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Parametric excitation of spin waves is investigated under conditions of frequency drift at a 
constant rate. This drift may be due either to accumulation of nonequilibrium spin waves via 
relaxation of parametric spin waves, or to variation of an external electric field at a constant rate. 
The waveform of a packet of parametric spin waves in k space and the dependence of the number 
and phase of the waves on the pump power and on the drift velocity are determined. It is shown 
that the spin-wave behavior depends substantially on the sign of the quantity Sdw, /dt, where Sis  
the matrix element of the pair-wave interaction. In particular, at Sdw, /dt > 0 the number of 
waves decreases with increasing drift velocity. At Sdw, /dt < 0 the dependence of the number of 
parametric spin waves on the drift velocity exhibits hysteresis. The stability of a system of 
parametric spin waves to small perturbations is investigated. Under conditions of intrinsic drift 
due to accumulation of nonequilibrium spin waves, the number of the waves has a smooth 
dependence on the supercriticality. This can lead to a systematic error in the determination of the 
spin-wave damping by measuring the parametric-spin-wave excitation threshold. 

1. INTRODUCTION 

A nonlinear theory of parametric excitation of waves 
has by now been developed in considerable detail. In first- 
order approximation in the wave interaction (S-theory ) it is 
possible to determine characteristics such as the number N 
of the waves, phase correlations, the absorbed power, the 
frequencies of collective oscillations, and others (see the re- 
view'). In this approximation, the stationary distribution 
function of the parametric spin waves (PSW) is singular: 

nko=no(koZ/vo)6 (ur-up/2) 6 (0-up/2). (1.1) 

Here 

<akWak*~,~>=nk,6(k-k') 6(u-o1) 
is the autocorrelation function of the wave amplitudes, wp is 
the parametric-pump frequency, k, and u, are the wave 
vector and the group velocity of the waves in the direction of 
the solid angle fl on the resonant surface w, = wp/2 in k- 
space. Allowance for the scattering of the waves by one an- 
other leads to finite widths of the packet with respect to both 
the true frequencies, Aw, and the eigenfrequencies Aw,, 
where Aw-' is the correlation time of the PSW amplitudes 
a, ( t ) ,  while Aw, characterizes the dimensions of the PSW 
packet in k space. 

The existing theory explains most experimental facts on 
parametric excitation of spin waves in ferro- and antiferro- 
magnets (see, e.g., Refs. 1-8). However, the results of a 
number of experiments initiated in 1977 contridicted not 
only the nonlinear but also the linear theory of parametric 
in~tabi l i ty .~. '~  

In these experiments, performed with ferro- and anti- 
ferromagnets, an anomalously rapid damping of the PSW 
wave was observed compared with the relaxation frequency 
determined from the threshold. This character of the damp- 

weak and cannot lead to a substantial change of the damp- 
ing.12,l3 Moreover, analysis13 of the experimental data has 

shown that in ferromagnets there is only one microscopic 
relaxation time, and that both dampings (T, of the anoma- 
lous correlator and y, determined from the threshold) are 
caused by the same proper relaxation of the spin waves. 

It was proposed even in the first study of relaxation of 
anomalous PSW in ferromagnets1° that a PSW packet has an 
appreciable width in terms of the eigenfrequencies, 
Aw, 2 y,. In a packet having a large wave-vector width the 
anomalous correlator should be damped with a characteris- 
tic time r; I ,  where 

r k = ~ k +  Aor. (1.2) 
The presence of a considerable eigenfrequency width of 

the PSW packet was proved in Ref. 12 by direct experiment. 
A later more detailed study l3 has shown that the packet is 
not only broadened but also shifts in k-space. This shift 
should lead to broadening of the packet in terms of the eigen- 
frequencies w, . If the wave eigenfrequency w, drifts in k 
space, new waves enter into resonance at each instant of 
time, and those PSW that were at resonance before are 
damped. One can expect that if the eigenfrequency changes 
after a relaxation time y; ' by an amount of order y,, the 
width Am, of the packet becomes of the order of y,. The 
cause of this frequency drift is, in our opinion, the accumula- 
tion of nonequilibrium spin waves (NSW) produced as a 
result of PSW dissipation. The presence of a large number of 
NSW at small k was observed long a g ~ . ' ~ . ' ~  It is natural to 
expect the number of NSW to increase linearly with time in a 
certain time interval and then reach a stationary regime. The 
nonlinear shift of the frequency on account of the NSW ac- 
cumulation is 

