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We discuss the possibility of ferromagnetic ordering at the surface of transition metals whose 
interior layers are non-magnetic. A condition for the onset of surface ferromagnetism is derived. 
It is shown that the Curie temperature for the surface can exceed the Curie temperature of the 
interior metallic region at certain values of the Fermi energy and of the ratio of the intra-atomic 
Coulomb repulsion to the width of the conduction band. We analyze the influence of the intra- 
atomic Coulomb interaction on the Friedel oscillations of the electron density in atomic layers 
close to the metal surface, and compare our results with experimental data. 

INTRODUCTION 

In recent years, a number of works have been published 
in which observations were reported of magnetic order in the 
topmost clean surface layers of several transition metals 
whose interior layers were in a nonmagnetic state. For exam- 
ple, by measuring the magnetic susceptibility with the help 
of a magnetic balance, it was established that finely-dis- 
persed particles of vanadium ( 100 to 1000 A )  exhibit a mac- 
roscopic moment proportional to their surface area. ls2 Anal- 
ogous results were obtained by the same method for small 
particles of chromium at temperatures T > T ,  
( T, = 3 10 "K is the Ntel temperature for chromium) . 3  The 
surface magnetic moment disappeared around a tempera- 
ture T-  800 OK. Confirmation of the presence of magnetic 
order at the surface of the (100) faces of chromium was 
obtained for temperatures up to 780 OK by the method of 
angle-resolved photoelectron spectroscopy using synchro- 
tron rad ia t i~n .~  Ferromagnetic order at the surface of the 
(100) faces of chromium for T >  TN was also detected in 
experiments on grazing-angle scattering of deuterons ac- 
companied by capture of electrons from the surface 
Using these methods, the presence of at least near-ferromag- 
netic ordering was established for nickel on the ( loo) ,  
(110), (111) and (210) faces at temperatures T> T, 
(T ,  = 630 "K is the Curie temperature for nickel), up to 
2.05 T, .' In Ref. 7, the temperature dependence of the black- 
body coefficient of cobalt is discussed: certain anomalies are 
found in this coefficient at the volume (second-order) mag- 
netic phase transition temperature. At temperatures higher 
than T, by 10-15 OK, however, additional (and analogous) 
anomalies were observed which, as suggested in Ref. 8, point 
to the presence of a surface magnetic phase transition at 
T >  T,. Very recently, by using the method of diffraction of 
slow spin-polarized electrons and a method based on the 
Kerr effect, it was observed that the Curie temperature of the 
(0001 ) crystal face of the rare-earth element gadolinium ex- 
ceeds the volume Curie temperature by 22 

Previously, this problem was studied theoretically by 
Kaganov et al. within the framework of the thermodynamic 
Landau-Ginzburg m ~ d e l . ' ~ - ' ~  The possibility of ferromag- 
netic ordering at the surface of thin films with Curie tem- 

peratures exceeding bulk values is connected with a negative 
surface energy, which is caused by the presence at the sample 
boundary of various kinds of perturbations, i.e., perturba- 
tions which distinguish the surface from the bulk: the differ- 
ent anisotropy energy at the surface as compared to the bulk, 
the presence of a layer of oxide on a number of atomic layers, 
and surface deformation.1° Other authors have studied the 
phenomenon of surface ferromagnetism in a strong-coupling 
model in which the parameters of the problem for surface 
and volume are considered to be essentially different. 13-16 

Thus in Allan's ~ o r k , ' ~ . ' ~  where the band structure of the 
metal is most completely taken into account, the magnitude 
of the intra-atomic Coulomb interaction between electrons 
for the surface atomic layer is assumed to be larger than that 
in the inner layers. In these works it was established that the 
cause of the appearance of surface ferromagnetism is the 
presence of oscillations in electron density as we move from 
the interior metallic layers to the surface. However, instead 
of solving the self-consistent problem of the influence of the 
oscillating electron density on the surface ferromagnetism, 
in these works a certain effective potential V, is introduced, 
which is taken to be different from zero only at the surface 
atomic layer and corresponds to the creation at the surface of 
a dipole layer due to charge transfer between the surface 
layers of the metal. 

