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The interaction between a weak perturbation of the flow behind the front of a shock wave and the 
front itself is investigated in the vicinity of resonances corresponding in the linear approximation 
to an infinite reflection coefficient. The conditions under which regular reflection is impossible 
are determined. Under these conditions a weak perturbation in the form of a three-wave 
configuration can propagate in advance along the shock-wave front from the intersection line of 
the fronts of the incident wave and of the unperturbed shock wave. This perturbation modifies the 
shock-wave front in a way that makes regular reflection again possible. According to the results, 
infinitely small perturbations of the flow behind the shock-wave front do not lead to finite 
perturbations of the front. 

INTRODUCTION 

Sound reflection by a shock-wave front was theoretical- 
ly investigated by Kon to r~v ich '~~  and by D ' y a k ~ v . ~  This 
question was reconsidered much later by Fowlese4 Accord- 
ing to Refs. 2 and 3, the ratio p,/pf of the pressure ampli- 
tudes of the reflected (p, ) and incident (pf ) waves becomes 
infinite under certain conditions. This reflection singularity 
was named resonance in Refs. 2 and 3. Resonances exist2 
when the following inequalities obtain: 

whereL =J2(dv/dp),, J=  [(p-po)/(vo-v)]"2 is the 
flux of matter through the shock-wave front, (dv/dp), is 
the derivative of the specific volume v with respect to pres- 
sure along the shock adiabat, M is the shock-wave Mach 
number relative to the flow behind it, and e=vdv is the 
degree of compression in the shock wave. 

In the theory of stability of shock waves to small pertur- 
bations (linearization of the hydrodynamic equations with 
respect to perturbations and solution of the characteristic 
equation for the complex frequency5-'; this theory will be 
called hereafter linear for short), the inequalities ( 1 ) deter- 
mine the conditions under which there exist perturbations 
that remain undamped and do not increase in time (corruga- 
tions). Corrugation perturbations of the front surface lead in 
case ( 1 ) to downstream propagation of sound waves from 
the shock front.5 Inequalities ( 1 ), following Ref. 5, are 
therefore also called conditions for spontaneous emission of 
sound by the shock-wave front. It is noted in Ref. 2 that the 
conditions for the existence of resonances and for the emis- 
sion of sound waves coincide because the resonance equation 
(p,/pf = cu ) correspond to the characteristic equation of 
the stability problem.5 

The evolution of shock-front-surface perturbations was 
investigated in Ref. 3 by the method of the theory of shock- 
wave intersection. The perturbations were specified in the 
form of three-wave configurations. It was shown that the 
conditions for stationary existence of such surface perturba- 
tions are determined by inequalities ( 1 ) . This coincidence is 

not accidental, since the corrugation perturbation of the sur- 
face, considered in Refs. 5-7, can be represented as a super- 
position of three-wave  configuration^.^ In this sense, analy- 
sis of the evolution of three-wave configurations led to a 
result previously known from the linear theory. The shock- 
wave intersection theory, however is relatively simpler and 
more lucid. This advantage of the method becomes particu- 
larly important for the solution of a much more complicated 
problem, that of shock-wave stability in the nonlinear ap- 
proximation. 

The possibility of shock-wave instability in the region 
( 1 ) was not excluded in Refs. 2 and 3, but it was emphasized 
there that this question calls for a special investigation. In 
Ref. 4, however, the presence of resonances is treated al- 
ready more categorically, albeit without proof, as a direct 
manifestation of shock-wave instability. The subdomain of 
the values ofL that satisfy Eq. ( 1 ) is accordingly included in 
Ref. 4 in the shock-wave instability domain. 

The present paper explores the true character of the 
enhancement of weak perturbations by reflection from a 
shock-wave front under conditions for which p,/p,--+~ in 
the linear approximation, and checks whether reflection can 
produce an infinitely weak wave a finite perturbation and 
thereby lead to instability of the shock-wave front. These 
questions can be answered only by forgoing the linear ap- 
proximation. As in Ref. 8, the investigation is based on the 
theory of shock-wave intersection in a quadratic approxima- 
tion. 

