughlin state to zero indicates that there is no pair with 
total spin 2 s  - 1. However, the energy of the ground state is 
already not zero for N = 2S/3 + 2. Consequently, in this 
state there is only one pair with moment 2 s  - 1. The mini- 
mum value of the energy of the ground state is not less than 
v, . 

We showed that the derivative of the energy of the 
ground state E(N)  with respect to the number of particles 
has a finite discontinuity for an occupancy v = 1/3. Using 
the symmetry between particles and holes, the following re- 

E ( N )  =E ( 2 s - N )  +4(N-S)  Vi. (15) 

It follows from this that the derivativedE /dNat v = 2/3 has 
such a discontinuity. The inclusion of the next term in the 
expansion of Eq. (3  ) V2A2S(r) only changes the value of the 
jump of the derivative d E  /dN at the points v = 1/3, 2/3 
insignificantly. Similar changes arise on including the term 
V,A3S ( r )  . The energy of the ground state is equal to zero for 
0<vg 1/5. In the interval 1/5 < v < 1/3 the degeneracy is 
partially lifted. The energy of the ground state in this range is 
of the order of V,N. The Laughlin wave function with m = 5 
is the accurate wave function of the ground state for v = 1/5. 
For an occupancy v = 1/3 corrections of order V3/Vl ap- 
pear in the Laughlin function with m = 3. These corrections 
lead to a weak separation of the triple zeros. The discontin- 
uity in the derivative dE/dN at Y = 1/3 changes weakly, by 
an amount of the order of V,. In return, a new jump in the 
derivative d E  /dN appears at v = 1/5; its magnitude is of the 
order of V,. On including further terms of the series, a 
succession of jumps in the derivative dE  /dN appears at the 
points v = l/m and identical jumps for Y = 1 - l/m. 

4. EXCITATIONS IN AN IMPURITY-FREE SYSTEM 

We shall consider a state in which 2 s  = 3 ( N  - 1 ) + 1, 
i.e., the flux increased by one quantum relative to the Laugh- 
lin state with v = 1/3. The wave function of the ground state 
with the given values of S and N has the form 

where 6 is an arbitrary complex number. 
Such a wave function was proposed by Laughlin,15 and 

is exact in the model with short-range interaction in those 
cases when the wave functions $, for Y = l/m are exact. 
Laughlin showed that the wave function of Eq. (16) de- 
scribes a quasi-hole with charge lel/m positioned at the 
point 6. To show this he used the aforementioned analogy 
with the statistics of a one-component plasma. 

The magnitude of the charge of the quasiparticles is the 
key factor of the theory. We will, therefore, give another 
derivation of the magnitude of the charge of a quasi-hole, 
proposed by Arovas and S~hr i e f f e r .~~  We shall consider a 
large closed path T, inside which there are n electrons. After 
the passage of a quasi-hole along this path in an anticlock- 
wise direction, the phase of the wave function $ of Eq. ( 16) 
changes by - 27rn. On the other hand, it follows from gauge 
invariance that the phase change of the wave function on the 
passage of a particle with charge e* along the path r in a 
counterclockwise direction is equal to ( e* /&)@,  where @ is 
the magnetic flux through the area bounded by the path T. 
For an occupancy v = l/m, m flux quanta @, = 2&/e oc- 
cur. We now equate the flux changes obtained by the two 
different means - 27rn = (e*/&)nm@, = 2~nme*/e. It 
follows from this that e* = lel/m. A concrete form of the 
quasi-hole wave function was used in this derivation. We do 
not know the exact form of the quasi-electron wave function 
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and cannot write the exact wave functions for other values of 
v, for example v = p/q withp > 1 .  

It is useful to draw a general conclusion not based on 
specific properties of the wave function. Suppose that for 
some rational concentration v = p / q  the wave function of 
the ground state is nondegenerate. We shall change the num- 
ber of magnetic flux quanta by + 1 .  Let the additional or 
lacking flux quantum be associated with a local change in 
electron density. As any electron encircles the localized 
quantum, the phase of the wave function changes by + 2 ~ .  
It follows from this through the reciprocity, that as the local- 
ized quantum encircles round an electron, the phase changes 
by f 2n. By repeating the considerations given above, we 
obtain that the charge associated with a localized flux quan- 
tum is equal to f ev. In particular, for v = l / m  we obtain 
the already known result. 

