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The Holstein-Primakoff formalism is used to calculate the low-temperature properties of easy- 
plane ferromagnets with different-ion anisotropy in an external magnetic field perpendicular to 
the preferred plane. The small parameter of the problem is the ratio of the anisotropy and 
exchange constants. The formulas obtained make explicit allowance for a finite value of the site 
spin S. This approach is also used to study the properties of antiferromagnets and the XY 
model in the neighborhood of the spin-flip transition. In particular, a temperature 
renormalization of the spin wave spectrum is found for fields above the critical field. 

1. The improving accuracy of experimental studies of 
the low-temperature properties of magnetically ordered ma- 
terials and the increasing number of computer "experi- 
ments" are providing a stimulus for theoretical studies of the 
properties of magnets outside the customary framework of 
the quasiclassical approximation, i.e., without the assump- 
tion of large site spin S. The clearest finite-spin effects are 
seen in systems in which the classical ground state (which is 
known to agree with the exact ground state as S-+a ) is not 
an eigenstate of the spin Hamiltonian, and therefore, on ac- 
count of quantum effects, the magnetization does not reach 
its maximum value even for T = 0. Such magnets are com- 
monly called "canted" (noncollinear) . Their ground state in 
general is substantially different from the classical ground 
state and is still not known exactly." 

In even the simplest anisotropic ferromagnets with an 
arbitrary ratio of the anisotropy and exchange constants, the 
structure of the ground state can be quite complex.' On the 
other hand, for a rather wide class of systems the exchange 
interaction is considerably stronger than the relativistic in- 
teraction, and so the amplitude of the zero-point oscillations 
is small and the ground state (at least in three-dimensional 
systems) should be close to the classical ground state. We 
emphasize, however, that the fact that the canting is small 
means only that the ground state is equivalent to a state with 
a low density of quasiparticles, while the interaction between 
quasiparticles, because of its exchange nature, is by no 
means small. 

The only parameter regulating the strength of the ex- 
change interaction is the value of the atomic spin S It is clear 
that the larger the spin, the smaller the role of quantum ef- 
fects and the closer the ground state to the classical. For S s  1 
the amplitudes of all the anharmonic processes are small, 
since they contain factors with positive powers of 1/S. Hav- 
ing 1/S small makes it possible to take the anharmonicities 
into account with only second-order perturbation theoryS2 

Real magnets, however, almost always have a spin 
S- 1 ,  and for such systems the exchange anharmonicities 
must be taken into account exactly. In this paper the formu- 
las are derived without using an expansion in powers of 1/S 
and are therefore valid for arbitrary values of the site spin. 

2. As the object of study let us taken an easy-plane Hei- 
senberg ferromagnet in an external magnetic field directed 
along the preferred axis. The corresponding spin Hamilto- 
nian is written 

where A is the vector distance between atoms, and JA > 0. 
We assume that gA > 0 and gA /JA ( 1 .  These conditions 

ensure that the canting is slight (i.e., that the density of 
quasiparticles2' is low at T = 0) and permit an analytical 
solution of the problem for arbitrary S. 

For the exchange part of the Hamiltonian it is natural to 
set JA = , = 0, since an exchange interaction can occur only 
between different atoms. The anisotropy energy, on the oth- 
er hand, generally contains a term withgA #O. This term 
describes the single-ion anisotropy. Quantum effects due to 
this term appear only ifS # 1/2. Such effects have been stud- 
ied in a paper by one of the authon3 In the present paper we 
assume that gA =, = 0 and concentrate on the role of the 
different-ion anisotropy. This model differs qualitatively 
from that of a ferromagnetic with single-ion anisotropy in 
that the anisotropy energy in the present case has the same 
structure as the exchange energy,3' and therefore, first, the 
problem cannot be treated as a single-particle problem even 
when the anisotropy is large, and second, the S = 1/2 case 
has no special status among the spin values. 

3. The standard approach to the study of quantum ef- 
fects in magnets, which we also take here, consists of replac- 
ing the spin operators by bosonic operators, so that the spin 
Hamiltonian can be represented as the Hamiltonian of a 
nonideal Bose gas of quasiparticles, and the well-developed 
diagram technique for bosonic operators can be used. At a 
low quasiparticle density only the lowest anharmonicities 
are important, and so the transition from spin operators to 
bosons is conveniently done with the aid of the Hermitian 
Holstein-Primakoff tran~formation.~ It is well known2 that 
this transformation is not an identity. However, analysis 
shows (see Refs. 5 and 6)  that at a low density of quasiparti- 
cles the inaccuracy of the transformation can be neglected 
for arbitrary values of the spin S. 
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4. The main difficulty in performing the calculation by 
perturbation theory is, as we have said, the presence of an- 
harmonicities of an exchange origin, which do not have a 
small parameter. To take these anharmonicities into account 
it is necessary to sum an infinite series of ladder diagrams 
every time that two (or more) magnons are simultaneously 
created in the interaction pro~ess .~ ."~  This summation can 
be done explicitly, since the corresponding integral equa- 
tions have factorable  kernel^.^.^ Without dwelling on the de- 
tails of the calculations, which are analogous to those done 
in Ref. 3, let us give a few results. 