51. LINEAR APPROXIMATION 

It is convenient to start from the results of the investiga- 
tions of three-wave configurations in an approximation lin- 
ear in the weak-field amplitude. We have in mind configura- 
tions made up of the fronts of an unperturbed shock wave 1, 
a perturbed one 2, and a weak wave 3 (Fig. 1 ). The condition 
for the existence of a three-wave configuration with a speci- 
fied angle y between fronts 1 and 3 is expressed as 
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FIG. 1. Configuration of three waves with a weak compression wave 3: 
1-unperturbed shock wave, 2-perturbed shock wave, T-tangential 
discontinuity. The arrows indicate the current-line directions in a coordi- 
nate frame with immobile point 0. 

where the function $( y) multiplied by the jump of pressure 
p, in wave 3 is the difference between the flux rotation angles 
?,I~ in wave 1 and waves 2 and 3, in a coordinate frame with an 
immobile point 0 (Fig. 1 ); 

Using the relations of Ref. 8 between the current-line 
rotation angles, amplitudes, and wave orientation, we can 
show that in the linear approximation 

The incident and reflected waves 3f and 3r, together with the 
initial shock wave 1 and the perturbed one 2, make up a four- 
wave configuration (Fig. 2). In the linear approximation, 
the perturbations of the shock wave by waves 3f and 3r are 
additive. Therefore the condition for existence of a four- 
wave configuration, which stipulates that all the current 
lines in sector IV be parallel, is represented in the linear 
approximation, in analogy with (2),  in the form 

The relations between the angles y for the incident ( yf) 
and reflected (y, ) waves follow from the requirement that 
the propagation velocities V, of the waves 3f and 3r along the 
front of wave 1 be equal. This requirement is determined in 
the linear approximation by the equality2s4s8 

l - M  cos 7, - l - M  cos yt Vt  
- ,  =- 

sin 7, sin 7, c 
( 6 )  

where c is the speed of sound behind the shock-wave front. 
The angle yf, can specified in the range O< yf( yo 

Zarccos M. Accordingly, y, varies in the range n-9 y, <yo. It 
follows from ( 5 )  that 

This result, in terms of other variables, was obtained in Ref. 
2 (see also Ref. 4). 

A complete quantitative quadratic-approximation cal- 
culation of the reflection of a weak perturbation from a 
shock wave entails very laborious calculations. The results 
of such calculations are given in 9'4. The quantitative charac- 
ter of the solution, however, is easier to investigate by using a 
phenomenological approach. 

$2. PHENOMENOLOGICAL NONLINEAR ANALYSIS OF * 

WEAK-WAVE REFLECTION 

The condition for the existence of a four-wave configu- 
ration, given the angle yf, can be represented, with the terms 
quadratic inpf andp, taken into account, in the form 

PI$ ( 7 t )  +pI$ (yr )  + a ~ ~ ~ + a ~ p ~ p t + a ~ p ~ ~ = O .  (8)  

We emphasize that here, just as in (S), the function $( y) is 
defined by Eqs. (3) and (4) .  The coefficients a, a , ,  and a, 
depend on yf, on parameters determined by the thermody- 
namic properties of the material at the given point on the 
shock adiabat, and on the pressure and density of the materi- 
al ahead of the shock wave. 

Being interested in a solution near resonance, i.e., in the 
vicinity of a point at which $(y,) = 0, p,%pf, we retain in 
the quadaratic form contained in (8 )  only the maximum 
term (it is assumed that afO at the resonance point; the 
possibility of violation of this inequality is considered in §4). 
We have then in lieu of (8)  '' 

P , $ ( Y ~ )  +pT$(yr) +apr2=0. (9)  

The following properties of the function $(y) will be 
found important if the parameter L satisfies conditions ( 1 ): 
a)  $( yf 1 < 0; b) $( y, > 0 at y, > e, where yf. is the root of 
Eq. (2),  i.e., the resonant value of the angle y, at a given L. 