The situation is more complicated when v = p / q .  In 
this case a new quasiparticle is formed by the change in the 
number of flux quanta and the number of particles or quasi- 
particles by f 1 .  Let us consider the simplest case v = 2/3 .  
We shall define the quasi-electron as the result of an increase 
in the number of flux quanta and the number of particles by 
one. Such a quasiparticle has charge e/3 .  The same result 
could be obtained starting from the symnmetry between 
states with occupancy v and 1 - v. 

For v = 4/3 ,  one Landau level is occupied and it is ob- 
vious in advance that the charge of a quasiparticle is 1/3, 
as for the first Landau level. In our scheme these quasiparti- 
cles are obtained simultaneously by a reduction or increase 
in the number of electrons and in the number of flux quanta 
by one. 

As a more complicated example we shall consider an 
occupancy v  = p / ( m p  + 1 ), where m  is an odd and p  is an 
even integer. According to the proposal of Haldane16 and of 
Halperin," such occupancies are obtained from the Laugh- 
lin states with v = l / m  if quasi-holes or quasi-electrons 
form states similar to the Laughlin state with intrinsic con- 
centration l / p .  New quasiparticles with the minimum possi- 
ble charge are obtained simultaneously by an increase in the 
number of quanta and of quasi-electrons with charge e / m  by 
one. The charge of the new quasiparticle is equal to + e /  
m  (mp & 1 ) .  In particular, for an occupancy v = 2/5 it is 
equal to e/15, while for v = 2/7 the magnitude is e* = e /2  1 .  

In a similar way, the minimum charge can be obtained 
of an excitation for a step of the general form v = p / q .  The 
result is as the following: the number v can be decomposed 
into a continuous fraction in which the first denominator is 
m, an odd number, while the remainder are even. Cutting off 
this fraction at the k th step, we obtain the convergent 
vk  = p k / q k  , where all qk are odd whole numbers. Let 
vk = v = p / q .  Then 

1 ea/eI =1/qn-iqn. ( 1 7 )  

The quasiparticles described, above with fractional 
charge, arising for rational concentrations, relate to an inter- 
electron potential of general form. In the case of a short- 
range potential of the special form of Eq. ( 9 ) ,  singularities 
arise only near v = 1/3 and 2/3 ,  while the charges of the 
quasiparticles are equal to + e /3 .  

We shall consider the excited states for v = 1/3, i.e., 
2 s  = 3  ( N  - 1 ) . It is natural to suggest that they consist of 
one quasi-electron and one quasi-hole. We have already seen 
that for the potential of Eq. ( 9 )  the energy of a quasi-hole is 
equal to zero. The energy of a quasi-electron is, apparently, 
equal to some positive constant of the order of V,.  We cannot 
exclude the existence of an exciton, i.e. of a bound state of a 
quasi-hole and a quasi-electron, but in this case too the gap 
in the spectrum will be of the order of V, .  

5. THE GROUND STATE AND THE SPECTRUM OF A SYSTEM 
WITH IMPURITIES 

If the inter-electron interaction is given by Eq. ( 9 ) ,  then 
in the absence of impurities and for v < 1/3 the ground state 
of the electron system is degenerate. Impurities reduce the 
degeneracy. For impurities repelling an electron, for which 
W ,  > 0, conditions are favorable for the electron wave func- 
tion to go to zero at those points where impurities are situat- 
ed. We shall consider the state with the following wave func- 
tion: 

where 5, = x, + iyk is the complex coordinate of the k th 
impurity, N+ is the number of repulsive impurities. The en- 
ergy of this state is zero to first order in ( a / / ,  )2 .  That energy 
of electrons which do not interact with one another is zero in 
the field of point impurities was first found by Baskin et a/ .23 
The wave function of Eq. ( 18) can only be constructed for a 
small number of repulsive impurities N + < q  
= 2 s  - 3 ( N  - 1 ) .  In the case of a strong inequality, the 

ground state remains multiply degenerate. For N+ = q, the 
ground state described by Eq. ( 18) is nondegenerate. 

The wave function of Eq. ( 18 ) allows of a simple inter- 
pretation: a Laughlin quasi-hole with charge le1/3 is local- 
ized at each repulsive impurity. The degeneracy at N+ < q  is 
due to the fact that the number of quasi-holes exceeds the 
number of impurities and the energy is independent of the 
position of the extra quasi-holes. 

The most intersting case is when N+ > q. The q  quasi- 
holes present are localized at the q  impurities in a way as to 
achieve the minimum energy. We consider the impurities to 
be weak ( Wk < Vl ), so that they do not destroy the Laughlin 
part of the wave function. The appearance of pairs of quasi- 
particles with subsequent localization of a quasi-hole at an 
impurity is energetically unfavorable. 

