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A theory of indirect exchange is developed for ferromagnetic heavily doped semiconductors 
and semimetals, and also for impurity-free semiconductors in which light excites 
nonequilibrium carriers. The Ruderman-Kittel-Kasuya-Yosida (RKKY) theory is 
inapplicable to these materials because the Fermi energy of electrons is low compared with the 
s-f energy AS. The proposed theory is based on the alignment of the spins of the conduction 
electrons with fluctuations of the magnetization which vary slowly in space. The non- 
Heisenberg nature of the indirect exchange is manifested by a nonanalytic dependence of Tc 
on AS. In the case of semimetals the dependence of the carrier density on the magnetization 
may result in an abrupt phase transition. In the case of semiconductors in which the indirect 
exchange is due to photoelectrons, a thermodynamically nonequilibrium phase transition is 
characterized by discontinuities of the derivatives of the rates of generation of entropy with 
respect to temperature, frequency, and intensity of light. 

INTRODUCTION 

It is known that the properties of magnetic metals with 
localized moments and simple Fermi surfaces are described 
quite satisfactorily by a theory of the indirect exchange de- 
veloped by Ruderman, Kittel, Kasuya, and Yosida 
(RKKY). The condition of its validity is the inequality 
,u)AS, where p is the Fermi energy of the carriers, A is the 
integral of their exchange with localized magnetic moments, 
and S is the magnitude of such a moment. This inequality 
makes it possible to derive, in the second order of perturba- 
tion theory with respect to AS /p ,  an effective Hamiltonian 
of the indirect exchange between localized moments and this 
Hamiltonian has the Heisenberg structure. 

However, there is a wide class of conducting materials 
with conduction-electron densities much lower than in met- 
als. Therefore, the conditions of validity of the RKKY the- 
ory are not satisfied by these materials. They include in par- 
ticular heavily doped semiconductors which satisfy the 
inequality ,u <AS at densities up to =: lo2' cmP3. This ine- 
quality should also be satisfied by semimetals. Such magnet- 
ic materials include also impurity-free semiconductors in 
which carriers appear under the action of strong illumina- 
tion. The importance of the indirect exchange in such mate- 
rials can be judged by the fact that doping of ferromagnetic 
semiconductors EuO and EuS with electrically active im- 
purities doubles their Curie temperature Tc (see Ref. 1 for 
experimental data). Moreover, the hypothesis of a photoin- 
duced indirect exchange is also in agreement with the in- 
crease in Tc observed for pure EuS on illumination.' 

Since perturbation theory utilizing the ratio A S / p  is in- 
applicable to these magnetic materials, the indirect ex- 
change is apriori known to be of the non-Heisenberg nature. 
This itself makes the study of their magnetic properties an 
interesting task. However, the same metals and photocon- 
ductors have an additional specific property that the carrier 
density depends on the magnetization. Finally, it is in princi- 
ple important that a magnetic phase transition in photocon- 

ductors occurs under thermodynamically nonequilibrium 
conditions and, consequently, cannot be described in terms 
of the characteristic features of the derivative of the thermo- 
dynamic potential. Studies of such phase transitions have 
barely begun. 

We shall report a study of the influence of the indirect 
exchange on order-disorder phase transitions in the low-car- 
rier-densities ferromagnets mentioned above. In contrast to 
the RKKY theory, we shall be unable to derive an effective 
magnetic Hamiltonian valid at all temperatures. However, 
near T, we shall find the contribution of the indirect ex- 
change to the total thermodynamic potential of a magnetic 
material (or to its nonequilibrium analog in the case of pho- 
toconductors) and use it to determine the naturer and tem- 
perature of the phase transition. We shall show that there are 
situations (for example, in the case of metals) in which the 
conduction electrons convert a continuous phase transition 
into an abrupt one. In those cases when the transition is 
continuous, the shift of the Curie point Tc caused by the 
conduction electrons may be several orders of magnitude 
different from the RKKY result. In the case of photocon- 
ductors we shall obtain expressions for the discontinuities of 
the derivatives of the rate of generation of entropy with re- 
spect to temperature, and with respect to the intensity and 
frequency of light needed3 for a photoinduced phase transi- 
tion. 