Let us prove inequalities a )  and b).  Let a certain value 
of yf be given. We denote by Lf the value of the parameter L 
that causes the function (3)  to vanish at the point y = yf. Lf 
is bounded in the range - 1 < Lf <Lo (see Ref. 8).  Conse- 
quently, the inequality L > Lf is valid under conditions ( 1 ). 
Taking this inequality into account and substituting $( yf ), 
in accordance with (3),  in the form 

$ ( r t )  ='I2 (Lr-L) ('3-4) (A+'3/A) [ (P-PO) ( l + A Z ) l  -', 
we arrive at inequality a ) .  

The angle y, at which the function (3)  with a specified 
value of the parameter L from the region ( 1 ) vanishes in- 
creases monotonicallys with increasing L (if 8 and M are 
fixed). This and (3)  lead directly to the inequality b). 

The quadratic equation (9),  which goes over far from 
resonance into (7), has a root 

FIG. 2. Configuration of four waves: 1-unperturbed shock wave, 2- 
perturbed shock wave, 3-weak shock wave or weak rarefaction wave 
(3f-incident, 3r-reflected), T-tangential discontinuity. The arrow in- 
dicates the direction of the current lines ahead of the shock wave in a 
coordinate system with immobile point 0. 
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FIG. 3. The ratio p,/pf vs the reflection angle y, in the vicinity of the 
resonance point y, = yf for the case up, > 0. 

The second root of (9) fails to satisfy, even far from 
resonance, the cond i t i onp r4  aspf-+O, and is similar to the 
solution of the strong family in the problem of regular reflec- 
tion from a rigid wall (Refs. 9 and 10). 

The root (10) is positive at $(y,) >O (i.e., at y, > ~ )  
regardless of the sign of upf. If upf > 0 the maximum of X is 
reached at the point $(y,) = 0 and is equal to 
( - $("/r)/apf) 'I2. In this casep, is a maximum: 

If upf < 0 the maximum value of X is reached at the 
point $(y,) = 2($(yf )upf) 'I2 and amounts to 
($(yf)/apf )'I2. Both results can be written in the same 
form: 

At upf > 0 there is a region of values of yf in which Det < 0 
and Eq. (9) has no real solution. This case is considered in 
$3. 

It can be seen from ( 1 1 ) that X,,,- co asp+. In this 
case, however, pr,,,,-+O. This means that infinitely small 
perturbations that are reflected from the shock-wave front 
remain infinitely small, and only the order of their smallness 
changes. As for finite perturbations, according to ( 11 ) they 
remain finite on reflection. 

On going through the resonance point in the case 
upf > 0 by increasing yf, the sign of $( y, ) is reversed and the 
solution that passes far from the resonance in (7 )  is the sec- 
ond root of Eq. (9) : 

This root is negative: a compression wave is reflected in the 
form of a rarefaction wave and vice versa. At the resonance 
itself the solution is not ambiguous (see Fig. 3). We empha- 
size that although the picture of the flow is ambiguous, the 
qualitative character of wave enhancement on reflection in 
the vicinity of the resonance point is unchanged: if p,+O 
t h e n p r 4  at a rate not slower thanpf'". 

53. THE CASE ap, < 0, Det < 0 

In this case Eq. (9)  has no real solution. Accordingly, 
wave reflection does not reduce to formation of a configura- 
tion with only four waves. In this case one can expect the 

asymptotic evolution of the reflection to be accompanied by 
a larger change of pressure in the perturbed shock wave com- 
pared withp,,,,, [Eq. ( 11 ) 1. However, increasing the pres- 
sure by a certain value not exceeding 2p,,,, suffices already 
to make the velocity V, of the autonomous three-wave con- 
figurations larger than or equal to the velocity V, of the inci- 
dent wave. This causes a three-wave configuration to sepa- 
rate and proceed forward (to the right in Fig. 4) from the 
line of intersection of the fronts of the incident wave and of 
the unperturbed shock wave. This can be seen, for example, 
from the following: the angle y of the three-wave configura- 
tion increases in the case upf < 0 with increasing amplitude 
of the pressure of the wave 3, and becomes equal to the angle 
y,,,, that corresponds to the boundary of the existence of 
the four-wave configuration (defined by the condition 
Det = 0)  at a value ofp, that satisfies the equation $(y,,,,, ) 

