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The problem of the Peierls instability in one-dimensional systems with weak coupling (in 
particular, in the Hubbard model) is considered. It is found that, depending on the 
deformation parameter S, there exist two regimes of behavior of the system. When the Peierls 
gap is greater than the correlation gap, perturbation theory in the coupling constants is 
applicable. In the opposite case, the strong-coupling regime sets in. The ground-state energy - - S4I3, and this dependence has a universal character. 

According to the well known theorem of Peierls,' a one- 
dimensional metal is unstable against distortions of the lat- 
tice. The dielectric state which then arises possesses a num- 
ber of unusual physical properties. In particular, in 
polymers with conjugated bonds, such as, e.g., polyacety- 
lene, the transition to the Peierls-dielectric state leads to al- 
ternation of the GC-bond lengths, and, as a consequence, to 
the appearance of excited states of a special kind- soliton^.^ 

It is necessary to note that Peierls' conclusion referred 
to a system of noninteracting electrons. It is known, how- 
ever, that electron-electron interactions play an important 
role in one-dimensional systems and can themselves form a 
gap in the excitation spectrum. There arises the far from 
trivial problem of taking simultaneous account of these two 
effects leading to instability. The use of the mean-field ap- 
pro~imat ion~-~  for the solution of this problem shows that 
these two instabilities cannot coexist, and, under certain 
conditions, the Peierls transition is suppressed. The mean- 
field approximation is, however, too crude. Variational cal- 
culation~'-~ indicate that the Peierls instability and electron 
correlation are not competing effects, and, in reality, corre- 
lations enhance the tendency toward a transition to the 
Peierls state. This conclusion was also confirmed later in 
other papers using perturbation theory relative to the mean- 
field," calculations by the Monte Carlo method, '' and exact 
calculations on finite systems.12 At the same time, exact re- 
sults for this problem were not obtained. 

In the present paper the problem of the Peierls instabil- 
ity will be considered for the case of small electron-electron 
coupling constants. It will be shown that in those cases when 
there is no correlation gap the situation is a zero-charge situ- 
ation and it is legitimate to use perturbation theory. But if 
there is a correlation gap in the excitation spectrum the sys- 
tem can be in either the weak-coupling or the strong-cou- 
pling regime. In this case correlation effects enhance the ten- 
dency toward a Peierls transition. Preliminary results of the 
work have been published in Refs. 13 and 14. 

DERIVATION OF EXPRESSIONS FOR THE DEFORMATION 
ENERGY AND GAP 

In studying the problem of the Peierls instability we 
shall start from the Hamiltonian of an electron-phonon sys- 

tem in the adiabatic approximation (as follows from Refs. 15 
and 16, small departures from adiabaticity should not funda- 
mentally change the character of the Peierls transition, al- 
though this question requires further investigation): 

8=Bo+Bi+P,  R. = - z e a s  kak.+ak., (1)  
k.0 

P = i 6 z  sin l~a,+a,+..+Nu6~/2, (2) 

where Y ( q )  is the Fourier transform of the interaction poten- 
tial, S( 1 is the dimensionless deformation parameter, and x 
is the dimensionless elastic constant. The second term in ( 2 )  
is the energy associated with the elasticity of the chain. 

Besides (2) ,  which corresponds to alternation of the 
bond lengths, it is also interesting to consider another type of 
distortion, corresponding to the interaction of intramolecu- 
lar vibrations with the local electron density (alternation of 
the lattice-site energies) : 

k,q 

We shall be interested mainly in the case of a half-filled 
band, for which, according to the Peierls theorem, a dou- 
bling of the period of the chain (dimerization) occurs. 

The problem of investigating the instability of a one- 
dimensional system against deformation of the chain re- 
duces to finding the dependence of the ground-state energy 
Eo on S. Deformation is energetically favored if the quantity 

has a minimum for S # 0. For ~ ( q )  = 0, 

and it is clear that there is a minimum for a( 1. This assertion 
constitutes the Peierls theorem. Since Eel a S2, deformation 
is favored if as 6--to we have ~ ( 8 )  a - Sp withp < 2. But if 
p = 2, whether or not dimerization is favored is determined 
by comparing the corresponding coefficients and, in princi- 
ple, the Peierls transition can be suppressed. The main task 
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FIG. 1. Second-order diagram for ~ ( 6 ) .  The double lines on the diagram 
correspond to anomalous pairings. 

of our paper is to calculate &(a). Since the interaction is 
weak, it is natural to try to use perturbation theory in H, for 
this purpose. 