We assume that N+<N.  The wave function of the 
ground state can then be written in the form 

We have assigned numbers from unity to q  to those impuri- 
ties at which holes are positioned. The energy of such a state 
is 
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wherep(5) is the electron density at point 5. The electron 
density becomes zero where holes are located. At a distance 
of the order of I ,  from the hole, p (5) becomes a constant 
approximately equal to N/2S. Values of the density at those 
impurities at which there is not a hole go into the sum of Eq. 
(20). Since the mean distance between impurities is much 
greater than I ,  , p  (c, ) in Eq. (20) can be replaced by N /2S. 
We then obtain 

in the ground state, holes are localized at those impurities at 
which W, is the largest possible. 

In the interval of values O<q<N+, the ground state is 
thus nondegenerate. Its wave function has the form of Eq. 
( 19). Weak impurities with small concentration, attracting 
electrons, do not alter this result. 

For an occupancy Y > 1/3, the explicit form of the wave 
function in the presence of impurities is unknown, but the 
physical picture can be drawn by analogy with the case of 
Y < 1/3. We imagine the ground state as a state with Iql qua- 
si-electrons localized at attracting impurities. Such a state is 
nondegenerate if the number of attracting impurities 
N->lql. 

We shall consider the nature of the excitation spectrum 
in the range - N- < q  < N,, within which there are Iql lo- 
calized quasiparticles in the ground state. In a large system, 
an arbitrarily close configuration can be found at a suffi- 
ciently large distance for any impurity configuration. The 
ground state is therefore separate from the nearest excited 
state by an energy interval inversely proportional to the di- 
mensions of the system. The spectrum is quasi-continuous. 
However, in order to obtain the nearest excited state from 
the ground state, it is necessary to interchange a large num- 
ber of quasiparticles from single impurities to others. For 
this, it is essential to overcome a macroscopically large po- 
tential barrier. The nearest excited state is not reachable 
from the ground state by tunneling. On the other hand, it is 
possible to transpose a single quasiparticle from impurity to 
impurity. Such excitations are separated from the ground 
state by a gap. The gap can be made small if a quasiparticle is 
displaced by a large distance. This situation is reminiscent of 
that which arises in the Mott hopping conductivity. Finally, 
an excitation with a quasiparticle breaking away from an 
impurity is possible. A gap equal to the minimum binding 
energy of a quasiparticle to an occupied impurity v W, corre- 
sponds to such an excitation. For q = N+ or q = - N-, this 
gap goes to zero. 

6. THE HALL CURRENT 

Suppose that a uniform electric field E acts on the elec- 
trons, perpendicular to a magnetic field H. In the absence of 
impurities this field would lead to a drift of the whole system 
of interacting electrons with a velocity 

The Hall conductivity is then given by the classical formula 

In order to understand how impurities alter this result, 
we go over to a frame of reference moving with the velocity 
of Eq. (22). In this system the electric field is zero. The 
electrons forming the Laughlin fluid are, therefore, station- 
ary in this coordinate system. All the impurities, including 
the impurities capturing quasiparticles, travel with velocity 
- v .  

A moving bare impurity cannot drag with it the elec- 
tron fluid, at least at sufficiently small velocities. In fact for 
such a drag a quasi-electron-quasi-hole pair must be created 
in the fluid, which requires a finite energy A, (in the model 
considered A,- V,). One of the quasiparticles must then be 
associated with the impurity while the other must be station- 
ary. Association of a quasiparticle with an impurity de- 
creases the reduced mass of the impurity since it reduces the 
interaction of the impurity with the electron fluid. The effec- 
tive mass of a bound quasiparticle can thus be negative. We 
shall denote the binding energy of a quasiparticle with an 
impurity by A,.  The criterion for a nondissipative motion of 
an impurity through the quantum fluid, by analogy with the 
Landau criterion for a superfluid liquid is: 

where m* is the effective mass of a bound quasiparticle. If 
m* > 0, then a critical velocity exists at which, if exceeded, 
spontaneous pair production and dragging of charge by im- 
purities set in. In the model with the short-range potential of 
Eq. (9) ,  the effective mass of a quasi-hole is - me /3, where 
me is the electron mass. 

We shall now consider a moving impurity on which a 
quasiparticle was localized in the ground state. The simplest 
way of exciting this complex is to detach the quasiparticle to 
the free state. For this it is necessary to surmount a gap A1 
equal to the binding energy of a quasiparticle with an impuri- 
ty. The criterion for such a process to occur is of the form 

Processes of spontaneous creation of a pair with removal of a 
quasiparticle from an impurity turn out to be mutually ex- 
clusive. 