ing can be attributed to the presence of elastic scattering of 
the waves by inhomogeneities. A thorough investigation has uk=mko+2x Tkkrnkr,  (1.3) 

k ' 
revealed that in antiferromagnets the anomalous relaxation 
is most readily due to elastic scattering of PSW by the nu-  here n k  are the occu~ation mm~bers of the NSW and T,,, is 
clear spins." As a ferromagnets, elastic scattering in them is the four-magnon interaction amplitude. If it is assumed that 
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relaxation of one PSW produces one NSW (see Sec. 3 ) ,  we 
get 

where T is the characteristic value of T,,, and Np is the 
number of the PSW. Substituting for Np the expression that 
follows from the S-theory: 

I S I N , = Y ( ~ ~ - ~ ) ' ~ ,  (1 .5 )  

where S is the matrix element of the PSW-pair interaction 
and [ = h 2 / h  f is the ratio of the pump power to threshold, 
we get 

The values of T and S are of the same order, so that the 
estimate ( 1.6) demonstrates the presence of an appreciate 
drift, where the dependence of the width on the supercritica- 
lity agrees qualitatively with the experimental data.'0.12*'3 

In recent experiments artificial spin-wave frequency 
drift was produced by varying the external magnetic field at 
a constant rate. To interpret the experimental data for either 
artificial or natural drift of the eigenfrequency, the corre- 
spondings theory must be modified. In theS-theory approx- 
imation the study of the wave-packet form consists of two 
states. In Sec. 2  we obtain first the form of the PSW packet 
and its amplitude, given the total pump P ,  and the thermal 
noise. This is followed in Sec. 3  by a self-consistency proce- 
dure, since the self-consistent pump P ,  acting on the PSW is 
itself dependent on the wave amplitude and phase. As a re- 
sult, the behavior of the PSW system depends substantially 
on the sign of the derivative Sdw, /d t .  At Sdw, /d t  < 0,  start- 
ing with a certain drift velocity, the PSW packet can have 
three stationary states. To determine the solution that can be 
realized in experiment, we check in Sec. 4  the stability of the 
solutions obtained and determine the frequencies of the col- 
lective PSW oscillations. We show, in particular, that if the 
stationary state of the PSW in the absence of drift is stable, 
the stable states at Sdo, /d t  < 0,  are those with amplitudes 
close to the thermal noise as well as the highest-amplitude 
state that goes over as dm, /dt+O into the S-theory solution 
( l . l ) ,  (1.5). 

In Sec. 3 we investigate also the dependence of the num- 
ber of PSW on the pump power in the presence of a self- 
consistent natural drift with velocity proportional to the 
number of the PSW. 

2. FORM OF PSW IN THE PRESENCE OF FREQUENCY DRIFT 

1 .  The S-theory equations formulated in terms of corre- 
lators are 

dnk/at+2ykn~+2 lm (PkWar) =2yknk0, 

where n, = ( / a ,  1 2 )  and a, = ( a ,  a  - , ) are the normal and 
anomalous correlators of the PSW amplitudes, and n: is the 
thermodynamic-equilibrium distribution function of the 
waves.' The quantity P ,  is the self-consistent pump: 

where S,,, = T,, - , ,,,, -,, is the amplitude of the four-wave 
interaction of a pair of waves with opposite momenta. The 
PSW packet is localized near the resonance surface 
w,  = w p / 2  and falls off rapidly with increasing distance 
from it. It is convenient to transform in Eqs. (2.1 ) to new 
variables, the frequency detuning E = w,  - wp / 2  and the 
solid angle fl = ( 8 , ~ )  of the wave vector k: 

no, a=~onr lk~?  ( 2 . 3 )  