Unlike the diagrams for Eo(0)  the diagrams for E(S) 
contain not only lines corresponding to "normal" pairings 

(a,,+ak,Z=uk2= ( I +  cos k l ~  (k) ) /2; <a~aaha+)=vk2=l-~h2; 
E (k) = (cos2 k+h2 sin2 k)'" (E (k) = (cos2 k+a2)'") 

but also lines corresponding to "anomalous" pairings 

(a~,+a,+,,)=i6 sin k / 2 ~  (k) (6128 (k) ) 

The number of the latter in the diagram is always even. 
All the diagrams for E(S) can be obtained from diagrams for 
Eo(0) by all possible replacements of normal lines by anom- 
alous lines. (In the brackets we indicate the corresponding 
expressions for the model ( 3 ) . )  For example, the second- 
order diagram is depicted in Fig. 1 and is proportional to 
S2g21n3S. Analysis of the perturbation-theory series shows 
that, in general, in the n-th order the leading contribution to 
&(a) is proportional to 

It is not difficult to convince oneself that the diagrams that 
make such contributions to E(S) possess the following prop- 
erties: 1 ) They contain a pair of anomalous lines; 2)  if we 
break the anomalous lines, the remaining part of the diagram 
with four free ends can be divided into two parts by cutting it 
through two internal lines (such four-point diagrams, as is 
well known, belong to the so-called class of "parquet" dia- 
grams). Below we shall sum these diagrams for &(a) .  For 
this it is convenient to express their sum in terms of the ver- 
tex part y(k,u,, k,u,; k,u,, k4u4) (here k = (k, w), and S is 
the spin index13) : 

where G(k, w) is the Green function corresponding to the 
anomalous pairing: 

G (k, a)  = i ~ A v k (  (0-8 ( k )  +ik)-'- (O+E (k) -ih)-'), h+O. 

This relation is represented schematically in Fig. 2. 
As can be seen from (4),  the variables of the vertex part 

are chosen in accordance with the condition 
k3=k1+ n, 03=01, 03=ai, 

( 5 )  
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The general scheme of the summation of such diagrams 
is well known.17,18 In Refs. 18 and 19 the indicated approxi- 
mation was used to calculate the Green functions with the 
aim of investigating the instabilities that arise in a one-di- 
mensional system under the influence of interaction between 
the electrons, but with S = 0. 

The set of all diagrams for the vertex part can be divided 
into four classes1': diagrams y, that are reducible from k,, k, 
to k,, k, (i.e., diagrams that can be divided into two parts, 
containing k,, k, and k,, k,, by cutting two internal lines of 
the diagram); diagrams y, that are reducible from k,, k3 to 
k,, k,, diagrams y, that are reducible from k,, k, to k,, k,, 
and irreducible diagrams (an example of such a diagram is 
the first-order vertex part). The vertex parts y,, y,, and y, 
are then determined from the solution of a system of coupled 
nonlinear integral equations. I7g2O 

We note also that since the arguments of the vertex part 
are connected by the relation k, + k, = k, + k,, each of the 
vertex parts depends on three variables, which are conve- 
niently chosen as follows (to simplify the writing, we omit 
the spin indices for now) : 

yi=yi(ki, k3, Q), Q=ki+kz, 
ya=yz(ki, kk, %), %=ki-k3, (6) 

ys=ys(ki, ks, q), ~)=ki-k'. 
The leading logarithmic contribution to the integral (4)  is 
made by the region of momenta k,, k, = + r / 2 .  According- 
ly, the behavior of y(k,u,, k,u,; k,u3, k4u4) is important 
only for momenta = f r / 2 .  According to ( 5  ), to calculate 
E(S) it is necessary to know only the following vertex parts: 

where the signs + correspond to momenta f ~ / 2 .  It is also 
not difficult to convince oneself that the vertex parts 
Y:+-- and y,+ - - + in (4)  do not give the highest power 
of the logarithm in the corresponding order of perturbation 
theory and so can be omitted. 