+ up, = 0. This value ofp,, as seen from a comparison with 
( lo ) ,  is double the value of p,,,, . At equal y, however, V, 
increases with increasing amplitude of the weak wave. For 
this purpose it is necessary only to satisfy the usual condition - 
P F (a 'v/c5p2), > 0, where s is the entropy. 

In the angle range IT > y, > r/2, the flow in the vicinity 
of the point 0 ' is supersonic (see Fig. 4). There are, however 
no other incoming waves, other than the incident wave and 
the initial shock wave, to cause the point 0 ' in the laboratory 
frame with supersonic velocity. Under these conditions the 
velocity V, for the point 0 ' can be not larger but only equal to 
the velocity V, for the point 0. The point 0 ' is localized in 
this case on the forward boundary of the viscous structural 
layer of the front of the incident wave. (In view of the in- 
equality~,, spf,  the width of the front of wave 3' is relatively 
small and it is reasonable to assume localization of this front 
in the strongly spread-out structural layer of the incident- 
wave front.) The pressure of the incident wave on this 
boundary is vanishingly small. The pressure p,, is deter- 
mined by the condition that the velocities V, be equal for the 
points 0 and 0'. 

After the three-wave configuration passes forward (see 
Fig. 4), the reflection conditions change: a )  In the case 
upf > 0 the resonant value of the angle y, increases with in- 

FIG. 4. Complex reflection in the vicinity of the resonant incidence angle 
in the case apf < 0: 1-unperturbed shock wave, 2'-shock wave per- 
turbed beforehand by an emerging weak shock wave (or by a weak ra- 
refaction wave) 3'; 3f and 3r-incident and reflected waves, 2-perturbed 
shock wave. The three- and four-wave configurations are made up respec- 
tively by the waves 1-3'-2' and 2'-3f-3r-2; T-tangential discontinuities. 
The arrow indicates the direction of the current lines ahead of the shock- 
wave front in a coordinate system with immobile point 0. The small 
changes of the directions of the wave fronts and of the tangential discon- 
tinuity at the points 0' and 0 " are not marked. 
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creasing pressure of the three-wave configuration that 
passes forward. This can be verified by taking into account 
the already mentioned increase of the three-wave-configura- 
tion angle y with increasingp,, , by representing this increase 
as a result of interaction of two three-wave configurations 
propagating in the same direction and having weak emerg- 
ing waves with positive pressure amplitudes. The second 
configuration overtakes the first. The signs of the pressure 
increment resulting from the reflection of the second config- 
uration by the first, of the angle y, of the velocity of the 
material, and of other parameters (it is important that both 
configurations have weak waves 3, Fig. 1 ) coincide with the 
signs of the corresponding quantities ( p,, y, - y,, and oth- 
ers) in the second three-wave configuration. Here y, and y, 
denote respectively the angles y for the first and second con- 
figurations. b)  Given the orientation of the incident wave, 
meaning hence given the velocity V, of this wave, the angle 
y, decreases with increase of pressure p,, , of the forward- 
passing three-wave configuration, provided that apf <O. 
This can be seen from the following. Owing to the increase of 
the sound velocity with pressure (the condition P > 0)  and 
to the additional drag by the flow behind the three-wave 
configuration, the velocity V, of the reflected wave increases 
at a fixed angle y,. The value of V, for the reflected wave, 
however, cannot increase, since it must be equal to the value 
V, specified for the incident wave irrespectively of the pres- 
surep,, , of the three-wave configuration. The required con- 
stancy of V, is ensured by decreasing the angle y,. Recall 
that y,>y,, and according to ( 6 )  we have 
(dV,/dy),= ,, > 0. 