Another means of an impurity-quasiparticle complex 
can be excited is by hopping of a quasiparticle to another 
impurity. The kinetic energy does not change in such a jump. 
The interaction energy of a quasiparticle with the impurities 
can only increase, since the initial state was the ground state. 
At absolute zero such an excitation is, therefore, impossible. 

Until the velocity v exceeds the critical velocity, all the 
quasiparticles thus move together with the impurities cap- 
turing them, giving a current 

We now go over to the laboratory coordinate system. If there 
were no captured quasiparticles, the current in it would be 
equal to Nev. Taking account of the captured quasiparticles 
changes the total current which becomes equal to 
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Near the occupancy v = l / m  the following relations are sat- , 
isfied 

le8/e I =I/m, ( 2 8 )  

q=2S-m(N-I). ( 2 9 )  

~Lbst i tut in~ Eqs. ( 2 8 )  and ( 2 9 )  into Eq. ( 2 7 )  we obtain in 
the limit of large N 

Using the well-known formula for the number of states at the 
Landau level 2S = eH /2& and Eq. ( 2 2 )  for v, we find 

Equation ( 2 7 )  can be interpreted in a somewhat different 
way. In the ground state, lql quasiparticles are captured by 
impurities and do not take part in the drift motion. In view of 
the law of conservation of the charge, the moving electron 
fluid changes its charge by an amount - e*q. 

The current of quasiparticles is determined by Eq. ( 2 6 )  
only if the following condition is satisfied 

This equation gives the maximum possible width of the step 
on the Hall characteristic for point impurities. 

For m  = 1 ,  Eq. ( 3  1 ) gives the integral quantum Hall 
effect. In a number of ~ o r k s ~ ~ - ' ~  the existence of steps on the 
Hall characteristic of a system of electrons interacting only 
with impurities was demonstrated with the help of the Kubo 
formua and some special relations for the matrix elements of 
the one-electron operators in a magnetic field. Our approach 
enables us to avoid these complicated calculations and to 
obtain an analogous result for the fractional quantum Hall 
effect. 

We shall now consider the occupancy v in the close vi- 
cinity of some rational v, with an odd denominator. In the 
state with occupancy v there is some number q of excess of 
lacking flux quanta compared with the nondegenerate state 
with occupancy v,: 

As was shown in Sec. 4, a charge ev, is associated with 
each excess flux quantum. Suppose that all these charges, 
however they are shared among the quasiparticles, are local- 
ized at impurities. The moving part of the charge has, be- 
cause of the conservation law, the value 

In this situation a,, takes the value 

The boundaries of the step are, in general, determined 
by conditions different from Eq. ( 3 2 ) .  This is connected 
with the fact that for an arbitrary v,, the number of quasipar- 
ticles coincides with /ql .  For example, for the case consid- 
ered by us Y, = p / ( m p  5 1 ), the number of quasiparticles is 
equal to m p  lq 1 .  

7. WHAT DEPENDS ON THE MODEL? 

The main question which still arises concerning impuri- 
ty-free systems is: how are the occupancies v = l / m  select- 
ed? For short-range interelectron repulsion, the answer to 
this question is clear. In this case that wave function is ener- 
getically favorable which has the maximum order of zero 
upon coincidence of the electron coordinates. A zero of the 
mth order is only possible for an occupancy v = l / m .  It is 
just for this reason that the points v = l / m  are the ground 
states. As was shown in Sec. 3, the ground state ofan impuri- 
ty-free system at these points is nondegenerate and is sepa- 
rated from the excited states by an energy gap. These proper- 
ties are evidently preserved in a certain range of the 
parameter (a / lH  ) of the order of unity, i.e. for potentials of 
finite radius. On the other hand, in a strong magnetic field, a 
Coulomb potential can in some sense be considered as a po- 
tential of finite action radius - I H .  The point is that a direct 
Coulomb interaction between electrons is compensated by 
their interaction with the positively charged background, 
while the remaining part of the interaction is determined by 
the wave-function overlap which decreases exponentially 
with the square of the distance between the particles. One 
can easily be convinced of this by considering the exact 
expression for the electron interaction energy: 

where d is the distance from the electron layer to the layer of 
compensating charge. 

Equation ( 3 6 )  can be rewritten in the form 

The first term in Eq. ( 3 7 )  contains the exponentially de- 
creasing factor K ( r )  - 1; only this term depends on the form 
of the wave function. 