The quantities y, , n:, v, , S,,, , are continuous functions of 
Ikl, and using the fact that the PSW packet is narrow we 
obtain therefore from (2.1 ) 

an,, olat+2ynn,, 04-2 Im (Po'o,, =2yon0, 
(2 .4 )  

ao,, . l a t+2[yn+i (~+g( t ) )  ]a,, Q+ 2iPQn,, P=O, 

where g ( t )  is the drift of the eigenfrequency: 

In the stationary drift-free case, these equations have as solu- 
tions 

g ( t )  =const=O, n., Q =  I P O ~ ~ ~ ~ ~ ( E ~ + Y Q ~ - I P Q I ~ ) .  ( 2 . 6 )  

In the limit as nO+O this solution tends to the standard S- 
theory solution. In the case IP, I > y ,  the solution of the 
system (2 .4 )  increases exponentially with a growth rate 

The region of the instability of the waves in k space is given 
by the inequality v,,, > 0 ,  which corresponds to 

In the linear-drift case of interest to us we have 

Such a frequency drift can lead to the appearance of PSW 
packets that move in k space. The PSW distribution in angle 
in such a packet is constant, and the eigenfrequency w: var- 
ies at a constant rate. At each instant of time in the course of 
the drift, some waves land on the resonance surface 
w,  ( t )  = w p / 2 ,  and others depart from it. The incoming 
waves have thermal-fluctuation amplitudes, and in order for 
them to increase significantly it is necessary that the instabil- 
ity threshold lP, I > y, . In this case the waves that land in 
the instability region increase with a growth rate 

[see (2.7)  1, pass through it within a time 

and their number increases to 

n~(~)~n~exp(2~~~)=n~exp[4(2~)'"(lPl-~)'l~l-~] (2 .12)  

on the instability-region boundary. These wave leave next 
.the instability region and are damped within a time -r. Far 
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from the instability region, the drift can be neglected and we 
have in accordance with (2.6). 

The central frequency w, of the PSW packet is on the edge of 
the instability region and differs from o, /2 by 

It follows from (2.12) that in the absence of thermal noise 
the PSW amplitude is zero. 

For a qualitative analysis of the PSW amplitude and 
phase past the threshold it is convenient to use the condition 
that the pumped-in and dissipated energy fluxed be equal: 

hV sin $=y, (2.15) 

where $is the phase difference between the PSW anomalous 
operator and the pump.' The vector Sa on the vector dia- 
gram (Fig. l ) makes thus an angle $ = arcsin(y/h V) with 
the pump h V (we assume here for the sake of argument that 
S > 0).  The sum h V + Sais  the renormalized pump. We esti- 
mate now the angle between P and Sa. It follows from Eqs. 
(2.1 ) that in the stationary case 

therefore 

Re Proor=- (mk-m9/2) IPk12nk[yk2+ (@k-0~/2)~] -i.  (2.17) 

At not too fast a frequency drift the packet is narrow in 
frequency, so that (P, I 2  = y, + Aw:, at the center of the 
packet, and hence 

Thus, at a positive drift Aw, > 0 and the angle between 
Sa and P is obtuse. Therefore ISaI is smaller than the ampli- 
tude ( Ih V 1' - y2)  ' I 2  of the PSW in the absence of drift. In 
the case of negative drift, Aw, < 0 and the angle between So 
and P is acute, ISuI > ( (h V l 2  - y2) ' I 2  at any drift velocity. 
Strictly speaking, at negative drift the condition (3.15) can 
be met also in the case when the angle between the vector Sa 
and h Vis T - arcsin(y/h V) (line 2). For such a solution to 
exist, it is necessary that the drift be large enough. As shown 
in Sec. 4, however, this solution is unstable. 