In the present work, we solve the problem of how a 
purely geometric property-the fact that the surface atoms 
differ from the interior atoms in that they have no "top" 
neighbors-can influence the possibility of surface magne- 
tism. That is, we invoke only a general property possessed by 
all free surfaces. In accordance with this approach to the 
problem, we will let the atomic parameters for all metallic 
layers except the surface layer be the same. In particular, we 
do not introduce the Allan potential V,. Thus, in the present 
work we solve the self-consistent problem for a metallic half- 
space in which electron density oscillations in the metallic 
surface, and in some cases the appearance of surface ferro- 
magnetism, will take place purely because of the existence of 
a surface. In this way, we will show that the existence of new 
physical properties at the surface does not require for its 
explanation the introduction of adjustable parameters de- 
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scribing, for example, a change in interatomic spacing near 
the surface, surface reconstruction, etc. 

We have chosen the Hubbard model" as a model of the 
transition metal. Its usefulness as a crude model of transition 
metals was established in a series of works (see, e.g., Refs. 
18-20), where in particular it was shown that the solution to 
the problem in the self-consistent layer approximation al- 
lows one to describe the magnetic state of the transition met- 
als. As is weil-known, the self-consistent field approxima- 
tion is justified if the ratio U/W< 1 ( U  is the intra-atomic 
Coulomb repulsion energy for electrons with different spins, 
and Wis the band width of the metal). We show that surface 
ferromagnetis~n can occur when the ratio U/ W is smaller 
than that which is required for the appearance of volume 
ferromagnetism. 

The appearance of surface ferromagnetism is detected 
in metals having various crystallographic structures, and 
can occur for a multiplicity of crystal faces. It is clear there- 
fore that it depends only weakly on the crystal structure fac- 
tor, and so we limit ourselves to investigating the (100) face 
of a simple cubic lattice. 

In Section 11, we calculate the electron density-of-states 
functions for the paramagnetic case, and determine the oscil- 
lating electron density to zeroth and first approximation in 
the parameter U / W for an arbitrary atomic layer. Inparticu- 
lar, we will establish that when the Fermi level is located 
near the center of the band, the number of electrons per atom 
changes markedly not only in the surface layer, but also in 
the next few metallic layers. These results allow us to justify 
the approximations used to solve the surface ferromagne- 
tism problem in this work. 

In Section 111, we obtain conditions for the appearance 
of surface ferromagnetism in the presence of a bulk para- 
magnetic state, i.e., paramagnetic metallic interior layers, 
for arbitrary temperatures. In particular, we show that the 
Curie temperature for the surface can exceed that of the inte- 
rior metallic layers. We then present a comparison of the 
results with available experimental data. 

II. ELECTRONIC STRUCTURE OF THE METALLIC HALF- 
SPACE (NON-MAGNETIC CASE) 

Let us investigate a crystal with a simple cubic lattice, 
having a (100) surface and consisting of N atomic layers 
with coordinates z = 1, ... , N (in units of the lattice param- 
eter a ) .  In order to study such a system using the Hubbard 
Hamiltonian, which in the standard notation takes the form 

Using the translation symmetry along the crystal surface, we 
are led from the Green's function in lattice-~ite~representa- 
tion to its Fourier transform G 2 (E, k) in x and y ( E  is ener- 
gy, k is the two-dimensional wave vector). Making all the 
energy parameters dimensionless relative to 2B, we can write 
the equation for the Green's function in the compact form 

where N, = N, N,, is the number of atoms in a layer, I is the 
N x N-dimensional identity matrix, while the matrix y is also 
N X N and has the form 