Thus, the following vertex parts contribute to (4) :  

In calculating the functions yi and y: we can, with logarith- 
mic accuracy, take S = 0 (this fact is easily verified for the 
lowest-order diagrams). According to (5 )  and ( 6 ) ,  the ver- 
tex part y: appearing in (4)  is a function of k ,  and k,: 

y i i=y i i  (ki, ki, ki+kz). 

FIG. 2. Equation for ~ ( 6 )  (diagrammatic). 
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In accordance with the logarithmic character of y : ,  

Analogously, 

As regards the functions y: and y: appearing in (41, by 
virtue of (5) we cannot set S = 0 when calculating them. 

Calculation of the contributions of higher-order dia- 
grams shows that if the arguments of y, are related by the 
condition (5), then 

Taking the aforementioned considerations into ac- 
count, we can write the expression (4) in the form 

where @ = - ( 2 ~ ) - ' l n  S, and in (7)  we have changed to 
the logarithmic variables ti = - In Ski. 

Thus, the vertex parts y: and y: appearing in (7) are 
functions of one variable. As regards the functions y: and 
d ,  they are functions of three variables, and to find them one 
can use the method developed in Ref. 18. 

We shall transform the expression (7) to a more com- 
pact form. For this, in order to avoid unnecessarily cumber- 
some calculations, we shall carry out this transformation for 
the spinless variant of the model ( 1 ) with the potential 
v(q) = g cos q (nearest-neighbor interaction), with g(1. 
We write (7) in the form 

Q @ 

(in (8) we have added to E(S) the term of first order in g) .  
Writing out the equations for y,, y,, and y,, we can 

show that F(t, ,  t,, @) satisfies the equation 

0 (10) 
r ( t )  =2g-yll (t)+y3' ( t )  . 

The solution of ( 10) can be found by the method developed 
in Ref. 18 and has the form 

The function p ( t )  = F(t,  t, t )  is the solution of the 
equation 

t 

p ( t )  - r ( t )  + J $ ( t l )  at1. (13) 
0 

Substituting ( 11 ) into (8 )  and adding to (8)  the zeroth- 
order term ( ~ ( 6 )  I g  = ,, ), we obtain 

Thus, the problem of calculating ~ ( 6 )  reduces to the deter- 
mination of the function q, ( t )  . 

The spectrum of the spinless Hamiltonian (1) with 
S = 0 is gapless. For 6#O there is a gap in the excitation 
spectrum. The magnitude A of the gap can be expressed in 
terms of the vertex part (the corresponding equation is rep- 
resented graphically in Fig. 3) : 

@ 

Substituting the expression (9 into ( 15) and making use of 
the relations ( 1 1 )-( 13 ), we obtain 

The formulas ( 14) and ( 16) express the electron part of 
the deformation energy and the "Peierls" gap in terms of the 
solutions of "parquet" equations. 

THE SPINLESS MODEL 

The parquet equations for the spinless case have the 
form 

1 
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FIG. 3. Equation for the Peierls gap (diagrammatic) 

The solution of the system of equations ( 17) has the form 

yl i  ( t )  = - y i 2 ( t )  =yS2 ( t )  =-yeZ ( t )  =4g2t,  
yzl ( t )  =y31 ( t )  =O. 

As a result the functions p(t) and f(t) are equal to 

Substitution of ( 18) into ( 14) and ( 16) gives 

E ( 6 )  =- ( 4 g )  [exp ( 4 g @ )  - I ] ,  (19) 

valid, if at all, only forgg 1. In the present case, however, we 
can convince ourselves by direct inspection that the contri- 
butions of the diagrams to ~ ( 6 )  for ( 1 ) and (23) coincide in 
the leading logarithmic approximation, although the contri- 
butions to E,(O) for these two models differ! For the Hamil- 
tonian (23) the exact solution, obtained by means of the 
Bethe ansatz, is known for the ground-state energy and the 
excitation spectrum.21 Use of the results of Ref. 21 for g( 1 
leads to the expressions ( 19) and (20). Unfortunately, how- 
ever, the model of the type (23) with spin degrees of free- 
dom, to which the Hamiltonian ( 1 ) can be reduced, is cer- 
tainly nonintegrable. 