2. To investigate the PSW packets produced in the case 
of drift with constant velocity (2.9), it is convenient to 
change from the variable E to the variable w, the running 
value of the frequency detuning, w = E + at .  The stationary 

FIG. 1 .  Complex plate of the pump vector. h V--external pump, y- 
damping, P-self-consistent pump: OA-drift-free, OB(0C)-positive 
(negative) drift. Su = Zk.Skr. or -field of the pair-system reaction. 

drift of the packet is described by solutions that do not de- 
pend explicitly on the time. They satisfy a system of three 
linear equations: 

The solutions of this system should ~bviously, satisfy the 
boundary conditions 

The solutions of the homogeneous system (2.19) have as 
1 w (+ m the asymptotic forms 

Im (PQ*ow,o) wexp [2w (-yQ*iw) /a] ; exp (-2yow/a). 

Not one of these solutions tends to zero as w/a-+co, so that 
no linear combination of the homogeneous-system solutions 
satisfies the boundary conditions (2.20). This means physi- 
cally that parametric excitation of drifting waves is impossi- 
ble in the absence of thermal noise. To determine the form a 
drifting PSW packet we must therefore find for the system 
(2.19) a regular solution that satisfies the boundary condi- 
tions (2.20). The requirement that the solution be regular is 
equivalent to the external-stability condition imposed on the 
stationary state of the PSW in the absence of drift. 

3. Equations (2.19) that describe stationary drift of a 
PSW packet can be made nondimensional by introducing 
the new variables 

The solid angle S1 in Eqs. (2.19) is a parameter; we therefore 
omit the dependence on the solid angle when investigating 
the eigenfrequency makeup of the packet at fixed R. It is 
convenient to introduce in (2.19) new variables 

U(X) =Re(n*a (x) ) , V(X) =-Im (II'o (x) ) , 

M (x) =n ( x )  -no (2.22) 

and use a Fourier transformation to lower the order of the 
differential operator: 

f (x) = 5 fieiu dh. 

As a result we obtain from (2.19) 

(l+iqh) MA- Vh=O, (1 +iqh) Uh-iaVn/dh=O, 
(2.24) 

(l+iqh) VA+idUk/dh- In 1' [Mi+no6 (a) 1 =O. 

Following the change of variable 
z= (li-iqh) '/iq (2.25) 

we obtain from (2.24) 

Solutions of this  equation^'^"' are Whittaker functions with 
index m = 4, viz., W,,& (z) and W -  ,,& ( - z),  where 
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.-=I2 j (1 + +)" e-t dt .  wx:,, (z) = - 
w - x )  

We are interested in the solution of (2.26) on a parabolic 
contour specified by the condition (2.25) for real A: 

Consequently 

A W )  D O  (Rez>O) (2.29) 
BW-,,,mh ( -2)  , A<O (Re z<0) 

At R = 0 (Z = - i/q) the function V(z) is continuous, but 
its derivative is not. As a result we obtain 

AWX,~/, (-ilq) =BW-x;~s (i/q), 

AW:,~~, (-i/q) f B W-x,ll, (i/q) =- I II I k0/2. (2.30) 

The integral amplitude of the PSW packet (the number 
of waves N, ) is expressed in terms of the Wronskian of the 
Whittaker functions W,,I (z) and W- (z) and of their val- 
ues at the point z = - i/q: 

where 

A= w,,!,, (z) W-x,tl, (-Z) + W,,I~ (z) w I ~ , ~ ~  (-Z) =-ein"". (2.32) 

The integral characteristics of the anomalous correla- 
tor are expressed in similar form 

Table I lists the values of the integral amplitudes N, 
and U, referred to ?rk I II, I2y, nO/v,  in all limiting cases 
that arise at various values of the parameters q (the drift 
velocity) and renormalized pump I II 1. 