Here we introduce the following notation: 

where n, is the number of electrons per atom for a layer with 
index z = 1, ... , Nand no is the number of electrons per atom 
when one is sufficiently far from the metallic surface layer 
(NBz) 1 1. We will henceforth denote energies by the quanti- 
ty w, and the Fermi energy by wf = ( E ~  - E, - Uno/2)/2B. 
In this section, we will investigate the nonmagnetic case; 
thus, in going from (1)  to (2)  and (3) we will set 
n, = n, - , = n, /2. Our goal is to calculate the electron 
density-of-states function p, (a), and the amount of devi- 
ation C, in the occupation number of electrons from its bulk 
value, as a function of the atomic-layer number z and the 
position of the Fermi level, to zeroth and first order in g. As 
we will see below, maxlC, 1 - which points to small- 
ness of the termgC, in (3) and allows us to use an expansion 
in g even ifg- 1. We will not keep track of electrical neutra- 
lity, since in transition metals electrical neutrality is pro- 
vided by the s-electrons. 

From ( 2 )  follows an obvious solution for G- y- '. Let 
us expand G in a series in g (G = G o  + gG ' ) . The diagonal 
matrix elements of the Green's function, which are all that is 
of interest to us, are expressible in terms of the determinants 
d, of the matrix y( l  x 1) at g = 0: 

N 

1 
Gzg = - [ d d  / d ~ + g  ~ . d . - ~ d ~ - .  4nNLB N - z  m-i 

we will apply the Green's function method2' in the self-con- 
sistent field approximation, which is correct for U< W 
where W = 12 Band B is the amplitude of the electron trans- 
port B,, from site f' to the nearest-neighbor site f. Corre- 
sponding to what was said above, we will assume that the 
quantities E ' ,  B, and U are the same for all atoms except the 
surface atoms. Furthermore, we will write down the equa- 
tion for the Green's function ( ( C  , ,I C )), which after the 
Hartree-Fock decoupling takes the form 

The determinants dl can be calculated by the recursion-rcla- 
tion method. For the condition (wk I < 1, the answer for dl 
has the form 

1 s incp( l+l)  
dl =- 

2' sin cp ' 
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where the angle p is determined from the relations 
sin p = ( 1 - w: ) ' I 2 ,  cos p = wk . We can show that if we 
use the opposite condition lwk I > 1 we are led to a value of 
zero for the electronic density of states both in zeroth and 
first approximation in g. From this it follows that in the 
problem under discussion here there are no extra allowed 
energy intervals, i.e., no surface bands. This result is in 
agreement with the results obtained in Ref. 22, in which the 
(100) face of a simple cubic lattice was also treated (al- 
though calculations were carried out there only for the case 
g = O ) .  

From (4 ) ,  we can, by taking (5 )  into account, obtain 
expressions for the retarded and advanced Green's functions 
of an atom in the zth layer in the semi-infinite (N-cc ) met- 
al : 

G,, (o*iO, k) 
m 

1 T i  
Go (ortiO, k) = ------ 

4 n N L B  sin cp ' 

The Green's function Go and electronic density of states p,, 
as one can convince oneself, coincide with the analogous 
(and well-known) expressions for the bulk metal integrated 
over k, .'O We can also show that expressions (6)  and (7)  for 
g = 0 coincide with the analogous expressions obtained in 
Ref. 22 by other techniques, if the perturbation Uo intro- 
duced in this work for a surface atomic layer is set equal to 
zero in the spirit ofour work here. Corrections to the interac- 
tion in (6)  and (7)  are calculated in the present work for the 
first time. 

Using ( 7 )  and (8), we can obtain expressions for the 
occupation numbers n, and no, and consequently for C, : 

1 m t  
= - [2zel*'+g (dz-12zeiiQz 

4nN,B m=t  
2 sin cp 

and corresponding to it the electron density-of-states func- 
tion 

1 z { z -  - sin cpz 
P . ( ~ ) = ~ N ; B  2g sin2 q 

sin cpz 
f g sz[z Cm sin cpm sin cp (z-m) 

m = t  

+ r, Cm sin q (m-z) sin rpm 

m 

- sin cpm sin cp (2-t-m) 1). 
Relation (9)  gives a set of simultaneous equations for the 