WEAK-COUPLING REGIME (PARTICLES WITH SPIN) 

Summing in (7) over the spin variables and performing 
calculations analogous to those which led to ( 14) and ( 16), 
we obtain 

A ( 6 )  =26 exp ( 2 g @ ) .  (20) 

As follows from ( 19) and (20), for g@g 1, 

which corresponds to the approximation of noninteracting 
particles (the Peierls result). For 6-0 ( g @ )  1 ), 

Thus, if the interaction is repulsive, the system is certainly 
unstable against a transition to the Peierls state, and the 
magnitude of the gap increases in comparison with its value 
for g = 0. In the case of attraction, suppresion of the Peierls 
instability is, in principle, possible. 

The formulas ( 19) and (20) were obtained by summing 
parquet diagrams. These formulas can also be obtained in 
another, simpler way. l 4  Namely, we reduce the Hamiltonian 
( 1 ) to the Hamiltonian of a model with a linear spectrum, 
using the following replacement of the Fermi operators: 

where f(t) is defined in ( 12). 
Omitting the cumbersome calculations, we give the 

expression for p (t) : 

cp ( t )  =-h,  ( t )  /2-3hl ( t )  /2*h3 ( t )  , (26) 
A 

where the upper sign corresponds to the choi5e of V in the 
form (2), and the lower sign to the choice of V in the form 
(3). The functionsR were found in Ref. 19 and have the form 

h l ( t )  =g l  (1+2g , t ) - ' ,  h , ( t )  =-C c th  C ( C , - - 2 t ) ,  

X, ( t )  =+C sh-' ( C i - 2 t ) ,  (27) 

We have confined ourselves here to the case /g,l> Ig, 1. Sub- 
stituting (27) into (26) and using ( 12), we find 

f,, ( t )  = ( s h  CCl)"' ( s h  C  (C l -2 t ) ) -" '  (1+2g l t ) -"  

As a result, ( 1 ) goes over into the Hamiltonian of the mas- %=sign g1 sign g, ,  
sive Thirring model: 

where the upper sign corresponds to (2), and the lower sign 

I )  = - ~ ~ ( c ~ ~ * c , ~ - c ~ ' c ~ ~ )  +i6 ( C ~ ~ + C ~ - - C ~ ~ + C ~ ~ )  to (3). 
L k In connection with formula (26) we note the following 

interesting fact. The representation of p(t) in the form (26) + ( 2 g / N )  ~ c l ~ . c l k c ~ ~ - . c , - .  (23) implies that f(t) can be factorized into p and (T factors in 
It is well known that the transformation of a Hamiltonian of accordanze wit? thep, ubreakdown of tke l i n ~ r i z e i  Hamjl- 
the type ( 1 ) to the Hamiltonian of a model with a linear to$an A H, + HI ( 1 ) (Ref. 22) : H, + H,+H,, + H, 
spectrum requires a degree of care, and in any case can be ( [H, ,  H, ] = 0), where (in standard notation) 
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+ @ , , ( x ) ) e x p  2'" (-Oz0+ ( x )  - @ i 0 ( x )  ) SH.c.1, (29) 

Rp= (2nup /L)  C [p i  ( k )  pi ( -k )+pz  ( - k )  @ ( k )  1 
k>O 

+mz , (x )  ] exp 2;" [-@,,+ ( 2 )  - m i p  ( x )  ] +H.c.), 

@..+ ( x )  = ( 2 n l L )  k-' exp ( - d k l 2 ~ i k x )  p. ( k )  , 9=1 ,2  
k>O 

(d is a cutoff parameter), and analogously for and @&. 
The operatorsp, (k)  andp, ( k )  satisfy the following commu- 
tation relations: 