The non-Heisenberg nature of the indirect exchange in 
degenerate magnetic semiconductors has already been 
pointed out.' However, only the magnon spectrum is investi- 
gated in Ref. 1. This spectrum differs greatly from that ob- 
tained using the RKKY theory. For example, the frequency 
shift of long-wavelength magnons because of the indirect 
exchange is proportional not to A 2S 2 / p ,  but to the width W 
of the conduction band. If the inequality WSAS is obeyed, 
which is true of EuO and EuS, the dependence of the fre- 
quency on the s-fexchange integral A is manifested only by 
short-wavelength magnons and this dependence is linear in 
A,  and not quadratic. 
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These results already manifest the specific nature of the 
interaction of long-wavelength charge carriers with fluctu- 
ations of the magnetization in ferrromagnets, which is re- 
tained also near Tc : the electron spins become aligned paral- 
lel to the direction of the local moment and follow the 
changes of this moment in space. If such changes are slow, 
the spin alignment is complete and an electron experiences 
the maximum possible "gain" in respect of the s-fexchange 
energy amounting to AS/2, as in the case of ideal ferromag- 
netic ordering. Consequently, the change in the electron en- 
ergy due to the appearance of a long-wavelength magnon 
(and it is this change that determines the contribution of the 
indirect exchange to the magnon frequency) should be inde- 
pendent of A. 

We can show that the spin of long-wavelength electrons 
is indeed aligned parallel to the direction of the local mo- 
ment simply by analyzing the familiar formula4 for the elec- 
tron energy in the case of helicoidal ordering of the spins of 
the magnetic atoms. Using the effective electron mass m*, 
we can write down the formula as follows (Q is the vector of 
the helicoid, a is the lattice constant, and f i  = 1 ): 

where 

It is clear from Eq. ( 1 ) that the energy shift of electrons with 
k4qo caused by the s-f exchange amounts to + AS/2 if 
Q(q,, exactly as in the case of ideal ferromagnetic ordering. 
Since the total moment of helicoidally ordered crystal van- 
ishes, it is clear that the s-fshift is determined not by the 
long-range but by the local magnetic order. The quantity 
go- ' can be regarded as the radius of a locally ordered region 
and the conduction-electron spin becomes aligned with the 
moment of this region. It follows from the condition Q(qo 
that all the spins in this region are parallel to one another, 
i.e., the local order is ideally ferromagnetic. 

Ferromagnets at temperatures close to Tc naturally do 
not contain regions with ideal ferromagnetic order, but they 
do have regions with unsaturated ferromagnetic order and 
the direction of the local magnetic moment varies slowly in 
space. It is precisely the interaction with the magnetization 
fluctuations varying slowly in space which makes the depen- 
dence of the electron energy on the s-f exchange integral 
nonanalytic. However, such nonanalyticity means that the 
indirect exchange is of the non-Heisenberg type. 

We can allow for the nonanalyticity of the electron en- 
ergy in A by using a variational method based on the physical 
idea of the alignment of the electron spin with a slowly vary- 
ing direction of the local moment. It represents a generaliza- 
tion of a method developed earlier' for the determination of 
the position of the bottom of the conduction band at T = T,  . 
Such generalization consists in an allowance for the finite 
magnetization and for the many-electron nature of the prob- 
lem. A special analysis in Ref. 1 shows that the method used 
there gives a correct representation of the dependence of the 
electron energy on the parameters of the problem. In the case 

of the generalized method used below, the following circum- 
stance support the conclusion that its use is reasonable: 1 ) in 
the spin-wave region it gives the same results as the spin- 
wave theory, not only in the principal order in respect of 1/S, 
but also in the next order; 2)  ifpsAS, this method duplicates 
the results of the RKKY theory. 