X [ 2 Cm sin qm sin q(z-m) 
quantity C, , which we will solve by the method of perturba- 

m= 1  
tion theory in the small parameter j = U / W  = g/6. We ex- 
pand the quantity C, as a series in j (C, = C: + j C i  ) and 
substitute it into (9) .  Equating coefficients of equal powers 

+ f, C. sin q(m-z)sin cpm ofj, we obtain in zero-order approximation 
m = ~ + l  mr - c:=--z 2 J do-. cos ~ Z Z  (10) 

- ~ ~ ~ s i n c p m s i n c p ( z + m ) ] ) .  (7)  xN1 , -m 2 slncp 
m=t  > I  

The quantity C f can be expressed in terms of C:. After some 
Analogously, we obtain the bulk Green's functions and elec- straightforward but tedious calculations, consisting essen- 
tron density of states for atoms in a layer sufficiently far from tially of a summation of the series in (9),  we obtain with 
the surface (N- cc , z-t ) : allowance for ( 10) an expression for C i  in the compact form 

J 
"I 

1)' do faart sin cpz[sin cpt(2z-l)sincp(?+I)- sin cp'(2z+1)sin9,(z-1] ] 
sin cp sin2 cp' (sin2 cp - sinZ cp') 

(11) 
n N 1  k m - m  

In analogous fashion, we obtain an expression for Ap, tron density. The dependence of the quantities C f  on z are 
( p, = P: + jA p, ), which differs from equation ( 1 1 ) only rather difficult to extract from ( 1 1 ) . However, the integrals 
in the absence of an integration over energy w and the dimen- in w and w' in ( 1 1 ) can be evaluated for z = 1, 2, 3 (see the 
sional multiplier 28.  Appendix). A graph of the dependences of C : and C on the 

The quantities C :  oscillate, and decrease as the layer Fermi energy wf is shown in Fig. 1. From this figure, it is 
index increases-these are Friedel oscillations in the elec- clear that the quantities C f also oscillate and decrease with 
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FIG. 1 

increasing z, i.e., the Friedel oscillations are strongly 
screened as we pass into the metal interior. It is also clear 
that maxIC:"' I - lop2, which justifies our expansion of the 
Green's function in a series in g (see (3) and below). The 
dependences of the quantities C :"' on w, have an oscillatory 
character and are of odd parity in a,-. This latter fact is con- 
nected with the electron-hole symmetry which occurs in the 
Hubbard model for non-degenerate bands.23 The largest val- 
ues of C are achieved at the first atomic layer. This justi- 
fies our using the usual approximation, in which it is as- 
sumed that when a surface is created, a strong change in the 
number of electrons per atom occurs only for the surface 
atomic layers. An exception to this is the energy region di- 
rectly adjacent to the center of the band, where the magni- 
tudes of the peaks of C: and C :  are comparable to Cy.  
Consequently, for transition metals located in the center of 
the d-series, it is in general also necessary to take into ac- 
count the change in electron number at atoms located in the 
next few atomic layers below the surface. This situation 
clearly obtains for chromium, which is located at the center 
of the 3d series. This inference agrees with the consider- 
ations expressed in Ref. 15 relating to the electronic struc- 
ture of the near-surface layers of chromium. 

The quantities C: and C: for the same atomic layer 
have opposite signs over a wide range of values of the Fermi 
energy w f .  From this it can be inferred that switching on the 
interaction ( U / W # 0) should lead to a smoothing out of the 
Friedel oscillations in the electron density, i.e., to a decrease 
in the thickness of the transition layer at the metal surface. 
Such a situation should occur as we go from simple to transi- 
tion metals. 