Up to the threshold of the parametric instability and at 
low drift velocity 1771 4 1 we have the usual below-threshold 
heating of the wave system. In this case 

just as in the absence of drift. In the case of a small excess 
above threshold and very small drift 1 q 1 < ( 1 ll1 - 1 ) 312 we 
get 

This is just the case that we have discussed qualitatively in 
Subsec 1 of Sec. 2, and the present result (2.35) agrees qual- 
itatively with the earlier estimate (2.12). It can be seen from 
the table that the amplitude ratio is here 

At a higher drift velocity lql 2 ( III l 2  - 1 )312 the number of 
the PSW has a limit close to the thermal value: 

With increasing drift velocity, the integral amplitude 
Re (P Xu, ) decreases in proportion to Iq ( - l .  

TABLE I. - I - I,wn, 11, (-f) - n ,  % (+) -)$[w~,~/,(~) -4, t14-e) k-im 
I ~ I ~ I ~ I  1 

( I ~ I < Y I P I )  0 

I q I -4 I II I 2-1)a1a 2 ch (25) 
(I a 14 (I P la - y2)"*ly) - 2 sh (25) 

2 e x p b  I x I ) sh(ixn) -;exp(n I x I ) X  
ixn 

x sh (i xn) In 4qa 

I n l a  + 41 rl ~ e - ~  

*Note. 26= 7j-1{ln/2arctan[(ln/2 - 1)112] - (/1II2 - 1)li2), 
2 5 1 3 p  1.26, C = 0.577 ... is the Euler constant. 

3413r2(2/3) 
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We determine now the position of the center of the 
packet Aw, and its width 6, in terms of the eigenfrequen- 
cies. If the PSW packet amplitude is large enough, waves 
having frequencies far from resonance make a small contri- 
bution. Neglecting these "tails," we get 

6*2=~2--$. 

In the case when (q (4 ( (II I 2  - 1 ) 312 ,  

In the other case, when the number of PSW is substantially 
higher than that of the thermal ones, I P I '%a% IP I y, we have 

In all other limiting cases the PSW numbers are of the same 
order as of the thermal and will not be considered here. 

For the number of PSW to be quite large and experi- 
mentally observable, the following condition must be met: 

We determine now the total number of waves in a packet and 
the integral amplitude of the anomalous correlator, by inte- 
grating (2.3 1 ) and (2 .34)  over the angles in k space, since 
the values N, , V, , and U, were obtained for a given direc- 
tion a: 

The expressions for N andp in various limiting cases take the 
forms 

~ = ~ ~ ( n l a l y ~ / ~ ) " " ~ o l ~ ( I P o 1 ~ - ~ o ~ ) - "  

x exp[4/s(~~o~2-~~2)Y'/~a~7~l~ (2 .44)  

p= (IP,12/y02-1)'1r sign a - ~ l P , 1 ~ i 8 (  I Pol2-yo2) 
at (a1 4 ( lPo12 - yt )312/yo.  We have used here the fact that 
the surface-wave packet is narrow in terms of angle, so that 

we can put 

IP(c0s 8 )  I 2 = I  Pol"l-p cos"), (2 .45)  

where N, is the number of thermal waves in a layer of width 
Am, = ny ,  near the resonance surface: 

This is the level from which development of parametric in- 
stability begins. In the limit when yi4(P0( ' ,  (a(<(P0( '  we 
have 

In thecase yi%lal%(lPo12 - yi)312/3/0 

N=NTI Po I V/B'"yO2, p= ( a / 2 y o y  "". (2 .49)  

3. PSW INTERGAL AMPLITUDE-SELF-CONSISTENCY 
PROCEDURE 

Knowing the expressions ( 2 . 4 4 H 2 . 4 9 )  for the num- 
ber of waves in terms of the total pump, and the connection 
between P ,  and the anomalous correlator ( 2 . 2 ) ,  we deter- 
mine now the dependence of the total number N of the PSW 
on the pump amplitude h. 

1. For artificial drift, the self-consistency procedure re- 
duces to finding the connection between the number of 
waves and the pump power, using relation ( 2 . 2 )  from which 
it follows that 

where 

p=-Re (P' X) / y N .  