Since the changes of the angles yf. are of opposite sign 
[as indicated in Subsecs. a )  and b) 1,  the reflection of a wave 
with specified incidence angle such that Det < 0 can be trans- 
formed, by increasing the pressurep,, , of the forward-emit- 
ted three-wave configuration, into the regime corresponding 
to the region where Eq. (9)  has a real solution with negative 
X (see Fig. 3 and the solution ( 12) at $(y , )  < 0, upf <0) .  
The minimum three-wave-configuration pressure P , , , ~ ~ ~ ,  
sufficient for this purpose is implicitly defined by the condi- 
tion 

The meaning of this equation is that for reflection from the 
front of the perturbed shock wave 2' (Fig. 4 )  the root X 
should correspond to the boundary of the domain of nega- 
tive solutions of Eq. (9) .  The subscript P i n  in (13) means 
that the solution pertains to the case of reflection from a 
perturbed shock wave. 

The inequality Det < 0 for reflection in an unperturbed 
shock wave at low pressure of the incident wave is satisfied in 
a narrow range of angles yf on both sides of the resonance 
points. The lower and upper limits of this interval are deter- 
mined respectively by the conditions Det = 0, $( y, ) > 0 and 
Det = 0, $( y, ) < 0. The pressurep,,,min decreases monoton- 
ically from a value of order p,,,, , on the lower boundary to 
zero on the upper. An estimate shows that p,,,,,, /P~,,,,~ < 4 
on the lower boundary. More definite-data on this pressure 

ratio can be obtained by quantitative analysis of configura- 
tions similar to those shown in Fig. 4, as functions of the 
parameters in the statement of the problem, such as the coef- 
ficient a and others. 

The pressure p,, at the point 0' (we designate it by 
p,,,,) can, however, not be varied arbitrarily. It is deter- 
mined by the indicated condition that the velocities V, be 
equal for the points 0 and 0 ', and is bounded by the inequa- 
lity p,,,, < 2p,,,, . I ~ P , , , , , ~ ~  >p3,,,, the needed pressure in- 
crease from p,,,, to P,,,,~" can apparently be produced by 
bending of the lines 0-0 ' and of the front 3' (see Fig. 4).  
This question calls for additional numerical investigation. 

The qualitative restructuring of the reflection picture 
with forward emission of a three-wave configuration recalls, 
in some respects, the transition to an irregular (Mach) re- 
flection of a wave from a rigid wall. Thus, regular reflection 
from a shock-wave front becomes impossible, as does reflec- 
tion from a rigid wall," starting with the incidence angle at 
which the reflected waves of the "weak" and "strong" fam- 
ilies coincide. For the solution ( lo),  ( 12) this corresponds 
to the case Det = 0. A regular reflection from a rigid wall is 
possible, however, at all incidence angle, if the incident wave 
is weak enough. In addition, the character of the considered 
"irregular" reflection from the shock-wave front is entirely 
different: a wave system that is more complicated than in 
Mach reflection from a rigid wall is produced, with three 
intersection points 0,O ', and 0 " (see Fig. 4).  In contrast to 
the nonstationary Mach reflection from a rigid wall, four 
rather than three points waves intersect at the point 0 ". 

The considered pictures of the reflection are qualita- 
tively different in different ranges of the incidence angle and 
at different signs of apf. An important common feature, 
however is that as the amplitude of the incident wave pf 
tends to zero the amplitudespi of the pressure in the reflect- 
ed wave (pi =p,)  and in the three-wave configuration that 
moves forward (pi =p,, ) (if such a configuration is pro- 
duced) do not tend to zero more slowly than p y ,  i.e., 
Ilim( pi/p)/2),+, I<lconstI # co. 