ENERGY SPECTRUM OF CARRIERS 

We shall consider a semiconductor with a wide conduc- 
tion band WsAS. In analyzing the electron spectrum of such 
a semiconductor near Tc,  we must bear in mind that there 
are not only delocalized carrier states, but also those which 
are localized near fluctuations of the magnetization which 
have a very large radius and a moment close to that of a 
saturated ferromagnet. However, there are only few such 
giant fluctuations. In any case, the number of trapped (lo- 
calized) electrons in degenerate semiconductors is known to 
be negligible compared with the number of free carriers. 
This is supported also by the experimental observation that 
an increase in the degree of doping suppresses the resistance 
peak which appears near Tc and is due to partial localization 
of carriers. ' 

Close to Tc the properties of free electrons are gov- 
erned by the existence of local moments of considerable 
magnitude and due to strong correlations between the spins. 
For example, in a simple cubic lattice with an exchange 
between the nearest neighbors the function describing the 
correlation between these neighbors is S 2/3 in the classical 
limit. This value is even higher if antiferromagnetic ex- 
change between the second-nearest neighbors is important. '' 
In view of the large radius of correlations near Tc the direc- 
tion of the local moment varies slowly in space. It follows 
from this discussion that the conduction-electron spins tend 
to become aligned with the direction of the local moment. 

Our calculations will be based on a Hamiltonian of the 
s-fmodel written down in the approximation of the nearest 
neighbors for electrons: 

where a,*, and a,, are the operators of an sth conduction 
electron with a spin projection a of an atom g; A is the vector 
joining the nearest neighbors; S, is the spin of an atom g; I is 
the integral of the direct exchange between the f spins, the 
lattice of which is assumed to be simple cubic; s,,, are the 
Pauli matrices. 

In the variational method used below the physical con- 
cept of the alignment of the conduction electron spins along 
the direction of the local moment is formulated as a require- 
ment that the spin of an electron located at an atom g is 
oriented along the total moment M, of a region of radius 
R s a  with its center at the atom g. This radius is regarded as a 
variational parameter of the problem which has to be deter- 
mined from a condition for a minimum of the free energy of 
the system. However, since the electron gas is degenerate, 
the value ofR is determined in reality from the condition for 
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a minimum of the electron energy for a given value of the 
magnetization of a crystal. 

It is convenient to rewrite the Hamiltonian (2) intro- 
ducing for each atom g its own coordinate system in which 
the z, axis coincides with the direction of the local moment 
M, . With this in mind we shall transform the electron opera- 
tors by a procedure analogous to the transformation of spin- 
ors described in Ref. 6, except that instead of the Euler an- 
gles we shall use the angular coordinates in a spherical 
coordinate system. The explicit form of the coefficients of a 
unitary transformation from a general to a local coordinate 
system can be found from the following conditions: 1 ) invar- 
iance of the scalar product of the vector M, and of the spin of 
an electron at an atom g relative to the coordinate system; 2)  
rotation by 21r about thez, axis reverses the sign of the oper- 
ators a;, by analogy with the wave functions, since these 
functions can be represented in a local coordinate system in 
the form a$ lo), where 10) is the electron vacuum function. 
The transformation from a general to a local coordinate sys- 
tem is then described by the relationship 

%a' = exp (ipgh) cos ( 5 + 1 F - ag,*,,,. A n )  * 2 4 2  
( 3  

(* )  

The transformation (3)  converts the Hamiltonian (2 )  to 

W l  H A  = - A h ~ r a & z ~ ~  - -i;i )- cos (Bgg+~/2)  

where 8, and p, are the angles which define the direction of 
the vector M, in the general coordinate system; 8,, is the 
angle between M, and M,; R is the projection of the conduc- 
tion electron spin in the local coordinate system. The Hamil- 
tonian HA, -, , which is not spelled out in detail, describes 
electron transitions caused by a change in A. 

The condition R s a  (this is confirmed by the results 
obtained below) ensures that the directions of the moments 
M, and M,, , are close to one another. Expanding the 
quantity y,, in Eq. (4 )  in terms of the small differences 
p, - e, , and 8, - 8, , and applying a canonical transforma- 
tion to the electron operators 

we obtain an expression for the electron energy with a fixed 
value ofR and this expression is identical with HA of Eq. ( 4 )  
if we assume that y,, +. = 0. This result is valid up to and 
including the squares of the small differences between the 
angles. 