The solution of this equation is 

If the following condition is met 

the number Nof the PSW is large compared with the thermal 
noise, and p is determined by Eq. (2 .44 ) .  From ( 3 . 3 )  we 
obtain 

(3 .5 )  
The simplest to analyze is the case S a  > 0. In this case only 
the solution N,(() in ( 3 . 5 )  is meaningful. Figure 2 shows 
plots of N , , ,  vs IP I from ( 3 . 5 )  and (2 .44)  at a fixed pump 
power h 2 ,  low thermalnoise level 

E,=ISINT/rel ( 3 . 6 )  
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and various drift velocities. If the supercriticality exceeds 
the thermal-noise level (6 - 1) ' I 2  > 6, it follows from (3.5) 
and (2.44) that 

The first term in (3.7) corresponds to the known S- 
theory result. The number of PWS decreases with increasing 
drift velocity. At very low supercriticalities, 
(f - I) ' /*  < 177('13, E ~ S .  (3.7) are not valid, since the con- 
dition (3.4) is violated. In this case the number of waves is 
small compared with the thermal ones and is described by 
Eq. (2.49). At large supercriticalities the condition (3.4) is 
likewise not met, and one must use for N Eqs. (2.47) and 
(2.48), but the behavior of N as a function of the drift veloc- 
ity a remains qualitatively the same. The calculated plots of 
N for 6 = l o p 3  and various values of the pump power and 
drift velocity are given in Fig. 3. 

At negative drift velocity both solutions (3.5) can be 
meaningful. It can be seen from Fig. 2 that at not too low 
noise levels and not too high drift velocities there exists a 
unique solution corresponding to the root N ,  in (3.5) and 
described by Eq. (3.7). As Sa- - 0 this expression coin- 
cides, naturally, with the S-theory result. If the noise level is 
low and the drift velocity high enough, we have in accor- 
dance with Fig. 2 three solutions for the number N of the 
waves and for the renormalized pump P. 

The smallest of the solutions N corresponds to a situa- 
tion in which the noise level is so low, and the drift velocity 

FIG. 2. PSW integral amplitude vs self-consistent pump from 
Eqs. (3.5) and (2.44): a-Sh, /at > 0; b-Saw, /at < 0; 
curves 1 and 3 correspond to different thermal-noise levels 
(Ny'>N(: ' ) .  

high, that the time of passage through the stability region is 
too short for the PSW amplitude to increase to a significant 
values. The two other solutions correspond to the points A 
and B in Fig. 2; the solution corresponding to the larger 
value of N is represented by the point A and is stable, while 
the intermediate value is represented by the point B and, as 
shown in Sec. 4, is unstable. 

Figure 4 shows a set of plots of the number N of the 
waves vs the pump power 5 2, calculated for various values of 
the drift velocity a and for a thermal noise amplitude 
5 = 1 0 - 3 .  

Thus, at fixed drift velocity, the dependence of the num- 
ber of PSW on the pump power exhibits hysteresis. If the 
radicand in (3.3) is positive (f >J2) ,  where 

(3.8a) 
two stable states of the PSW can exist. With increasing pump 
power at f > C,, where 

there remains a single state, which turns as a 4  into the 
standard S-theory solution with an amplitude close to the 
known expression ( 1.5). 

2. If the drift of the frequency w, is due to accumulation 
of the PSW relaxation products, it must be determined in a 

FIG. 3. PSW integral amplitude vs supercriticality at Saw, /at > 0 and FIG. 4. PSW integral intensity vs supercriticality at Saw, /at < 0 at dif- 
at different intrinsic drift velocities: a = 0 ( 1 ); a S / 2  JIS / = ( 2 ) ,  ferent intrinsic drift velocities: a = 0 ( 1 ); a S / 2 y I S  1 = - lo-' (21, 
3.10-' ( 3 ) ,  3 (4) .  - 3.10-I (3) ,  - 3 (4) .  
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self-consistent manner. The PWS drift velocity is deter- 
mined by the rate of the NSW accumulation. 