$4. CALCULATION OF THE COEFFICIENT a 

In the linear approximation, the parameters that deter- 
mine the four-wave configuration (unperturbed and per- 
turbed shock waves, incident and reflected weak shock 
wave) are the pressurepf and the orientation of the incident- 
wave front, the point corresponding to the unperturbed 
shock wave on the shock adiababat (which passes through 
the specified point of the initial state of the substance), the 
slopes of the shock adiabat, and the isentropes at this point. 
Specification of the point on the shock adiabat defines the 
quantities 6, M, and J '. If J is known the slope of the shock 
adiabat is characterized by the parameter L. The slope of the 
isentrope is determined by specifying the speed of sound c. In 
the quadratic approximation, this set of parameters is sup- 
plemented by quantities that characterize the changes of the 
shock-adiabat and isentrope slopes. These quantities can be 
expressed in terms of the derivatives dL/dp and 
P--  ( a2~ /ap2 ) s .  
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To express in explicit form the condition that all the 
current line in the sector IV (Fig. 2) be parallel it is neces- 
sary, in the quadratic approximation (9) ,  to take into ac- 
count the following: a )  The change of the shock-wave veloc- 
ity D and of the degree of compression 8 in second order in 
the pressurep,, expressed in terms of the second derivatives 
d *D /dp2 and d '8 /dp2. b) The changes of the velocity D, of 
the weak shock and of the angle y, in first order in p,. The 
dependence of D, on p, is determined2' by the equation D, 
= c + D C ~ ~ , / ~ V ~ .  The changes of D, and y, lead to a corre- 

sponding change of the quantity S defined in Eq. (4).  The 
number M in (4)  must then be replaced by the ratic Mc/D,. 
We note that the quantity A [Eq. (4)  1, unlike S, remains 
unchanged. This can be easily verified if it is recognized that 
A can be expressed (see Ref. 8 )  in the form A = 8V,/D and 
that the velocities V, and D do not depend on p,. c )  The 
second derivatives of the trigonometric functions of the an- 
gles that characterize the rotations of the flow as it crosses 
the fronts of the waves 1, 2, and 3 (see Fig. 2). 

After these calculation stages are completed, the coeffi- 
cient a in (9)  can be ultimately expressed in terms of the 
aforementioned parameters yf, 8, M, v, p - p,, L, dL /dp, c 
andB. Omitting the rather laborious algebra, we present the 
final result and describe the nature of its terms: 

(0-1) (02+A2) 
a,, = - - 

4(p-po) ' A  (1+A2) 
[ (0+1) (I+L2) 

z, B, and b are given by 

After reducing similar terms, the sum a,, + a,, takes 
the somewhat simpler form 

The terms of the sum ( 14) are connected with the fol- 
lowing corrections of the approximation quadratic in p,: aHx 
corrected for the anglex is determined by the second deriva- 
tive d 2D /dp2; aHp corrected for the density in the perturbed 
shock wave is determined by the second derivative 
(d2p/dp2)H; aHt corrected for the difference between the 
flux rotation by the fronts of the perturbed and unperturbed 
shock waves is expressed in terms of the second derivatives 
of the trigonometric functions; a,, with the correction to the 
angle y determined by derivative dD,/dp; a, corrected for 
the density in the weak wave 3 is determined by the second 
isentropic derivative (d  'p/dp2), ; as, corrected for the flux 
rotation angle in the weak wave 3 at fixed values of the angle 
y and of the densityp in the wave is expressed in terms of the 
second derivatives of the trigonometric functions. 

The cause of the singularity (pole) of the coefficient as 
y at the point S = 0 is the minimum, at this point, of the 
velocity Vf as a function of the angle y [see (6)  1. This point, 
however, is of no particular interest, since y, = yf there, and 
both the denominator in (7)  vanishes along with the numer- 
ator. Resolution of this indeterminacy shows that the reso- 
nance is replaced here by the equality p, =pf.  

Simultaneous satisfaction of the resonance condition 
and of the equality a = 0 imposes stringent and difficultly 
implemented requirements on the equation of state. A ran- 
dom vanishing of a at the resonance point is not very likely. 