A test wave function of a delocalized electron will be 
selected in the form of a plane wave with a fluctuating spin 
direction: 

It is asymptotically orthogonal to the states localized within 
giant fluctuations of the magnetization. The form of Eq. (5 )  
suggests the existence of two Zeeman subbands with oppo- 
site orientations of the electron spin relative to the local mo- 
ment. In zeroth order with respect toAS / W Eq. ( 1 ) includes 
also the exact result and this should ensure a sufficient accu- 
racy at low values of AS / W. 

Using Eqs. (4 )  and (5) ,  we obtain the following expres- 
sion for the electron energy: 

where 

The bar in Eq. ( 6 )  denotes averaging over all the atoms and 
this is obviously equivalent to thermodynamic averaging de- 
noted below by angle brackets. The structure of the first term 
in Eq. (6 )  is determined by the fact that if O,, (1, then 

The structure of the second term follows from the fact that 
the projection of the spin of an atom g along the spin direc- 
tion of an electron s parallel to M, is S, M, /M, 1 .  Equation 
(6 )  gives in particular the energy of an electron in the heli- 
coid of Eq. ( 1 ) if k, Qgq,. 

We can estimate approximately the complicated corre- 
lation functions in Eq. ( 6 )  by noting first that the local mo- 
ments M, of different regions have different magnitudes and 
directions. However, the fluctuations of IM, I are not impor- 
tant, because disappearance of ferromagnetic ordering near 
T, is due to disordering of the directions of the local mo- 
ments. Therefore, we can modify Eq. (6)-with an accuracy 
up to terms of higher order in a/R-by replacing /M, / with its 
average value ( /M, / ). Next, the smallness of fluctuations of 
IM, I at high values of R makes it possible to replace quite 
accurately ( JM, 1) with ( M i  ) ' I 2 ,  since for x = M i / ( M  i ) 
we can write down 

Consequently, the complicated correlation functions in Eq. 
(6 )  can be expressed in terms of binary functions. If the 
correlation length is large compared with R ,  then in the case 
of binary correlation functions we can use expressions in 
which a small critical exponent T,I is assumed to vanish: 

K,, (f) = ( S , ' S f z > = ~ 2 + S ( S + l )  rlf, 
(7  

K ,  ( f )  .=(So"Sfx>+<S0~S,~>=2S (S+1) r l f ,  

where r is a characteristic constant with the dimensions of 
length, like the three-dimensional number of an atom f; is 
the average magnetization of a crystal per atom. Calcula- 
tions carried out using Eq. (7 )  give (when summation over g 
is replaced with integration) 
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It follows from Eqs. ( 6 )  and (8)  that, including terms 
up to.M4, the electron energy can be represented in the form 

When the total energy of electrons is minimized with respect 
to R, we shall consider electron densities which are so low 
that electrons are only in the lower Zeeman subband 
( A  = 1/2). It is then sufficient to minimize the position of 
the bottom of this subband and the system (9)  yields 

After substitution of Eq. ( 10) into Eq. (9) ,  the spectrum of 
the conduction electrons dependent on the magnetization is 
given by the expression ( A  = 1 )  

P; (k) =P;, (k) +bz (k) dzf84 (k)  A4, 

We can see from the systems ( 10) and ( 11 ) that the s-f 
exchange at T =  Tc lowers the electron energy by E, 
-AS(AS/W) ' I 3 ,  i.e., the reduction in the energy is greater 
than that obtained in the second order of perturbation the- 
ory with respect to AS / W. This result was obtained earlier in 
Ref. 1 by a variational method and also using a graphical 
technique. It was shown there that a perturbation intro- 
duced by the term HA,- ,  in Eq. (4)  is slight, so that the 
concept of the Zeeman subbands retains its meaning also at 
Tc . 