The spectial nature of the states with Y = l / m  for an 
arbitrary interaction can be understood as follows. As has 
been shown, the addition of one flux quantum leads to the 
appearance of a localized charge - e / m .  It is natural to ex- 
pect that m  quanta and one electron with a charge e form a 
bound state. The addition to the system of one electron and 
m  quanta can therefore give a nondegenerate ground state 
with the same occupancy, not differing from the former. 

Corrections to the wave function of the ground state, 
associated with transitions to another Landau level, are of 
the relative order of magnitude V/&,  , where Vis the char- 
acteristic size of the interelectron interaction and o, is the 
cyclotron frequency. The Laughlin wave functions are dis- 
torted, but the nondegeneracy of the ground state and the 
gap in the excitation spectrum remain in a certain range of 
values of V /%I - 1 .  

So far we have only considered weak impurities which 
do not destroy the Laughlin part of the wave function. We 
shall discuss the influence of strong impurities. Suppose that 
there are N +  weak and N '+ strong impurities in the system, 
repelling electrons, and also N -  and N' strong attractive 
impurities. The strong impurities partially destroy the 
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Laughlin wave function for v = l / m ,  giving rise to dissipa- 
tion of max ( N  '+ , N  "- ) quasi-electron-quasi-hole pairs. 
The N "+ quasi-holes and N" quasi-electrons are localized 
at the strong impurities. The excess quasiparticles which re- 
sult from the breakup of pairs of number equal to 
INs+ - N t  I ,  settle at the weak impurities. The Hall con- 
ductivity a,,, for v = l / m  will be equal to ( l / m )  ( m 2 / 2 d )  
only for the case when the number of weak impurities of the 
corresponding sign is sufficient for localization of the 
IN '+ - N" / excess quasiparticles. This does not mean that 
a step of size a,, = ( l / m )  ( e 2 / 2 d )  on the Hall characteris- 
tic disappears in the case when the number of weak impuri- 
ties is less than IN '+ - N" I .  Strong impurities can only 
lead to a shift in this step. The new boundaries of the step are 
determined by the inequality [cf. Eq. ( 3 2 )  ] 

The inequalities ( 38) give only the maximum possible size of 
the steps. Firstly, it is essential to take account of the compe- 
tition of the Laughlin states associated with other rational 
occupancies v. Secondly, impurities are not, in general, point 
impurities and can capture not one but several quasiparti- 
cles. 

In the more general case, a random potential acting on 
the electrons, and not impurities, can be considered. The 
quasi-electrons and quasi-holes will then be localized in the 
wells and humps of this potential. The number of quasiparti- 
cle states in the random potential, and correspondingly the 
width of a step, depends on its correlation properties. 

CONCLUSION 

We will discuss the possibilities of an experimental ver- 
ification of the theory. The most interesting is the feasibility 
of experimentally finding fractional quasiparticle charges. 
We consider the characteristic energies for electron systems 
with real Coulomb interaction. The energy necessary for 
breakup of a quasi-electron-quasi-hole pair is of the order of 
magnitude 

where x is the permittivity. 
This quantity plays the same role as does the parameter 

V ,  for short-range forces. In particular, E,  determines the 
maximum possible binding energy of a quasiparticle with a 
weak impurity. Impurities with such binding energy are 
filled with quasiparticles in the first place. Equation ( 3 9 )  
determines the edge of the absorption band in the middle of 
the step on the Hall characteristic. By comparing the absorp- 
tion edge for steps with different v, the ratio of the effective 
charges of the excitations can be found. For this purpose it is 
sufficient to note that E ,  For example, for two close 
values v = 1/3 and v = 2/5,  the values of E,  differ 56-fold. 

It is interesting to note that E, is related to the average 
electron Coulomb energy E,  = e2/vclH as (e*/e)512. For ex- 
ample, for a step with v = 1/3, this ratio is 0.06. This result 
does not agree badly with other numerical estimates of the 
activation energy.15," The magnitude of E,  also determines 
the temperature up to which one or another step will exist. 

It was found experimentallyz8 that when the magnetic 
field is changed a,, deviates from its value on a step, but then 
rapidly returns toit. Such a behavior agrees with our picture 
of localized quasiparticles, in that a,, is determined only by 
their overall number. The distributidn of quasiparticles over 
the impurities can be non-equilibrium and varies as a func- 
tion of the external conditions. At the instant of the rearran- 
gement, the value of ax, will change, but after the quasiparti- 
cles have again been localized, the value of a,, must resume 
its previous value. 
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