[p l  ( - k ) ,  pl ( k ' ) ]  = [ p , ( k ) ,  pz(-k') I = ( k L / 2 n )  6k,krt 
[ ~ l ( k ) ,  p z ( k f ) l  =O 

while the a operators sztisfy an2logous relations. In writing 
the integral terms in H, and H, we have used the boson 
representation of Ref. 23 for the Fermi operators of the lin- 
earized Hamiltonian: 

Ip. ( x )  =L-'" exp (* ikTx)exp(@.+  ( x ) )  e x p ( - @ ,  ( x )  ) ; S-1,  2.  

(30) 
In our case, gill = g,, = g, = g,. 

A 
It is easy to see that the first term in (26) correspcnds to 

H,, while the second and third terms correspond to H, . 
We return now to thecalculation ofs(S) and A(S), and 

consider certain simple particular cases that can be obtained 
from (28). 

1. The Hubbard model (g, = - g, = yo : 

The indices 1 and 2 refer to (2) and (3),  respectively. 
2. The Hubbard model. The band is half-filled (um- 

klapp processes are neglected, and so A, = 0)  : 
0 

e l , ,  ( 6 )  =-262 J e r p  (4y.t)  ( l + 2 y O t )  -% at, 
0 

A1,2(6) =26 exp ( 2 y o @ )  (1+2y0@)-"4.  (32) 

3. The model with Hubbard coupling yo and nearest- 
neighbor coupling y,, with yo = 2y,: 

e,,z (6) =- (6'/2yo) exp ( 4 y 0 @ )  -1, Ai,2(6) =26 exp ( 4 y o @ ) .  
(33 

4. The same model with yo = - 2y,: 

As can be seen from (31)-(34), f o rgag1  we have 

which corresponds to the limit of noninteracting electrons. 
However, with decrease of 6 there are two entirely different 
situations. For example, ~ ( 6 )  as determined from (33) re- 

2 - 2 y d r  mains small and proportional to - S as 6 4 ,  where- 
as for the Hubbard model, according to ( 3 1 ), E (S ) diverges 
as 6 4 ,  = exp( - n-/I yo/ ). These two situations are typical 
in the problem of the Peierls instability. The first of them 
corresponds to the weak-coupling regime for all S g l .  The 
other is characterized by strengthening of the coupling upon 
decrease of 8. Analysis of the expressions (28) shows that 
the second situation is realized only w h ~  thez  is a correla- 
tion gap in the excitation spectrum of Ho +HI. As can be 
seen from (28), (31 ), (321, and (34) the values So at which 
E(S) and A(S) become singular coincide with the exact val- 
ues (found in Ref.24) oithe correlation gaps of the linear- 
ized Hamiltonian Ho + HI. A A 

Thus, if the spectrum of Ho + HI has no correlation 
gap, as in the cases 3) or 2)  and 4) with yo > 0, it is legitimate 
to use perturbation theory, i.e., the expressions ( 19) and 
(32)-(34) are valid for all S g  1 (here the behavior o f ~ ( S )  as 
6 4  is not universal). 

The presence of a correlation gap A,,,, in the spectrum 
implies that A,,,, establishes for the variable S a scale that 
divides the range of variation of S into a weak-coupling 
(8%-A,,, ) and a strong-coupling (6(Ac0,, ) region. Pertur- 
bation theory is applicable only for 8%-A,,,, . In the strong- 
soupling region, methods based on perturbation theory in 
HI are inapplicable. 

THE STRONG-COUPLING REGIME 

We now consider the region of parameters S(A,,,,, 
which corresponds to the strong-coupling regimz. In this 
case it is natural to 5se perturbation theory not in HI ,  as was 
done earlier, but in V. The difficulty, however, is that for this 
$is nFessary to know the spectrum and wave functions of 
Ho + HI,  which are unknown. If these had been found, how- 
ever, in the case of no correlation gap we would have ob- 
tained results coinciding with the "parquet" results as S+O. 