A completely new (compared with Ref. 1 ) feature is the 
result that the electron energy is a quadratic function of the 
magnetization near Tc. Until now, it has been usual to as- 
sume that the bottom of the conduction band shifts linearly 
downward on increase in the magnetization. The cause for 
the quadratic dependence of the energy on the magnetiza- 

tion can be understood qualitatively if we consider it as an 
analog of an external field which perturbs the state of an 
electron (5)  with the zeroth projection of the spin along this 
field. 

It is interesting to note that the variational method used 
here is valid in the spin-wave range of temperatures Tc/ 
S < TN T, of a magnetic material with S) 1 and it gives the 
same results as those obtained in Ref. 1 if magnon operators 
and perturbation theory in terms of l/Sare used. In this case 
we can aSsume that K ,, = d2 and K, -rT/TcJ The opti- 
mal radius R is proportional to q; ', as in Eq. ( 1 ) , and the s-f 
shift is A.M/2 in the principal order, whereas the correction 
to this shift is of the order of ( TAS /T, ) (AS/ W) 'I2. There- 
fore, generalization of the method of Ref. 1 makes it fairly 
universal. 

MAGNETIC PROPERTIES OF DEGENERATE 
SEMICONDUCTORS 

Investigations of phase transitions in degenerate mag- 
netic semiconductors are made using an incomplete thermo- 
dynamic potential of the system which is not minimized in 
respect of the magnetization. Equation ( 1 1 ) can be used to 
find the total energy of degenerate electrons as a function of 
the magnetization. The average energy of localized spins is 
obtained from the Hamiltonian HM of Eq. (2)  and the ener- 
gy corresponding to a given value of the magnetization is 
described by the usual combinatorial methods (in this case 
the short-range order is ignored). The result is an expression 
for the thermodynamic potential Q, which in the absence of 
the conduction electrons reduces to the potential Q,, of a 
Heisenberg magnetic material considered in the self-consis- 
tent field approximation2': 

where 

If S # h ,  then it is technically more convenient to obtain an 
expression Q,, directly from the self-consistent field equa- 
tions without explicit use of the combinatorial methods. 

The contribution of the conduction electrons to Q, is 
described by the second term on the right-hand side of Eq. 
(12). Its structure is clear from the fact that the quantity 
d2? ( O ) / d d  represents the force exerted by a conduction 
electron on the magnetic subsystem and, consequently, 
( d g  (O)/dd)d.l is the work carried out by this force. 

Equation ( 12) is written down allowing for the fact that 
introduction of an impurity into a crystal not only provides 
the conduction electrons but also creates a homogeneous de- 
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formation of a crystal by impurity ions.' The resultant 
change in the lattice constant by ha  alters the direct ex- 
change integral I,. 

It follows from Eqs. ( 11 ) and ( 12) that, in spite of the 
non-Heisenberg nature of the indirect exchange, it cannot 
result in an abrupt phase transition because the coefficient in 
front of a4 in @ is positive even when the indirect exchange 
is allowed for. The increase in the Curie temperature because 
of the indirect exchange is given by the expression 

Therefore, ST, is a quantity of the order of  AS)^" w 'I3v. 
The result ( 13) differs from the RKKY result by the nature 
of the dependence on the electron density: ST, is propor- 
tional to n and not to n'13. Ifp<E,, the quantity ST, of Eq. 
( 13) is considerably less than found from the RKKY the- 
ory. 

The non-Heisenberg nature of the indirect exchange is 
manifested in this case by a nonanalytic dependence of ST, 
on the s-f exchange integral and spin. Moreover, the contri- 
bution of the indirect exchange to the coefficient in front of 
a4 in Q, is in this approximation independent of A S  and 
proportional to W. As pointed out in the Introduction, a 
similar disappearance of the dependence on Woccurs also in 
the case of frequencies of long-wavelength magnons. There- 
fore, the effect is fairly common in the case of the indirect 
exchange. 

However, the paramagnetic Curie temperature is still 
described by the RKKY theory result SO-A 'S2v/p (Ref. 
1 ) . This is due to the fact that this temperature O is defined in 
the range QT,, when the correlation radius is small and 
there is no alignment of the electron spin to the local mo- 
ment. The spin retains its spatial direction and this makes it 
possible to expand the electron energy in terms of A&/p, 
where A is the magnetization induced by a vanishingly 
weak external field. In other words, i f p  < E,, the value of O 
should be considered greater than T, , even if these quanti- 
ties are equal in the original impurity-free semiconductor. 