a )  The spin wave dispersion relation at small quasipar- 
ticle momenta remains qualitatively the same as in the classi- 
cal description: 

but the spin wave velocity U(n) turns out (when the anhar- 
monicity is taken into account) to depend both on the tem- 
perature and, in a rather complicated way, on the value of 
the spin S. The complicated dependence on the spin of the 
atom arises in spite of the fact that for g, = , = 0 the transi- 
tiqn to normal products does not generate additional factors 
of the type 1 - 1/2S as are characteristic for models with 
single-ion ani~otropy~.'.~ (we note in this regard the special 
status ofg, = , in the function of the discrete variableg, ). In 
explicit form, the expression for the spin wave velocity is4' 

where 

Here we have used the notation 

g (k) - z g A e f  ", 1 (k) = IdkA 
A A 

The oomplicated dependence on the atomic spin S resides in 
the coefficient /2 and in the matrix A t. These quantities are 
written explicitly as 

where 

and the function f, satisfies the integral equation 

which has the solution 

The coefficient CA in Eqs. (6)  and (8)  are determined 
from the system of linear equations 

with the matrix 

IA I I: (I - ma qA') (ms qA-v.) 
Q)a ,a*~8A,r~-  -- 

J ( O ) S N  l-vq 
(10) 

The number of equations is equal to the number of neighbors 
of each atom for which the exchange integral J, is nonzero. 

For a simple cubic lattice with a nearest-neighbor inter- 
action we have C, = 0 [as follows from Eq. (9)  ], and there- 
fore the renormalizations due to the zero-point oscillations 
do not have a complicated dependence on the atomic spin S 
(in this case A = 0, A = W - 1, where 

is the Watson integral). 
The temperature dependence of the spin wave velocity 

is determined by the function p, ( T), the values of which we 
shall write out in the limiting cases of extremely low or rela- 
tively high temperatures. For J(O)S>g(O)S sin28,) T we 
have 

and for J(O)S)Dg(O)S sin28, we have 

Here J * = J ( 0 )  (A,AJ,/vi ) 'I3, where theAi are the princi- 
pal values of the matrix Au [see Eq. (5  ) I .  

We note that for T<g(O)S sin28, the temperature de- 
pendence of the spin wave velocity is different for 
H = O[p, (T )  a T 4 ]  and for a finite value of the external 
magnetic field [p,  ( T) a T 4  lnT] . This occurs because when 
a field is applied along the Z axis, the Hamiltonian acquires 
three-particle anharmonicities, which give an additional 
logarithmic contribution to the temperature renormaliza- 
tion of the spin wave energy. We also note that the behavior 
p, (T )  a T 4  1nT is universal for all quantum Bose liquids 
with a linear Goldstone spectrum and a nonzero amplitude 
for ternary proces~es.~ For easy-plane ferromagnets in the 
approximation S) 1 such a temperature dependence was 
first obtained in Ref. 10. For H = 0 temperature renormal- 
ization of the spin wave velocity for the case S = 1/2 was 
found in Ref. 1 1. 

b)  The angle 8 between the magnetic moment and t h e 2  
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axis also depends on the temperature and on the value of the 
spin: 

with the following asymptotic forms of the function p, ( T )  
for the cases corresponding to ( 1 1 ) and ( 1 1') : 

C) The longitudinal (M, ) and transverse (M, ) compo- 
nents of the magnetization are given by 

M,=- 
1 

g(o)h ~ i n ~ 0 ~ + - q ~ ( ~ ) ] ,  'lrS 00s 0. [ I - - 
vo 41 (0) S S 

1 
(14) 

M ~ = -  2"sin 0. [I - (2qe (T)  -qM (T) ) ] . 
vo 

The asymptotic form of the function p, (T) differs from 
that of the function p, ( T) [see Eq. ( 11 ) ] only in the ab- 
sence of a logarithmic factor for T<g(O)S sin2t9,. For the 
case corresponding to ( 11 ) and ( 11') we have 

We note that the temperature dependence is different for the 
longitudinal and transverse components of the magnetiza- 
tion for T<g(O)S sin2t9,: 

(M, (T) wTL, Mx(T) mT2). 