We denote by a -  that part of the sum ( 14) which does 
not contain (p - po)dL /dp. According to ( 14), 

Here A and S are functions of M and y,, defined by Eqs. (4)  Random calculations of ( p - p,) 2a - by means of Eqs. 
at y = y,. The dependence of y, on yf is given by Eq. (6) .  ( 14) and (2)-(4) for a number of values of $and M at a=: 1, 
From Eq. (4)  forA and from the first equation of (6)  follows b [p/( p - p,) ] * z b~ - 0.1 in the entire possible range of 
invariance of (4)  to replacement of y, by yf. Recall that at resonant values of the angle y, (from yo to T) have shown 
the resonance point, given the angle y,, the parameter L is that the sign of a -  can be arbitrary. A varient of such calcu- 
not independent and is determined by Eqs. (2)-(4). For an lations for the case 8 = 4, M = 0.5, fi = 1.2, b = - 0.1 
ideal gas with a Poisson adiabatic exponent the coefficients yields: 

J 

The sign of the derivative dL /dp obviously cannot be CONCLUSION 
arbitrary and is not firmly correlated with the values of 8 and 
M. The coefficient a can therefore be either positive or nega- 1. A nonlinear (quadratic) analysis of the reflection of 
tive, depending on the parameters of the problem. weak shock waves or weak rarefaction waves from the 
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shock-wave front at incidence angles for which the linear 
theory yields infinite enhancement of the incident wave 
upon reflection (called a resonance) shows that when the 
pressurepf of the incident wave tends to zero the pressure of 
the reflected wave tends to zero at a rate not slower t hanpy .  

2. The conditions were determined under which a sim- 
ple reflection picture that can be reduced to formation of 
only a four-wave configuration is impossible. Under these 
conditions an weak perturbation in the form of a three-wave 
configuration can propagate in advance of the shock-wave 
front from the intersection line of the fronts of the incident 
and unperturbed shock waves. This perturbation modifies 
the front of the shock wave in such a way that the indicated 
simple reflection picture becomes again possible. 

3. The pressures of the weak wave that travels ahead of 
the three-wave configuration and of the reflected wave in the 
case of complex reflection (see item 2) tends to zero a s p p O  
at a rate not slower than p y .  

4. According to the results of items 1 and 3, infinitely 
small perturbation of the flow behind the front of a shock- 
wave that satisfies the conditions (1) for the existence of 
resonances (generation of sound5-') does not lead to finite 
perturbations of the front. This, together with the results of 
investigation of three-wave configurationss indicates that 
shock-waves that satisfy the resonance condition ( 1 ) are sta- 
ble. 

5. The problem of reflection of perturbations from a 
shock wave front, just as in the more thoroughly studied case 
of wave reflection from a rigid has indetermin- 

ate solutions. To determine which of the possible solutions is 
actually realized under some specified conditions, particu- 
larly under conditions when simple (regular, see item 2)  
reflection is impossible, it would be of interest to investigate 
experimentally the reflection of weak compression and ra- 
refaction waves from the surfaces of shock waves that satisfy 
the resonance condition ( 1 ) in the vicinity of resonant inci- 
dent angles. 

"If the reflected wave is a rarefaction wave of finite amplitude, the results 
that follow are valid accurate to the rarefaction-wave structure. In con- 
trast to a shock wave, a rarefaction wave has two "fronts" that diverge at 
a small angle (if the amplitude p, is small) from the common line of 
intersection with the shock-wave front. The space between these fronts 
contained the Prandtl-Meyer f l o ~ . ~ . ' ~  

''This formula follows from relation (95.3) of Ref. 9. 

'V. M. Kontorovich. Zh. Eksp. Teor. Fiz. 33, 1527 ( 1957) [Sov. Phys. 6, 
1180 (1958)l. 

*V. M. Kontorovich, Akust. Zh. 5, 314 (1959) [Sov. Phys. Acoustics 5, 
320 (1959)]. 

'S. P. D'yakov, Zh. Eksp. Teor. Fiz. 33,948 (1957) [Sov. Phys. JETP 9, 
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