It should be noted that at high electron densities when 
the inequality W-p%ASis satisfied, the above method gives 
the same results as the RKKY theory. It is necesary then to 
minimize with respect to R the total energy of the electron 
gas allowing for the filling of both subbands of Eq. (9)  with 
electrons. The radius R is then proportional to ( W/AS)'a 
and that part of the electron energy which is proportional to 
A2 is-as expected-of the order of A 'v/p. 

When the experimental results are compared with the 
above theory, we must allow for renormalization of the di- 
rect exchange because of a change in the volume of a crystal 
as a result of doping. Its role is particularly great in those 
cases when some impurity atoms form clusters, which is 
typical of many impurities in degenerate semiconductors. 
The electrons of those atoms which form clusters do not 
become delocalized and, therefore, they do not participate in 
the indirect exchange. Because of the presence of such clus- 

ters the number ofimpurity atoms deforming the lattice may 
be several orders of magnitude higher than the number of the 
conduction electrons. It is possible to separate the renormal- 
ization of the direct exchange if ha  and dT,/da are mea- 
sured additionally for a pure crystal. The second of these 
quantities is known for many materials, but unfortunately 
there have been no measurements of ha  in the case of doped 
crystals. However, the shift of T, due to the lattice deforma- 
tion is comparable with T, for a pure crystal only if the 
values of Aa/a are very large (of the order of 10% ) when the 
experimental values are d (ln T)/d(ln a )  - 5-6 for EuO and 
EuS (Ref. 8).  Such values of Aa/a are hardly realistic. 

The fact that according to Ref. 9 the shift of Tc exhibit- 
ed by Gd-doped EuO is proportional to the carrier density 
indicates its origin due to the indirect exchange. The use of 
the parameters AS = 0.5 eV and W = 4 eV found from inde- 
pendent experiments for EuO (Ref. 1 ) in calculations based 
on Eq. ( 13 ) and on the assumption that r-a gives values of 
ST, close to those found experimentally (12 K for 
n = 1.6 x lo2' cm-', etc. ). The dominant role of the indirect 
exchange in the shift of Tc was supported also by a maxi- 
mum through which the difference O - T, passes in the case 
of EuS (Ref. 8) and EuO (Ref. 10) on increase in the dopant 
concentration (at very high concentrations when the indi- 
rect exchange becomes of the RKKY type and the value of O 
should be close to T,, as in pure crystals). 

PHASE TRANSITIONS IN FERROMAGNETIC SEMIMETALS 

The main difference between a semimetal and a degen- 
erate semiconductor is that in the former case the carrier 
density depends on the magnetization because a change in 
the magnetization alters the degree of overlap of the valence 
and conduction bands. We shall show below that the depen- 
dence of the carrier density on the magnetization may have a 
considerable influence on the nature of a magnetic phase 
transition. We shall assume that only the conduction elec- 
trons interact strongly with localized spins, whereas the in- 
teraction of holes in negligible (such a situation is typical of 
compounds of rare-earth elements in which holes move 
between nonmagnetic anions). For simplicity, we shall as- 
sume that the effective masses of electrons and holes are 
equal to one another and that the extrema of both bands are 
located at k = 0. 

The most interesting situation arises when near T, the 
valence band maximum Z?,, lies above the minimum g,, of 
the lower spin conduction subband, but above the minimum 
of the upper conduction subband. The dependence of g,, on 
the magnetization is given by Eq. ( 1 1 ). The condition for the 
balance of the number of particles derived bearing in mind 
that the valence band is spin-degenerate yields the following 
expression describing the dependence of the number of the 
conduction electrons on the magnetization: 

where all the quantities Z9, are taken at k = 0. 
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After substitution of Eq. ( 14) into Eq. ( 12), the ther- 
modynamic potential of the system becomes 

It is clear that if D/$,- 1, then the term d4 in Eq. (16) 
remains positive so that the phase transition is of the second 
order, exactly as for D = 0. However, in the case of interme- 
diate values ofD / g ,  we can have a situation when the nega- 
tive nature of the electron contribution to the term d4 
makes the whole of this term in 0 negative and then the 
phase transition is of the first order. For given parameters of 
the electron subsystem, this is favored by the smallness of the 
direct exchange between the f spins. If the phase transition is 
of the second order, the shift of Tc because of the indirect 
exchange is still given by Eq. ( 13), i.e., the dependence of the 
number of carriers on the magnetization does not affect the 
value of Tc . 