In Fig. 2 we present the dependence of A p,  on the ener- 
gy w for various values of the Fermi energy w f .  It is impor- 
tant to note that the value of the quantity A p, at the Fermi 
level wf is always positive. This has direct bearing on our 
description of the appearance of surface ferromagnetism: an 
increase in the value of the electronic density of states of a 

FIG. 2 

surface atom at the Fermi level, as will be shown below, leads 
to relaxation of the criterion for Stoner ferromagnetism, i.e., 
at the surface this criterion is fulfilled at a smaller value of 
the parameter U / W  than for the volume. For A p,  we have 

Ill. SURFACE FERROMAGNETISM 

Clearly, surface ferromagnetism is a property of a small 
number of atomic layers near the surface. We approximate 
the problem by assuming that for z > 1 all the metallic layers 
coincide with the bulk layers, which we assume to be non- 
magnetic, and that only for the surface atoms can the elec- 
tron occupation numbers for different spins be unequal, i.e., 
n+ # n  -. This implies that the surface atomic layer is differ- 
ent from the remaining layers, and is equivalent to a self- 
consistent renormalization of the model parameters as we go 
from the inner metallic layers to the surface. However, as we 
will see below, surface ferromagnetism occurs for certain 
values of the Fermi energy for which, according to the re- 
sults of the previous section, the layers immediately below 
the surface can actually be considered as no different from 
the infinite bulk metallic layers. In keeping with these state- 
ments, we return to equation ( 1 ) and pass from the Green's 
functions in the lattice-site representation to their Fourier 
transforms in x and y, just as was done in the previous sec- 
tion. Now there is one difference, however: we retain the spin 
index a of the electron occupation numbers for the surface 
atoms. The equation for the Green's function Gu again takes 
the form (2 ) ,  while the matrix y" is determined by expres- 
sion (3), but now the matrix element y: is 

where nu is the electron occupation number for spins 
a = + , - , for an atom on the surface layer ( z  = 1). We 
will try to evaluate the occupation numbers n + and n - in a 
self-consistent way; again, we will not keep track of charge 
neutrality, since in transition metals this is supplied by thes- 
electrons, which do not take part in the formation of surface 
ferromagnetism. 
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The Green's function G y, can be expressed in terms of 
the determinants d, (see (5)  ) : 

In this work, the appearance of surface ferromagnetism is 
not connected with the appearance of additional allowed en- 
ergy regions, i.e., surface bands. (As was shown in Section 
11, the density-of-states for surface atoms for energies out- 
side the band is zero. ) Using ( 12), we find the retarded and 
advanced Green's functions for a surface atom in the semi- 
infinite (N-  co ) metal: 

GllU(o*iO, k) = lim lim Gll0(o&is, k) 
a++O N + m  

Furthermore, after expanding G 7, (w f i0,k) in a series in 
the parameter 2gSn -, and limiting ourselves to second or- 
der terms, we find by standard methods the density-of-states 
functionspy for the surface layer. Integrating py multiplied 
by the Fermi distribution, we obtain equations for the occu- 
pation numbers n+ and n- ,  or for the quantities 
S n = S n + + S n - ,  m = n + - n - ,  i.e., the difference 
between the numbers of electrons per atom in the surface 
layer and in an interior layer, and the magnetic moment of a 
surface atom, respectively: 

The coefficients R, R , and Q depend on the Fermi energy wf 
and the temperature t = T/2B; expressions for them are giv- 
en in the Appendix. The system of equations ( 13) has both 
magnetic and nonmagnetic solutions. Setting m = 0 in ( 13), 
we obtain from the first equation the quantity Sn = an,, 

The magnetic solution is given by the result 

From the expression for m2 follows a condition for the ap- 
pearance of surface ferromagnetism: we will have m2 > 0 if 

For t = 0, we can find from formula ( 16) a region of 
values of the parameters wf and j = U / W for which the sur- 
face atomic layer is ferromagnetic, while the interior is non- 
magnetic. The region where surface ferromagnetism (SFM) 
exists is depicted in Fig. 3, where a magnetic phase diagram 
in the variables (wf, j) is presented for the surface and bulk, 
for wf < 0. The portion of the diagram for wf > 0 is obtained 
by mirror reflection of the wf < 0 diagram relative to the wf 
= 0 axis, by virtue of the even parity of all dependences 