It is easy to verify that the number n = Zn, of NWS is 
equal to the number of PSW dissipated within a time 
(2yk )-I. Indeed, the main PSW relaxation channel is via 
coalescence with formation of a new NWS. The resultant 
spin wave (SW), however, again decays to form two SW of 
lower frequency. As a result, one PWS and a thermal SW 
with momentum k, are transformed into two SW with mo- 
menta k, and k,, i.e., relaxation of one PSW increases by 
unity the number of SW that are not connected with the 
pump (this accumulation mechanism was proposed by V. S. 
L'vov ) . 

Four-magnon scattering processes to not lead to excita- 
tion of high-frequency SW. Indeed, in four-magnon pro- 
cesses there are preserved not only the SW energy 
E = Z w, n, but also their number n. Therefore, if the SW 
were initially excited in the low-frequency region, most of 
them will subsequently remain localized in this k-space re- 
gion. Thus, the NSW should accumulate and lead to drift of 
the eigenfrequencies a,. The velocity of the natural drift is 
therefore specified by Eq. (4) .  More detailed estimates can 
be found in our preprint. 18 An expression for T , ,  in a ferro- 
magnetic given in Ref. 19. In the limit k ' sk  we have for 
M 1 1  [ 1001 

where w, = 4.rrgM, g is the gyromagnetic ratio, M is the 
magnetization , wp is the pump frequency, and w, is the 
frequency connected with the crystallographic anisotropy. 
For an yttrium-iron garnet at room temperature we have 
w, = 2n.4.9.109 s-I, w, = 2n.0.23.109 s-I. As a result, for 
the frequency up = 9.4.2n.109 s- ' at which the experiments 
of Refs. 10, 12, and 13 were performed, the drift velocity is 
anomalously small: 2T IS 1 - ' =: 3.5 x lo-'. 

When the pump frequency is changed by 30% the value 
of 2T IS I -' for kf)kis increased by an order ofmagnitude. If 
the parameter 2T IS I - '  is not too large, the number of the 
PSW can be found with the aid of expression (3.7) 

ISIN=(lhV12-y2) 'A 
-{3TNy21n [ ( 1  hV12/y2- l ) /E] ) ' i r .  (3.10) 

At low supercriticalities [ <i we have 

E 2 - I =  (3T/21SI)  In k', (3.11) 

TLV='/ ,~ (1;'-1)"ln [ (C2-i)'"/E]. (3.12) 
At high pump powers the solution is close to ( 1.5) of the S- 
theory. A numerical calculation of the pump power for dif- 
ferent values of the parameter 2T  IS I - '  shows that even at 
low values of this parameter (2T IS I - ' 2 lo-') the solution 
deviates substantially from theS theory. It should be noted, 
however, that at [ < 5 the number of PSW increases insignifi- 
cantly, so that it is impossible to observe in experiment the 
increase of the number of the PSW at a small excess above 
threshold. If the threshold power is defined as the pump 

FIG. 5. Dependence of N on h '/h : (h, is the threshold pump ampli- 
tude) at different drift velocities: ]--a = 0,2-2T/IS / = 0.3, 3-2T/ 
1st = 1,4-2T/!SI = 3. 

power at which the number of PSW is 2% of the correspond- 
ing number [' = 2, the "measurable" threshold power {, 
increases. Figure 5 shows the numerically calculated depen- 
dence of the number of PSW on the pump power in units of 
h 2 / h  :. The plot obtained in these coordinates is close to the 
S theory, but the measured threshold differs from the true 
one by 10-20%. 