PHOTOINDUCED PHASE TRANSITIONS 

The dependence of the carrier density on the magneti- 
zation is significant also in the case of photoinduced phase 
transitions in impurity-free semiconductors. An analysis of 
this problem simplifies greatly if we bear in mind that the 
cooling time of photoelectrons is short compared with their 
recombination time. Therefore, we can assume that photo- 
electrons are concentrated mainly near the bottom of the 
lower conduction subband. The photomagnetic effect be- 
comes significant only at very high photoelectron densities, 
of the order of 10" cmP3 or more. At these densities the 
electron gas can be regarded as degenerate so that the quasi- 
Fermi level of photoelectrons lies within the conduction 
band. The conduction band tails corresponding to the cap- 
ture of electrons by magnetic fluctuations are very weak for 
pure crystals.' Therefore, we can ignore the contribution of 
the trapped electrons to the total electron energy although 
the states in the tails are very important in multistage recom- 
bination of nonequilibrium carriers. 

Obviously, in view of the nonequilibrium nature of the 
phase transition under discussion, we cannot describe this 
transition using a condition for a minimum of the thermody- 
namic potential. However, if the temperature of a sample is 
constant in time and varies weakly throughout a sample, the 
steady-state magnetization can be found from a minimum of 
the expression which differs from Eq. ( 12) only because the 
number of electrons n is not the thermodynamic equilibrium 
value. The term "synergetic potential" is suggested for this 
quantity in Ref. 3. If n is independent of &, the conclusion 
that & can be found from a condition for a minimum of the 
synergetic potential is self-evident because then the quantity 
n behaves as a given external field with respect to the mag- 
netic subsystem and Eq. ( 12) represents the thermodynamic 
potential of the magnetic subsystem in an external field. 
However, in the self-consistent field approximation this con- 
clusion remains valid also when n depends on &. This is 
shown in Ref. 3 for the specific case of an Ising model with a 
large-radius direct exchange, using directly the equations of 
motion for the electron and spin operators. 

The principal difference between the synergetic and 
thermodynamic potentials is that the derivatives of the for- 
mer with respect to temperature do not represent entropy 
and specific heat. Nevertheless, we shall show below that the 
second derivative of the synergetic potential with respect to 
temperature shows a discontinuity in the adopted approxi- 
mation. In addition to singularities in respect of tempera- 
ture, the synergetic potential exhibits similar singularities in 
respect of the parameters of the system, the energy of which 
is being dissipated, which are the intensity and frequency of 
light. These singularities are consequences of the corre- 
sponding singularities of the rate of generation of entropy. 

Before considering calculations, we must point out that 
the simplest situation occurs when the inequality w - g,, 
) 8, is satisfied; here g ,  is the Zeeman splitting and fY,, is 
the position of the bottom of the conduction band. In this 
case the density of electrons generated by unpolarized light 
depends weakly on the magnetization. The shift of T, is still 
described by Eq. ( 13); the density of carriers in the case of 
equal effective masses of electrons and holes is given by an 
expression which follows from the condition of balance of 
the numbers of generated and recombining carriers: 

where Go(w) is the number of carriers generated pei unit 
time; T, is the recombination time of carriers which can be 
regarded as independent of &; g is the interband matrix 
element of the momentum; Do is the width of the band gap at 
T = 0; mo is the true mass of an electron; 4 ( w )  is the spec- 
tral density of the intensity of ligth. The validity of Eq. ( 17) 
is limited by the condition that the quasi-Fermi level of pho- 
toelectrons lies below the electron level at which optical 
transitions terminate: p < w - Do. 