It would appear that the presence of a gap simplifies the 
problem, since 6/Aco,,g1 and the excited states with 
hE = A,,,, give small contributions. It is neczssaryA how- 
ever, to keep in mind that in the spectrum of Ho + H,, be- 
sides such excitations there are also gapless excitations, and 
it is these which lead to dangerous denominators in the per- 
turbation-theory series. It is natural, therefore, to try to sep- 
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arate the excitations of these two 2pes and to reduce the 
problem to perturbation theory in V on the gapless excita- 
tions. It turns out that such a program can indeed be carried 
out. 

The indicated sepa~t ion  %an be carried out as follows. 
The initial Hamiltonian Ho + HI can be reduced by means of 
the replacements (22) to a linearized Hamiltonian of the 
type (23), which, in turn, is reduced to (29). T k  HamiEo- 
nian (29) is a sum of commuting Hamiltonians H, and HA. 
In the case of interest to us (when the spectrum of Ho + HI 
has a correlation gap and gapless excitations), as follows 
from Ref. 24 one of the Hamiltonians has a spectrum that 
starts from the gap, while the s p e c t r u ~  of tke other is gap- 
less. If, for definiteness, we choose as Ho + HI the Hubbard 
Hamilton@ with yo > 0, the role of the fipt Hamiltonian is 
played by H,, gnd that of the second by H,. 

We write V in the p and a representations. By making 
use of (22) (here (2)  can be carried over into (3)  by the 
replacement g,+ - g,, as follows from the canonical trans- 
formation $,+ (x)-$,+ (x)  and $: (x)-i$: (x)  ) and 
(30), we obtain 

L 

V =  ( 6 / 2 n d )  J d x  V,, ( x )  Po( . ) ,  
0 

V p ( , ,  ( 2 )  = e ~ p { 2 - . ' " [ @ ~ & ,  ( x )  + @ 2 p , o ,  ( x )  I) (35) 

x e ~ p { - - 2 - ' ~ [ @ ~ , , ,  ( 2 )  +@ip,., ( x )  l)+H.c. 

As a result the initial Hamiltonian takes the form 

h 

In second order of perturbation theory in V, 

- - 

el2) ( 6 )  = (6/2nd)' (Eo-En-Em) -' J dx  J' dx*.' ( V p  ( x )  ) ,. 

where n and m label the excited states of thep and a Hamil- 
tonians, respectively. 

The sum in Q7) with n = 0 corresponds to taking the 
excited states of H, alone into account. But the sum with 
n # 0 is obviously smaller than 

The first term in (38) is proportional to g2 while the second 
differs from the sum with n = 0 by the absence of an energy 
denominator. A similar analysis of higher orders of pertur- 
bation theory shows that tke most divergent contributions to 
~ ( 6 )  correspond to using V in the form 

The subsequent analysis is based on the solution of the 
following auxiliary problem. We shall calculate the energy 
of the ground state of the Hamiltonian 

ii., ( 5 )  =exp {a'" [OlOf ( x )  +@, ,  ( x )  ] ) 

For the quantity ~ ( a )  = [Eo(a) - Eo(0) ]/L we shall have 
the expansion 

e ( a )  = aZnc2. (L ,  a ) ,  

where c,, (L, a)  are the contributions of the 2n-th order of 
the perturbation-theory series and are, generally speaking, 
functions of L. When the time technique is used to calculate 
them, the problem reduces to takingintegrals over x and t of 
averages (over the Bose vacuum of Ho) of the form 

< Wa ( X i ,  0) Wa* (xz, t , )  . . . Wa* (xzn, t2n) ), 
w, ( x ,  t )  =exp ( i tHo)  Wa ( x )  exp ( - i t H o ) .  (42) 

In the average (42) there are n of each of the operators W, 
and W,*. This average is calculated by pulling the creation 
operators @,f, and @& through to the left, and the annihila- 
tion operators a,, and @,, to the right. As a result, the 
average (42) is equal to 