4. STABILITY OF STATIONARY STATE AND COLLECTIVE 
SPIN-WAVE OSCILLATIONS IN THE CASE OF FREQUENCY 
DRIFT 

To investigate the stationary state of PSW one must 
consider the evolution of small perturbations against the 
background of this state. In this case, 

M ( x ,  t )  =M, ( x )  +A? ( x ,  t )  , U ( x ,  t )  =Uo ( 2 )  ( 2 ,  t )  , 

V ( x ,  t ) = v O ( x ) + v ( x l  t ) ,  
(4.1) 

where M, U, and V are expressed in terms of the correlators 
by Eqs. (2.22). In the axial-symmetry case that we are con- 
sidering, it is convenient to expand the solution in axial har- 
monics: 

P P 

(4.2) 
v. ( x )  = C v, ( x )  eipq. 

P 

The Fourier transformation (2.23) recasts the linearized 
system in a form similar to (2.24): 

(I- iQ/2y+iqA) A?, ( h )  -8, ( h )  

=2n(.r~n~2)-L~p[~(h)Bp(0)-U(h)~p(O)ll 

where Tp and S, are axial harmonics of the matrix elements 
T,,, and S,,. (Ref. 1 ). The operator in the left-hand side of 
(4.3) is of the same form as operator (2.24). The eigenfunc- 
tions of the corresponding homogeneous system are ex- 
pressed in terms of the Whittaker functions W,,,,, (y), 
W -  ,.,,, ( - y)  and their derivatives, where y = ( 1 - i n /  
2 y + i v A  ) 2/i77. 
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The right-hand side of the system (4.3) contains the 
known functions M(A ) , U(A ), and V(A ) expressed in terms 
of the Whittaker functions W ,,,,, (z), W -  ,,,,, ( - z) ,  
where z = ( 1 + i$ )2/irl, and of the values of the functions - - 
M, U, and v a t  A = 0. We multiply the system (4.3) by the 
solution of the conjugate system and integrate the result with 
respect toil from co too. In thecase la1 4 ( IP l 2  - Y2)3'2/Y of 
greatest interest to us the maximum contribution to the inte- 
grals is made by the region near A = 0. As a result we obtain 
a system of algebraic equations; equating its determinant to 
zero, we get the eigenvalues 

Q,, 2=-iy&{4[S,N+ ( ( P ( Z - y Z ) ' "  sign a ]  ( 2 ~ , +  S, )N-yZ}"  
(4.4) 

(see Ref. 18 for details). The obtained collective-oscillation 
frequencies' coincide with the oscillation frequencies of a 
narrow PSW packet localized in k space on the surface 
w, = wp/2 + Aw,, i.e., where the center of the packet of 
drifting PSW is located. 

Of greatest interest in experiment is the instability of the 
p = 0 mode, and we confine ourselves for simplicity to an 
investigation of the stability with respect to this mode. The 
stablity condition forp = 0 is 

So (2To+So) (ISoIN-SoAorIISoI) SO. (4.5) 

The problem of stability of oscillations with p = 0 reduces 
thus to a determination of the sign of the quantity 

q=S,N+ ( (PIZ-y2) ' s ign  (Sa)  . (4.6) 

We assume for the sake of argument that So(2To + So) > 0, 
i.e., that the PSW state is stable in the absence of drift. For a 
PSW system with drift to be stable in this case it is necessary 
to satisfy the inequality q > 0. This condition is met ifSoa > 0 
(positive drift). If, however, Soa < 0 then, as follows from 
(3.5 ), the stable state corresponds to a positive root in (3.5), 
i.e., to the largest Nat a given pump power. In the derivation 
of (4.4) we have actually assumed that the number of the 
PSW is exponentially large compared with the thermal 
noise, and thus we have therefore shown only that the states 
corresponding to the points A and B in Fig. 2 are respectively 
stable and unstable. As for the state represented by the point 
C, the PSW level in it is close to thermal, and the renormal- 
ization ofthe pump is small compared with unity: (P ( -- (h V 1. 
Such a state is stable. Note that if the PSW packet is unstable 
in the absence of drift, S0(2T0 +So) <O, we can at suffi- 

ciently high negative drift velocity (Soa < 0) attain the sta- 
ble state corresponding to the point B in Fig. 2. 
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