However, if the frequency of light is sufficiently close to 
the absorption edge, we have to allow for the dependence of 
the carrier density on the magnetization. We shall assume 
that the frequency of the absorbed light corresponds to the 
lower spin subband but does not reach the upper subband. 
We can calculate the probability of band-band transitions 
using plane waves with a fixed direction of spin for the va- 
lence band and waves with a fluctuating spin (5 )  for the 
conduction band. The transformation to a general coordi- 
nate system is made using Eq. (3) .  The probability of a tran- 
sition under the influence of illumination is proportional to 

where k and p are the quasimomenta in the valence and con- 
duction bands, respectively, and the quantities Of, and y,, 
are defined by Eq. (4) .  

In view of the difficulties encountered in the calculation 
of the correlation functions of Eq. (18), we shall consider 
only the case of magnetic materials with a strong easy-plane 
.anisotropy (x-y model), when y,, = 0 in all cases. Using Eq. 
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(7) ,  we obtain-allowing for the smearing of the state (5)  
between the states with a fixed quasimomentum and spin 
direction: 

(COS Ogr/2)= (1/1/Zj {1+<S,$t)/2Sz), 
n=z,G ( o ) ,  G (o) = G . ( o )  [ l + C R [ m 9 ( o - D o )  ]"+ . . .I,, ( 19) 

G,=L(o-Do)'",  

where C -  1; the band gap D, near Tc depends on the mag- 
netization in the same way as %' (0)  [see Eq. ( 1 1 ) ]. In this 
case the nonequilibrium analog 6, of the thermodynamic po- 
tential @ has the following structure: 

It follows from Eq. (20) that, as in the case of semime- 
tals, the phase transition can now be of the first order, al- 
though it is now much more difficult to satisfy the conditions 
for such a transition. It is nevertheless of interest that light 
can convert a continuous phase transition to an abrupt one. 
If the phase transition remains continuous even during illu- 
mination, then the shift of Tc due to photoelectrons is given 
by Eq. (13). 

We shall now consider singularities of the derivatives of 
the rate of generation of entropy s = SQ /T,  where SQ is the 
power of the light flux absorbed and converted into heat per 
unit time. According to Eqs. ( 19) and ( 1 1 ), we have 

Using Eqs. (20) and ( 13), we find that the magnetization 
regarded as a function of temperature is 

A 2 = K  (Tc0+6Tc-T),  K=lOSZ (S+1)'/3TC (2SZ+2S+1). 

(22) 
It is clear trom Eqs. (21) and (22) that at the transition 
points the derivatives of s with respect to temperature, and 
with respect to the intensity and frequency of light all exhibit 
singularities: 

Since according to Eqs. ( 19) and (2  1 ), the rate s is propor- 

tional to the photoelectron density, such discontinuities 
should be experienced also by the corresponding derivatives 
with respect to this density. 

The nature of the singularities of this energetic potential 
at Tc is governed by the fact that in the adopted approxima- 
tion Eqs. (20), (22), and (13) yield 

Hence it follows that the second derivatives of & with re- 
spect to T, w ,  and L (including the mixed derivatives) also 
have discontinuities at Tc . According to Eqs. (2 1 ), (22), 
and (24), that part of the entropy generation rate which is 
responsible for its discontinuity in the derivative with re- 
spect to Tc is proportional to the derivatives of & with re- 
spect to T, w ,  or L. This result generalizes the conclusion of 
Ref. 3 according to which a special part of the entropy gener- 
ation rate is proportional to d&/dw. 

" These results are obtained using, for example, a spherical model which 
reproduces highly accurately many properties of the Heisenberg mod- 

2'The quantity a, in Eq. ( 12) can be regarded as an accurate expression 
of the Landau type for the thermodynamic potential of a Heisenberg 
magnetic material. The specific form of the unrenormalized Tc does not 
affect its shift because of the indirect exchange. The expression ( 12) is 
convenient because it makes it possible to estimate readily the shift of 
T, due to the deformation of the lattice by the dopant. 
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