2 

In (43) the exponentials of the commutators are equal to 

where the plus and minus signs refer to s = 1 and s = 2, re- 
spectively. After taking the integrals of (43) over x and t, we 
obtain 

and the k,, , (i = 2, ..., 2n) are expressed in terms of the 
integration variables by the relations 

k,tf=kzi-ksz+krzl- + -k2n,2+kz1n,2r 
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If we rescale the variables in (45) by 

it is not difficult to convince oneself that 

czn (L, a )  c"A~~+BZ~L-'+ n(4-2a '7  (46) 

where A ,, and B ,, are certain constants (depending on a ) .  
It follows from the expression (46) that if 

for all n, then in the thermodynamic limit c,, a const and the 
sum (41) is a regular function of a as a-0. But if 

then &(a)  has a singular as well as a regular part as a-0, i.e., 

E (a) =&reg (a )  (a) . (49) 

As a-0, E a'. The behavior of ( a )  as a-0 can be 
established on the basis of dimensionality arguments, just as 
was done in the theory of the two-dimensional Coulomb gas 
in Ref. 25. 

To this end we substitute (46) into (41 ). As a result we 
obtain 

E (a) =Ere, (a) + l ~ l ~ ' ( ~ - " ) R  ( I a I1'(z-a'L ) 1 (50) 

where R ( x )  is an unknown function. It is clear, however, 
that in the thermodynamic limit this function should be a 
finite quantity, dependent on a. Thus, the singular behavior 
of &(a)  is determined by the critical index 

In connection with formula (5 1 ) we make the following re- 
mark. We apply to the Hamiltonian (40) the well known 
canonical t ran~formation~~ 

R=exp (is) H exp (-is), 

The first term of (40) then goes over into the Hamiltonian of 
the Tomonaga-Luttinger model, and all2 in the second term 
is replaced by a'I2exp q,. If we take exp q, = and for- 
mally go over to operators of spinless Fermi particles in ac- 
cordance with the relation (30), then (40) goes over into the 
Hamiltonian of the massive Thirring model. Analogously, 
by the choice exp q, = (2/a) ' I2  we can formally reduce (40) 
to the Hamiltonian of another exactly solvable m~del,~-the 
interacting Fermi gas with a linear spectrum. By making use 
of the results of Refs. 21 and 24, we obtain for /Z in the first 
case 

and in the second case 

The expressions (53) and (54) differ from the exact 
formula ( 5  1 ) . This difference indicates the approximate 
character of the reduction of the Hamiltonian (40) to Fermi 
Hamiltonians. The authors of Refs. 24 and 27 also indicated 
the approximate character of this reduction. 

We return now to thz calculation of the energy of the 
ground state of (36) with Vin the form (39). The problem in 
this case reduces to the corresponding problem for the Ham- 
iltonian 

and to the calculation of tke average ( V, ),,over the ground 
state of the Hamiltonian H,. 

We shall consider first the Hamiltonian (55). First of 
all we make the canonical tra!sformation (52), which dia- 
gonalizes the bilinear part of H,. This is achieved by choos- 
ing q, in the form (even though g, l ,  = g,, , it is convenient to 
distinguish these two quantities) : 

Here the operators in the exponentials in (29) are multiplied 
by expq,, corresponding to the replacement 2'12-2'12 exP P. 
As a result, (55) is reduced to the Hamiltonian 

L 

A=Ha+glr (2nd)-' J [ Wka (x) +W4aw (x) ] 
0 

where u, = 1 - (g,/2a12 (in the following we shall ap- 
proximate u, by 1 ) . 

Expansion of the ground-state energy in a perturbation- 
theory series in a2 leads to the expression (50). Allowance 
for the cross terms a2g:; gives the following contribution to 
&(a) :  

.I 

n-0 

The dependence of the coefficients Z,, (L )  on L is esti- 
mated as in the derivation of (46) : 

In (59) we have written out the singular part of Z,, (L) .  It 
follows from (59) and (46) that 

FZ" (L) =cz (L) L4n(1-2a'. 

Since g l l i  > 0, the inequality 

is fulfilled for all n> 1, and Z,, /c, vanishes in the thermody- 
namic limit. An analogous situation also obtains for the 
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cross terms of higher orders in a2. Thus, in the determination 
of the singular part of & ( a )  the second term in ( 5 7 )  can be 
neglected and the critical index of & ( a )  is given by formula 
( 5 1 ) .  