This difference is most apparent in a two-dimensional 
space: the temperature correction to the magnetization M, 
diverges logarithmically, in complete agreement with the 
Mermin-Wagner theorem,I2 while the temperature correc- 
tions to M, and to the spin wave velocity U(n) remain finite, 
again in agreement with the familiar ideas about the struc- 
ture of the low-temperature phase of two-dimensional sys- 
tems with two-component order parameters.I3 

Of course, expressions (3) ,  ( 12), and ( 14) incorporate 
only the leading (temperature and quantum) renormaliza- 
tions. We have dropped from these expressions terms of or- 
der 

As H approaches the critical field H c ,  the spin wave 
velocity goes to zero: 

Vz(n) =J(0)g(O)S2Aijninj[1- (HIH,)'], HGH,. (16) 

The renormalization of the value of the critical field has 
only a temperature part, since above the phase transition 
point (in the high-field region) the ground state is complete- 
ly ferromagnetic and there are no zero-point oscillations: 

The absence of zero-point oscillations in the collinear phase 
is a characteristics feature of systems in which the Hamilto- 
nian commutes with the operator for the Zcomponent of the 
total spin.I4 

At finite temperatures in the immediate vicinity of the 
phase transition point (within the fluctuation region for 
H < Hc ) the square-root decay law predicted for U(n) by 
Eq. (15) should be replaced by the scaling law 
U(n) a (H, - H)'.  The exponent r, according to an analy- 
sis of the scaling dimensionalities,15 is equal t o p  - ~ ~ 0 . 6 5  
( y  and Y are the exponents of the transverse susceptibility 
and the correlation length). The fluctuation region, how- 
ever, remains outside our purview, since its width (@/ 
H, ) cc [ T /J(O)S] [g(O)/J(O) ]is narrower than the error 
limits on the determination of the phase transition point [see 
Eq. (7111. 

5. For an arbitrary relationship between g, and J A ,  
model ( 1 ) is called the Heisenberg-Ising model. With the aid 
of this model one can describe the properties of a number of 
familiar systems. For example, the case g, = J A  corre- 
sponds to the XY model. If g, >2&, Hamiltonian ( 1 ) de- 
scribes a uniaxial antiferr~magnet.~' In fact, at such values of 
g, it is energetically favorable for the spins to order antifer- 
romagnetically along the Z axis, while the sign of the ex- 
change integral for the transverse components of the spins is 
unimportant because of the invariance of the spin sys'tem 
with respect to rotations about the Z axis.I6 The value 
g, -2.b corresponds to the case of an isotropic antiferro- 
magnet. 

We note that in this description of an antiferromagnet 
there is only one branch of oscillations. The transition to the 
standard description based on the introduction of sublattices 
and two branches of the oscillation spectrum is accom- 
plished by reducing the unit cell in k space by one-half (Fig. 
1).  

For an arbitrary relationship between g, and JA the 
density of quasiparticles at T = 0 is by no means small, and a 
proper perturbation theory can be constructed only on the 
assumption S) 1. An exception is the region of strong mag- 

FIG. 1. Spin wave energy E, in an antiferromagnet in a nonzero external 
field versus one of the wave-vector components k,  (k, = k ,  = 0) .  The 
dashed curve shows a second branch of the spectrum, the activational 
branch, which arises on going over to the reduced cell in k space. The gap 
A is proportional to the applied magnetic field. 

424 Sov. Phys. JETP 63 (2), February 1986 M. I. Kaganov and A. V. Chubukov 424 



netic fields, comparable in strength to the exchange field, in 
which case the orienting effect of the field is so important 
that it is favorable for the spins to align approximately along 
the Z direction. The density of quasiparticles is low in this 

Xk = kx+*k 
case because of the proximity of the system to the phase - P  
transition to the collinear phase: (H, - H)/H, (1. I t  fol- 
lows that the formulas obtained earlier for the quantum ren- k k 

P + ?  !J+l k k ormalizations apply here with less stringent restrictions on 

= kx+kaF the parameters of the Hamiltonian than the requirement 
that the ratio of the anisotropy and exchange constants be 
small: for Eqs. (3 ) ,  (12),  and (14) to apply, it is sufficient k 

that k k 7 -P k 2 - P  ;i - P  2 - P  

In the neighborhood of the transition point, where 8,(1, 
inequality ( 18) is satisfied at an arbitrary relationship 
betweeng(0) and J(O) ,  and the formulas obtained above for 
T = 0 are therefore valid near H :O' for any systems, includ- 
ing, in particular, the XY model and the antiferromagnet. 