Wf 

FIG. 3 

shown in Fig. 3 on wf. In Fig. 3, the phase boundary for 
volume ferromagnetism j, is obtained from the Stoner crite- 
rion, while the surface phase boundary j, is found from con- 
dition (16). From this figure, it is apparent that surface fer- 
romagnetism arises for smaller values of the parameter 
j = U / W than are needed for volume ferromagnetism at the 
same value of of.  Comparing Figs. 1 and 3, we see that sur- 
face ferromagnetism occurs for those values of wf for which 
the change in electron occupation number for an atom in the 
layers next to the surface can be neglected. For laf / > 1.6, 
the quantities j, and j, are > 1, and therefore lie beyond the 
limits of the self-consistent field approximation; hence, we 
will not investigate these values of wf. To complete the pic- 
ture of the (of, j) diagram, we also present the phase bound- 
ary j,, for volume antiferromagnetism ( AF) . The presence 
of surface ferromagnetism in the problem under investiga- 
tion here is connected with an "effective narrowing" of the 
band, due to the smaller number of nearest neighbor lattice 
sites as we go from the interior metallic layers to the surface; 
this implies that the density-of-states functions for a surface 
atom p ,  and a bulk atom p, near the top and bottom of the 
band are in the r e l a t i o n p , ~ , ,  sincep, - 13 - /w1 I 3 l 2  while 
p,- 13 - I W  I (see e.g., Ref. 24). Taking into account the 
normalization ofp, andp, (on one atom there can be a maxi- 
mum of two electrons), this distortion in the density-of 
states functions for the transition from bulk atoms to surface 
atoms leads to the existence of intermediate values of the 
quantity of, for which Up, > 1 > Up,, i.e., at the surface the 
Stoner criterion is satisfied while in the volume layers it is 
not. 

For fixed values of wf, in the region where surface ferro- 
magnetism exists (see Fig. 3), an increase in the parameter 
j = U/W leads at some point to the appearance first of a 
surface magnetic moment and then for a further increase in j 
to the appearance of a moment on the interior layers. Both of 
these phase transitions are second-order phase transitions, 
since it is easily established that the expression for Sn,, 
(14) at the point of the surface phase transition matches 
smoothly with expression ( 15) for Sn,, , i.e., without a dis- 
continuity. For values of wf corresponding to the region Xon 
the (wf, j) phase diagram, surface ferromagnetism on a non- 
magnetic volume is impossible for the t = 0 case assumed 
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here, since in this case j, (of )  < j, (of) .  A comparison of the 
energies of the paramagnetic and ferromagnetic phases for 
the surface layer shows that the ferromagnetic state is more 
advantageous for values of of and j in the region of surface 
ferromagnetism on the (of, j) diagram (Fig. 3 1. 

In Ref. 18, a correspondence results of magnetic solu- 
tions to the Hubbard model were set in correspondence with 
the magnetic properties of transition metals. On the basis of 
qualitative considerations regarding the values of U and W, 
it was shown that the parameterj = U /  Wincreases as the d- 
shell of the transition metals becomes filled, both for 5d and 
3d transition metals. Assuming that there is close to a direct 
proportionality between the number of d electrons of an ele- 
ment in the periodic table and the Fermi energy of (for a 
change in of from - 3 to 3, the number of electrons per 
atom goes from 0 to 2), we can expect that surface ferromag- 
netism is most likely to be observed for elements located at 
the beginning of the 3d series and at the end of the 4d series, 
which do not exhibit volume magnetism. The results of mea- 
surements of the magnetic susceptibility of finely-dispersed 
particles of vanadium,'~~ which is located at the beginning of 
the 3d series, can be clearly explained by the presence of 
surface ferromagnetism in correspondence with the results 
obtained here. If the model parameters for the surface Us 
and B, and for the bulk U and B are chosen so that Us > U or 
B, < B, we can then expect that the phase boundary j, on the 
(of, j) diagram will be lowered, and that the region of sur- 
face ferromagnetism will be widened. 