We now consider the average ( Vp ),, appearing in a in 
( 5 7 ) .  It turns out that ( Vp ),, can also be calculated using 
dimensionality arguments, if 

1 gdg4 1's I. 
h 

First of all, we diagonalize the bilinear part of Hp ; this 
leads to the replacements 

2"+2'" e x p  rp, 2-'"-+2-'" e x p  d, (th 2$7=g,/2n) 
h h 

in the exponential parts of Hp and Vp , respectively. 
We expand ( Vp ) ,, in series in g,: 

( V A  oo= z dzn ( ~ ) g ? - ~ .  ( 6 0 )  
n 

The coefficients d ,, ( L )  correspond to perturbation-theory 
terms arising from averages of the type 

<War,, ( x i ,  0) War* (x2 ,  t z )  . . .War* (xzn,  tzn)  ), u t = 2 e x p  244 
( 6 1  

yhere the first operator in the average ( 6 1 )  corresponds to 
VpAand the others correspond to the exponential operators 
of Hp . 

Integrating ( 6 1  ) over x and t ,  we obtain for d ,, ( L )  : 

dm ( L )  mL-a'/4 [A2 , ,  ( g l )  +BZn ( g 4 )  L-2+4n-n'(2n-i'  I .  ( 6 2 )  

As shown by the calculations, which, in view of their cum- 
bersome nature, we do not give here, 

In contrast to ( 4 6 ) ,  in which the coefficients B, ,  are 
nonsingular, g,, should be taken into account in the deter- 
mination of the singular behavior of ( Vp ),,. In fact, accord- 
ing to ( 6 3 ) ,  the expansion ( 6 0 )  is in the parameter g3/g4 
(and not in g,). If this parameter is small, the singular be- 
havior of ( Vp ),, can be determined as in the derivation of 
( 5 0 ) .  Since g, < 0, the coefficients d ,, (L) with n smaller 
than a certain n,(n,, 1 ) vanish in the thermodynamic limit, 
while those with n > no diverge. This means that ( Vp ),, as a 
function of g3/g4 has a singular structure: 

The fact that ( Vp ),,+O is related physically to the 
Rresence of long-range order in the system with Hamiltonian 

HP. 
Taking ( 5 0 ) ,  ( 5 1 ) ,  ( 5 6 ) ,  and ( 5 7 )  into account, we 

obtain for & ( a )  

As follows from Ref. 24, the quantity appearing in the 
right-hand side of ( 6 4 )  coincides with the exact value of 
A!::r for g 3 e 4 .  The calculation of the quantity ( Vp ),, for 
arbitrary relative magnitudes ofg, andg, requires additional 
analysis, but, evidently, this quantity is always -Ad,/:=. With 
this assumption, formula ( 6 5 )  has the form 

We note that in the derivation of formula ( 6 6 )  it was 
assumed that g,  > 0 and g, < 0. It is easy to see that a change 
of sign of the interaction corresponds to the replacements 
p e a  and g,, ,  *g4. In particular, for the Hubbard model, 

,& (6) m-,6'/~+4~r~lln. 

The expression ( 6 6 )  solves the problem of the Peierls 
instability in the strong-coupling regime. One should also 
expect that the resulting Peierls gap A ( 6 )  cc s2l3. 

CONCLUSION 

It follows from the above account that the problem of 
the Peierls instability of weakly nonideal Fermi systems 
whose spectrum does not have a correlation gap can be 
solved in the framework of perturbation theory in the cou- 
pling constant. The dependence ~ ( 6 )  for such systems does 
not have a universal character. The Peierls transition in 
them can be suppressed only in the case when the interaction 
is attractive. 

The behavior of systems whose spectrum has a correla- 
tion gap for S = 0 has either a weak-coupling or a strong- 
coupling regime, depending on the relative magnitudes of S 
and A,,,, . For 8-0 the dependence & ( a )  has a universal 
character and is characterized by a critical index equal to 4/ 
3. Such systems are unstable against a transition to the 
Peierls state. 
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