At room temperature the interaction between spin 
waves is substantial in both canted and collinear ferromag- 
nets, and therefore in the case g ( 0 )  a J ( 0 )  the formulas 
found for the temperature renormalizations should be re- 
vised. Specifically, this means that the correct description of 
the magnetic properties of ferromagnets having a large an- 
isotropy requires the summation of a series of ladder dia- 
grams not only for the exchange but also for the relativistic 
anharmonicities. Here we consider only the temperature 
shift of the phase transition point. This quantity is most sim- 
ply determined from the condition that the renormalized 
(by the anharmonicities) gap in the spin wave spectrum go 
to zero in the collinear phase, for which the ground state is 
well known. The ladder diagrams in this case can be summed 
in the same way as Dyson did for the isotropic Heisenberg 
ferromagnet. l 7  The result is 

where 

and 

FIG. 2. Graphical equation for the total scattering amplitude (vertex) T. 
The lines denote the Green function G ( k , w )  = ( E ,  - i w )  - '. The shaded 
squares are the total (renormalized) vertices. 

In the limiting case g ( 0 )  /J(O)+O expression ( 17) and 
( 19) agree. For a simple cubic lattice with a nearest-neigh- 
bor interaction, the integral over wave vectors in (20) goes 
to zero, and therefore P -0. For such a geometry Eq. (19) 
has been obtained previously for a spin S = 1/2 antiferro- 

and for the XY model with arbitrary spin.2' We 
note that P =O for g ( 0 )  = J ( 0 ) .  

6. The collinear phase that exists in model (1 )  in the 
region of strong magnetic fields H > H, for an arbitrary ratio 
g(O)/J(O) has a number of properties that distinguish it 
from the usual collinear phase that occurs in a Heisenberg 
exchange ferromagnet. The difference is that in the present 
case the Adler principle does not hold (this phase does not 
admit a transition to the limit H = 0 )  and therefore the am- 
plitude for the scattering of magnons with zero momentum 
is nonzero. The consequences of this include, first, the pres- 
ence of temperature renormalization of the gap, as we men- 
tioned earlier, and second, a different kind of temperature 
dependence of the free energy and spin wave spectrum than 
in the case of an exchange f e r r ~ m a g n e t . ~ * . ~ ~  

To find the leading temperature renormalizations it is 
sufficient to know the value of the total scattering amplitude 
r:;:. The corresponding integral equation is depicted 
graphically in Fig. 2. Its solution for a small wave vector k is 
of the form 

where neighbor interaction. Accurate O(k ' ), the principal value of 

Ip' l + v k - v p - k I * - v p - k / * .  
theintegral in Eq. (2  1 ) is 

To simplify the derivation of Eq. (21 ) we confined our- W F; = +0.36 ( i - v k ) .  
selves to the case of a simple cubic lattice with a nearest- 
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From Eqs. (21 ) and (22) it is easy to obtain an expres- 
sion for the temperature renormalization of the spin wave 
energy: 

Here we have used the notation 

(Z, , , (x)ze-"  forx)l andZ3,,(x)z{(3/2) forx(1). 
7. In conclusion, let us briefly discuss the general prop- 

erties of spin systems in external magnetic fields. It is known 
that for many real magnets (e.g., for many-sublattice ferrites 
or antiferromagnets) there is no small parameter that en- 
sures proximity to collinearity, and for this reason such sys- 
tems have until now been studied in the quasiclassical ap- 
proach or in the mean-field approximation. 

Nevertheless, in the region of magnetic fields stronger 
than the exchange field it is always possible to go beyond the 
quasiclassical approach. In this case all the spins of the mag- 
net perforce have the same quantization axis. This does not 
mean that the spin structure is always collinear in sufficient- 
ly strong fields: collinearity comes about if the magnet ini- 
tially has only a single preferred axis and if the magnetic field 
is directed along this axis. However, at large values o f H  the 
amplitude of the zero-point oscillations will be small, since 
the case H-+w corresponds to complete ferromagnetic or- 
dering. We note that the longitudinal magnetization for the 
systems considered here, as in all the known cases, ap- 
proaches the nominal value by the square-root law4.69'4 

We believe that our results can be applied to the descrip- 
tion of both nearly isotropic Heisenberg ferromagnets with a 
weak inter-ion anisotropy (such as CoCl,) and to antiferro- 
magnets in which the values of the spin-flip transition fields 
are experimentally accessible (EuTe, for examplez4). It 
should be noted, however, that real magnets (with spin 
S # 1/2) have both single-ion and different-ion anisotropies, 
and their correct description will therefore require taking a 

superposition of the results of this study and the results of 
Ref. 3. 

"For instance, the ground state of the Heisenberg antiferromagnet is un- 
known. 

"In speaking of quasiparticles we mean those defined with respect to to 
classical ground state. 

"For these reasons the combination of the pure exchange and different- 
ion anisotropy is often called the anisotropic exchange interaction. We 
feel that this term is not quite accurate and do not use it. 

4)Here and below we confine ourselves to the case gA a JA . This, of 
course, is a model assumption, which makes it possible to obtain trans- 
parent analytical expressions. 

5'Antiferromagnets can be described by model ( 1 ) if the exchange inter- 
action extends only to nearest neighbors. 
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