Let us now investigate the r # O  case. Here, the coeffi- 
cients R,  R ,  and Q in (13)-(16) depend not only on the 
Fermi energy but also on the temperature t (see Appendix). 
Let us fix the value of of so that it corresponds to the region 
of surface ferromagnetism at t = 0 (i.e., - 1.6 < of 
< - 1.0) in Fig. 3, and elucidate the way that the phase 
boundaries for volume and surface ferromagnetism ju ( t )  
and j , ( t )  change with temperature. It turns out that the 
function j, ( t )  goes through a minimum while j, ( t )  increases 
smoothly with temperature, as shown in Fig. 4. The mini- 
mum in the curve j, ( t )  leads to a pair of solutions for the 
Curie temperature t,, of a volume layer of metal. This effect 
was established earlier in Ref. 25. The curves for j, ( t )  and 

j, ( t )  do not intersect for all numerical choices of the Fermi 
energy of (see above) and temperature t. From the plots of 
j, ( t )  and j, (t),  it is clear that for the region of values of of 
under investigation, surface ferromagnetism vanishes at 
temperatures higher than those at which volume ferromag- 
netism, i.e., t, > t,, . It is also clear from Fig. 4 that a situa- 
tion can occur where, as the temperature increases, no vol- 
ume magnetic moment is present, while a surface magnetic 
moment which is present at t = 0 vanishes at some finite 
temperature t,. That is to say, the Curie temperature t, of 
the surface can be higher than the Curie temperature of a 
bulk layer t,, which is in direct correspondence with exist- 
ing experimental data for transition metals. By virtue of the 
even-parity dependence of all quantities on of,  as exhibited 
on the (of,  j) diagram (see Fig. 3 ) , these results also obtain 
for the region of values wf = (1.0-1.6), which allows us to 
correlate our results with experimental data on nickel and 
cobalt. In order to describe the magnetic behavior of the 
chromium surface, it is necessary to know the dependence of 
the NCel temperature t, on the values of wf and j. However, 
the fact of possible ferromagnetic order at the surface of a 
nonmagnetic metal has been established, which qualitatively 
corresponds to the situation with chromium for t > t,. 

If the value of the Fermi energy wf is fixed so that it 
corresponds to the region X (see Fig. 3),  it turns out that the 
curves j, ( t )  and j, ( t )  intersect, as shown in Fig. 5. Here, 
there are two possible cases. If j, ( t  = 0)  < j < j,, then as the 
temperature increases, the volume ferromagnetism vanishes 
at the Curie temperature t, . I f j  > j, ( t  = O), however, then 
fort < t, we have a volume ferromagnet, while for t > tc, the 
nonmagnetic metal has a ferromagnetic surface up to the 
surface Curie temperature t, >t,,. However, one must 
keep in mind that the region X in the (a f ,  j) diagram corre- 
sponds to values of the parameters of and j which give rise to 
the magnetic state in the interior layers of metal (a  magnetic 
state with an order parameter close to the ferromagnetic 
state) .26 Thus, a more detailed investigation of magnetism in 
the region Xof the parameters of andj  may lead to the result 
that the assumptions made in the present work about the 
bulk non-magnetic state of the interior layers of metal break 
down. 

FIG. 4 FIG. 5 
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In conclusion, we want to thank S. Yu. Davydov for + - 
discussing these results. R, =A dw 2 ( 2 w k 2 - I )  (1-wk2)-% 

~ N L  k -, 
APPENDIX 

For z = 1,2,3, the integrals over energies w and w' in 
(11) can be evaluated under the condition that lw, 1 < 1, 
which must be used to determine the value of the original Q =- -. zLo 4wk(l-wk2)"[exp((m-wf)/t)+I1-', 
function at the lower limit of integration (and at the upper nN1 , -, 
limit, if the Fermi energy corresponds to the top of the t= T / ~ B .  
band) : 
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zNL k k *  
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zL( -) ' [ - 48 sin5 p ,  ( 2  sin 29,' + sin 49 , ' )  

10 nN, ,,, 

4- 4 sin3 c p f  ( 34  sin 2cpff + 15 sin 4cpjf)  
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